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EXISTENCE OF SOLUTIONS TO FRACTIONAL DIFFERENTIAL
INCLUSIONS WITH p-LAPLACIAN OPERATOR

AHMET YANTIR, FATMA SERAP TOPAL

Abstract. In this article, we prove the existence of solutions for three-point
fractional differential inclusions with p-Laplacian operator. We use fixed point

theory for set valued upper semi-continuous maps for obtaining the solutions.

1. Introduction

Since fractional derivatives provide an excellent tool for the description of the
memory and hereditary properties of various materials and processes, the differen-
tial equations/inclusions of fractional-order are more suitable to describe a model in
some real-life problems than integer-order equations [6]. The most widespread areas
whose mathematical models involves derivatives of fractional order are viscoelas-
ticity, electrochemistry, control, electromagnetism, aerodynamics, electrodynamics
of complex media, polymer rheology, and so forth [5, 8, 20]. Because of these
wide range of application areas, the fractional differential equations gain impor-
tance and attention day by day. Due to this importance several monographs are
written. For the detailed information about differential equations involving frac-
tional derivatives, we refer to the monographs of Kilbas et al [13], Podlunby [16],
Lakshimikantham et al [14] and Samko et al [17] and the references therein.

Besides, integer order p-Laplacian boundary-value problems have been studied
in terms of their importance in theory and applications in mathematics, physics
and so on, see for example, [9, 23] and the references therein.

By unifying the ideas of fractional differential equations and p-laplacian operator
which are mentioned above, Liu, Jia and Xiang [15] studied the fractional differen-
tial equations with p-Laplacian operator (for the first time in the literature as the
authors claim). They studied the existence and uniqueness of solutions of Caputo
fractional differential equation involving the p-Laplacian operator

(ϕp(cDαx(t)))′ = f(t, x(t)),

with the boundary conditions

x(0) = r0x(1), x′(0) = r1x
′(1), x(i)(0) = 0, i = 2, 3, . . . [α]− 1.
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However there are some older studies in this area [9, 20, 21]. Chai [9] studied the
existence and multiplicity of the solutions of

Dβ
0+(φp(Dα

0+u))(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) + σDγ
0+u(1) = 0, Dα

0+u(0) = 0

by using fixed point theorem on cones. A similar problem with different boundary
conditions

Dγ
0+(φp(Dα

0+u))(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = au(ξ), Dα
0+u(0) = 0, Dα

0+u(1) = bDα
0+u(µ)

is studied by Wang and Xiang [21]. The upper and lower solutions method is used
for the existence of solutions. In another article, Wang et al [20] studied the above
equation with the boundary conditions

u(0) = 0, u(1) = au(ξ), Dα
0+u(0) = 0

where Krasnoselskii’s and Legget-Williams fixed point theorems are used to obtain
the main results.

On the other hand, realistic problems arising from economics and optimal control
can be modeled as differential inclusions which are the generalization of the concept
of ordinary differential equations. Therefore, differential inclusions have been widely
studied by many authors, see [1, 2, 3, 5, 9, 12, 16] and the references therein.

The differential inclusions with fractional derivatives have been studied by many
authors in the literature. Among these studies one of the principle one belongs to
Chang and Nieto [10]. Authors deal with the existence of solutions for the following
fractional differential inclusion

c
0D

δ
t y(t) ∈ F (t, y(t)) t ∈ [0, 1], δ ∈ (1, 2)

y(0) = α, y(1) = β, α, β 6= 0,

where c
0D

δ
t y(t) is the Caputo’s derivative and F : [0, 1]× R→ 2R\∅.

It is worthwhile to emphasize that the framawork presented in this article has the
following features which are different from those mentioned above. As stated above,
in the literature the unification of fractional calculus with p-laplacian differential
equations was studied as well as its unification with differential inclusions was also
analyzed. However, to our knowledge, there are no contributions in the literature
addressing the unification of fractional calculus, p-laplacian operator and differential
inclusions. Motivated by this gap the intrinsic feature of the present article is to
analyze the existence of solutions for the following fractional differential inclusions
with p-Laplacian operator

Dβ
0+(ϕp(Dα

0+u))(t) ∈ F (t, u(t)), t ∈ [0, 1], (1.1)

u(0) = 0, u(1) = γu(η), Dα
0+u(0) = 0 (1.2)

where Dβ
0+ and Dα

0+ are the standard Riemann-Liouville derivatives of order α and
β with α ∈ (1, 2], β ∈ (0, 1]. Moreover η ∈ (0, 1) with 1 − γηα−1 > 0 and ϕp
is p-Laplacian operator; i.e., ϕp(s) = |s|p−2s, p > 1 such that (ϕp)−1 = ϕq with
1
p + 1

q = 1.
Also F : [0, 1] × R → 2R\∅ is a multi-valued function with compact and convex

values such that |F (t, u)| = sup{|v| : v ∈ F (t, u)}. By F (t, u) > 0, we mean v > 0
for each v ∈ F (t, u).
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By u being a solution of (1.1)-(1.2), we mean that there exists a function v ∈
C1([0, 1],R) such that v(t) ∈ F (t, u(t)) on [0, 1] satisfying the equation

Dβ
0+(ϕp(Dα

0+u))(t) = v(t), t ∈ [0, 1] (1.3)

and the boundary conditions (1.2).
This article is organized as follows: Section 2 is devoted to preliminary definitions

of multi-valued maps and a very brief introduction to fractional calculus. In Section
3, we first state the fixed point results. Consequently, we prove the existence results
for the integral inclusion corresponding to the main problem (1.1)-(1.2). Finally,
we illustrate our main result by an example.

2. Preliminaries

In this section, we list some preliminary definitions, notation and results that
will be used in the rest of the article.

Let C(I) denote the Banach space of continuous functions from I into R with
the supremum norm ‖y‖ = supt∈I{|y(t)|}.

Let (X, ‖ · ‖) be a Banach space and CK(X) denote the family of nonempty,
closed and convex subsets of X. A multi-valued map H : X → CK(X) is said
to be upper semi-continuous (u.s.c.) provided that {uk}k∈N, {vk}k∈N ⊂ X with
uk → u, vk → v (while k → ∞) and vk ∈ H(uk) for all k ∈ N imply v ∈ H(u).
Morevover a multi-valued map H is said to be completely continuous if H(B) is
relatively compact for every bounded subset B of X. Furthermore, we say that H
has a fixed point if there exists x ∈ X such that x ∈ H(X).

Throughout this article, we impose the following condition on the multi-valued
function F :

(H1) F : [0, 1]×R→ CK(R) is a multi-valued map such that F (t, .) is u.s.c. for
all t ∈ [0, 1].

Definition 2.1 ([13, 16]). The Riemann-Liouville fractional integral of order α > 0
of a function y : (a, b]→ R is given by

Iαa+y(t) =
1

Γ(α)

∫ t

a

(t− s)α−1y(s)ds, t ∈ (a, b].

Definition 2.2 ([13, 16]). The Riemann-Liouville fractional derivative of order
α > 0 of a function y : (a, b]→ R is given by

Dα
a+y(t) =

1
Γ(n− α)

(
d

dt
)n
∫ t

a

y(s)
(t− s)α−n+1

ds, t ∈ (a, b],

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.3. Let α > 0. If y ∈ C(0, 1) ∩ L(0, 1) possesses a fractional derivative
of order α that belongs to C(0, 1) ∩ L(0, 1), then

Iα0+Dα
0+y(t) = y(t) + c1t

α−1 + c21t
α−2 + · · ·+ cnt

α−n,

for some ci ∈ R, i = 1, 2, . . . , n, where n = [α] + 1.

To find the form of the a solution of the problem (1.3)-(1.2), we first consider
the fractional boundary-value problem

Dα
0+u(t) = φ(t), t ∈ [0, 1],

u(0) = 0, u(1) = γu(η),
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where φ ∈ C([0, 1],R). Ahmad and Nieto [4] presented the unique solution of the
above problem by

u(t) =
∫ 1

0

G(t, s)φ(s)ds,

where G(t, s) is the Green’s function given by

G(t, s) =
1

Γ(α)(1− γηα−1)

{
G1(t, s), 0 ≤ t ≤ η,
G2(t, s), η < t ≤ 1.

(2.1)

Here G1(t, s) and G2(t, s) are given by

G1(t, s) =


(t− s)α−1(1− γηα−1)− tα−1[(1− s)α−1 − γ(η − s)α−1], 0 ≤ s ≤ t,
−tα−1[(1− s)α−1 − γ(η − s)α−1], t < s ≤ η,
−(t(1− s))α−1, η < s ≤ 1,

G2(t, s) =


(t− s)α−1(1− γηα−1)− tα−1[(1− s)α−1 − γ(η − s)α−1], 0 ≤ s ≤ η,
(t− s)α−1(1− γηα−1)− (t(1− s))α−1, η < s ≤ t,
−(t(1− s))α−1, t < s ≤ 1

respectively.
Substituting Dα

0+u = φ, ϕp(φ) = ω in (1.3), we obtain the equation Dβ
0+ω(t) =

v(t). Lemma 2.3 implies that the solution of initial value problem

Dα
0+ω(t) = v(t), t ∈ [0, 1], ω(0) = 0,

is of the form ω(t) = c1t
β−1 + Iβ0+v(t). It follows from the initial condition and

β ∈ (0, 1] that c1 = 0. Hence

ω(t) = Iβ0+v(t), t ∈ [0, 1].

Taking Dα
0+u = φ and φ = ϕ−1

p (ω) = ϕq(ω) into account, we establish that the
solution of (1.3)-(1.2) satisfies the boundary-value problem

Dα
0+u(t) = ϕq(I

β
0+v)(t), t ∈ [0, 1], (2.2)

u(0) = 0, u(1) = γu(η), Dα
0+u(0) = 0. (2.3)

Using the result of Ahmad and Nieto [4], we obtain the solution of the problem
(2.2)-(2.3) as

u(t) =
∫ 1

0

G(t, s)ϕq(I
β
0+v)(s)ds, t ∈ [0, 1].

Since v(t) > 0 for t ∈ [0, 1], we have ϕq(I
β
0+v)(s) = (Iβ0+v)q−1(s) and therefore

u(t) =
∫ 1

0

G(t, s)(Iβ0+v)q−1(s)ds

=
1

(Γ(β))q−1

∫ 1

0

G(t, s)
(∫ s

0

(s− τ)β−1v(τ)dτ
)q−1

ds.

Hence we have the following lemma.

Lemma 2.4. Let v(t) > 0 for t ∈ [0, 1]. Then the solution of (1.3)-(1.2) is given
by

u(t) =
1

(Γ(β))q−1

∫ 1

0

G(t, s)
(∫ s

0

(s− τ)β−1v(τ)dτ
)q−1

ds.
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3. Existence results

This section is devoted to the existence results regarding solutions for the dif-
ferential inclusion (1.1)-(1.2). For this purpose, we first give an existence result
for the integral inclusion corresponding to (1.1)-(1.2). Consequently, we derive an
existence result for the differential inclusion (1.1)-(1.2). Finally, we illustrate our
result by an example.

Assume that G : [0, 1] × [0, 1] → R is a single-valued function. By a solution u
of the integral inclusion

u(t) ∈ 1
(Γ(β))q−1

∫ 1

0

G(t, s)
(∫ s

0

(s− τ)β−1F (τ, u(τ))dτ
)q−1

ds, t ∈ [0, 1] (3.1)

we mean that there exists a function v ∈ C1([0, 1],R) such that v(t) ∈ F (t, u(t)) on
[0, 1] satisfying the integral equation

u(t) =
1

(Γ(β))q−1

∫ 1

0

G(t, s)
(∫ s

0

(s− τ)β−1v(τ)dτ
)q−1

ds, t ∈ [0, 1].

The proofs of our main existence results are based on the following two fixed point
results.

Theorem 3.1 ([2]). Let C be a nonempty closed convex subset of a Banach space
E and H : C → CK(C) an u.s.c. compact map, then H has a fixed point in C.

Theorem 3.2 ([2]). Let E be a Banach space, U an open subset of E and 0 ∈ U .
If H : U → CK(E) is an u.s.c. compact map, then either

(1) H has a fixed point in U or
(2) there exists u ∈ ∂U and λ ∈ (0, 1) such that u ∈ λH(u).

Our main result is based on the following existence principle.

Lemma 3.3. Assume that (H1) holds and G(t, s) : [0, 1]× [0, 1]→ R is continuous.
Then we have the following existence results:

(a) For any r > 0, suppose that there exists a continuous hr ∈ C([0, 1]) with
|F (t, u)| ≤ hr(t) for all t ∈ [0, 1] and all |u| ≤ r. If there exists a constant M with
‖u‖ 6= M for all solutions u of integral inclusion

u(t) ∈ λ

(Γ(β))q−1

∫ 1

0

G(t, s)
(∫ s

0

(s− τ)β−1F (τ, u(τ))dτ
)q−1

ds, (3.2)

for each λ ∈ (0, 1), then the inclusion (3.1) has a solution.
(b) Suppose that there exists a continuous function h ∈ C([0, 1]) with |F (t, u)| ≤

h(t) for all t ∈ [0, 1] and all u ∈ R, then the inclusion (3.1) has a solution.

Proof. (a) We define a linear and continuous operator H : C([0, 1])→ C([0, 1]) by

Hu(t) :=
1

(Γ(β))q−1

∫ 1

0

G(t, s)
(∫ s

0

(s− τ)β−1u(τ)dτ
)q−1

ds, t ∈ [0, 1].

Let
F(u) := {v ∈ C([0, 1]) : v(t) ∈ F (t, u(t)) for t ∈ [0, 1]}.

Clearly F : [0, 1] × R → CK(R) implies that F : C([0, 1]) → CK(C([0, 1])). Note
that the integral inclusion (3.2) is equivalent to the fixed point problem

u ∈ λ(H ◦ F)(u),
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where H ◦ F : C([0, 1])→ CK(C([0, 1])).
Let U := {u ∈ C([0, 1]) : ‖u‖ < M} and E = C([0, 1]). Now we apply Theorem

3.2 to the function H ◦ F for the existence of solutions for the inclusion (3.1).
Assume there exists u ∈ ∂U and λ ∈ (0, 1) with u ∈ λ(H ◦ F)(u). Then

‖u‖ = M and so the second possibility given in Theorem 3.2 is ruled out. Hence,
if H ◦ F : Ū → CK(E) is u.s.c. and compact then Theorem 3.2 guarantees that
H ◦ F has a fixed point in Ū , i.e. (3.1) has a solution.

First, we show that H ◦ F : Ū → CK(E) is u.s.c. For this purpose we let
{uk}k∈N, {wk}k∈N ⊂ R with uk → u0, wk → w0 in C([0, 1]) as k → ∞ and wk ∈
H ◦ F(uk) for k ∈ N. Thus there exist vk ∈ F(uk) with wk = Hvk. Since uk ∈ Ū
for all k ∈ N, the condition |F (t, u)| ≤ hr(t) for all |u| < r with hr ∈ C([0, 1])
guarantees (see the proof of [3, Remark 2.1]) that there exists a compact set Ω ⊂ E
with {vk}k∈N ⊆ Ω. Therefore there exists a convergent subsequence {vkn}n∈N of
{vk}k∈N, such that vkn → v0 as n → ∞. Now vkn → v0 and ukn → u0 as n → ∞
and vkn

(t) ∈ F (t, ukn
(t)) for all t ∈ [0, 1]. Thus, since F (t, ·) is u.s.c. for all

t ∈ [0, 1], we conclude with v0(t) ∈ F (t, u0(t)) which results v0 ∈ F(u0). Since
vkn
→ v0 as n → ∞ and H is continuous, we see that wkn

= Hvkn
→ Hv0 as

n → ∞, and hence w0 = Hv0 ∈ (H ◦ F)(u0). As a result H ◦ F : Ū → CK(E) is
u.s.c. The compactness of H ◦F follows from the Arzela-Ascoli theorem. Therefore
the proof of part (a) is complete.

(b) Let H and F be as in part (a). Clearly proving the existence a solution for
the integral inclusion (3.1) is equivalent to the fixed point problem

u ∈ H ◦ F(u).

The argument in part (a) guarantees that H ◦ F is u.s.c. and compact and hence
the claim follows by using Theorem 3.1. �

With the help of Lemma 3.3, we present our existence result for fractional dif-
ferential inclusion (1.1) with the boundary conditions (1.2).

Theorem 3.4. Assume that (H1) holds, and there exist a continuous nondecreasing
function ψ : [0,∞) → [0,∞) with ψ(u) > 0 for u > 0 and a function r : [0, 1] →
[0,∞) such that |F (t, u)| ≤ r(t)ψ(|u|) for all u ∈ R and t ∈ [0, 1]. If Q defined by

Q :=
1

(Γ(β))q−1
max
t∈[0,1]

(∫ 1

0

|G(t, s)|(
∫ s

0

(s− τ)β−1r(τ)dτ)q−1ds
)
,

where G(t, s) is defined by (2.1), satisfies the property

sup
c∈(0,∞)

c

(ψ(c))q−1
> Q,

then the problem (1.1)-(1.2) has a solution.

Proof. Suppose M > 0 satisfies M/(ψ(M))q−1 > Q. Consider

Dβ
0+(ϕp(Dα

0+u))(t) ∈ λF (t, u(t)), t ∈ [0, 1], (3.3)

with the boundary condition (1.2) and λ ∈ (0, 1). Solving the inclusion (3.3) is
equivalent to finding a function u ∈ C([0, 1]) which satisfies the equation (3.2) for
t ∈ [0, 1]. Therefore by Lemma 3.3, it is enough to show that there exists a constant
M > 0 with ‖u‖ = maxt∈[0,1] |u(t)| 6= M for any solution u of the inclusion (3.2).
Let u be any solution of (3.2) for λ ∈ (0, 1).
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For t ∈ [0, 1], we have

|u(t)| ≤ 1
(Γ(β))q−1

∫ 1

0

|G(t, s)|
(∫ s

0

(s− τ)β−1|F (τ, u(τ))|dτ
)q−1

ds

≤ 1
(Γ(β))q−1

∫ 1

0

|G(t, s)|
(∫ s

0

(s− τ)β−1|r(τ)|ψ(|u(τ)|)dτ
)q−1

ds

≤
(ψ(‖u‖)

Γ(β)

)q−1
∫ 1

0

|G(t, s)|
(∫ s

0

(s− τ)β−1r(τ))dτ
)q−1

ds.

Therefore,
‖u‖

(ψ(‖u‖))q−1
≤ Q.

If ‖u‖ = M , then
M

(ψ(M))q−1
≤ Q,

which contradicts our assumption. Hence we obtain ‖u‖ 6= M which is the desired
result. �

We illustrate our result with the following example. Consider the problem

D
1
2
0+(ϕ 3

2
(D

4
3
0+u))(t) ∈ F (t, u(t)), t ∈ [0, 1], (3.4)

u(0) = 0, u(1) =
1

4
2
3
u(

1
4

), D
4
3
0+u(0) = 0 (3.5)

where F : [0, 1]× R→ 2R\∅ is a multi-valued map defined by

(t, u)→ F (t, u) :=
[ u4

4(u4 + 1)
+
t2 + 1

8
,

1
4

cosu+
t2 + 1

4
]
.

For v ∈ F , we have

|v| ≤ max
[ u4

4(u4 + 1)
+
t2 + 1

8
,

1
4

cosu+
t2 + 1

4
]
≤ 3

4
.

Thus,
|F (t, u)| = sup{|v| : v ∈ F (t, u)} ≤ r(t)ψ(|u|), u ∈ R,

with r(t) = 1, ψ(u) =
√
u+ 1. Clearly, supc∈(0,∞)

c
(ψ(c))2 = 1 > 0, 0785502 is satis-

fied. Hence the problem (3.4)-(3.5) has a solution on [0, 1].
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