EXISTENCE OF SOLUTIONS TO QUASILINEAR ELLIPTIC PROBLEMS WITH NONLINEARITY AND ABSORPTION-REACTION GRADIENT TERM

SOFIANE EL-HADI MIRI

Abstract. In this article we study the quasilinear elliptic problem

$$-\Delta_p u = \pm |\nabla u|^\nu + f(x, u), \quad \text{in } \Omega,$$

$$u \geq 0 \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

where $\Omega \subset \mathbb{R}^N$ is a bounded regular domain, $p > 1$ and $0 < \nu \leq p$. Moreover, f is a nonnegative function verifying suitable hypotheses. The main goal of this work is to analyze the interaction between the gradient term and the function f to obtain existence results.

1. INTRODUCTION

In this article we will discuss existence results for a class of quasilinear elliptic problems in the form

$$-\Delta_p u = \pm |\nabla u|^\nu + f(x, u), \quad \text{in } \Omega,$$

$$u > 0 \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain and $\Delta_p u := \text{div}(|\nabla u|^{p-2}\nabla u)$, $p > 1$, is the classical p-Laplace operator and $0 < \nu \leq p$.

The function $f : \Omega \times [0, +\infty) \to [0, +\infty)$ is assumed to be Hölder continuous, non-decreasing, and such that

the function $t \mapsto \frac{f(x, t)}{t^{p-1}}$ is non-increasing for all $x \in \Omega$, \quad (1.2)

$$\lim_{t \to 0} \frac{f(x, t)}{t^{p-1}} = +\infty \quad \text{and} \quad \lim_{t \to +\infty} \frac{f(x, t)}{t^{p-1}} = 0 \quad \text{uniformly for } x \in \Omega. \quad (1.3)$$

$$f(x, 0) \neq 0 \quad (1.4)$$

Notice that problems with gradient term are widely studied in the literature. We can cite the leading works of Boccardo, Gallouët, Murat and their collaborators, see for instance [7, 9] and [8] and the references therein. For some recent works related to our problem, we can cite [1, 2, 4, 21, 24, 5, 25].

2000 Mathematics Subject Classification. 35D05, 35D10, 35J25, 35J70, 46E30, 46E35.

Key words and phrases. Quasi-linear elliptic problems; entropy solution; general growth.

©2014 Texas State University - San Marcos.

In the particular case $p = 2$, problem (1.1) is related to the Lane-Emden-Fowler and Emden-Fowler equations, treated in many papers; we particularly cite the works of Radulescu, and his collaborators [13, 14, 15] and more recently [12, 16] and the references therein. For the case without the absence of the gradient term, we refer to [18].

When the nonlinearity is considered as an absorption term we cite [11] where the authors prove the existence of solution even when Ω is of infinite measure, and in the same direction we cite [10].

The extension to the $p-$laplacian, of the previous results obtained in the case of the laplacian, especially when using a sub-supersolution method, has a major difficulty: no general comparison principle for the operator $-\Delta_p u \pm |\nabla u|^q$ exist at our knowledge, and there are only few partial results in this direction. In addition, the behavior of the operator changes when considering the cases $p < 2$ and $p > 2$. We refer the reader to [22] for a general discussion about this fact.

2. Preliminaries

The next comparison principles will be used frequently in this paper, for complete proofs of the first three ones we refer to [22] and we refer to [3] for the last one. Considering the problem

$$\begin{align*}
- \text{div}(a(x, \nabla u)) + H(x, \nabla u) &= f(x) \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega
\end{align*}$$

(2.1)

and having in mind the particular case

$$\begin{align*}
-\Delta_p u \pm |\nabla u|^q &= f(x) \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega,
\end{align*}$$

with $q \leq p$ we have the following result.

Theorem 2.1 ([22]). *Under the hypotheses: $q > \frac{N(p-1)}{N-1}$, $1 < p \leq 2$ and

$$f = f_1(x) + \text{div}(f_2(x)) \quad \text{where } f_1 \in L^1(\Omega), \ f_2 \in (L^{p'}(\Omega))^N$$

(2.2)

$$|a(x, \xi) - a(x, \eta)|(|\xi| - |\eta|) \geq \alpha(|\xi|^p - |\eta|^p)^{\frac{p-2}{2}}|\xi - \eta|^2, \quad \alpha > 0$$

(2.3)

$$a(x,0) = 0$$

(2.4)

$$|a(x,\xi)| \leq \beta(k(x) + |\xi|^{p-1}), \quad \beta > 0, \ k(x) \in L^{p'}(\Omega)$$

(2.5)

$$|H(x,\xi) - H(x,\eta)| \leq \gamma(b(x) + |\xi|^{q-1} + |\eta|^{q-1})|\xi - \eta|, \quad \gamma > 0, \ b(x) \in L^{r}(\Omega),$$

(2.6)

where

$$1 \leq q \leq p - 1 + \frac{p}{N}, \quad r \geq \frac{N(q - (p-1))}{q-1} \quad (\text{with } r = \infty \text{ if } q = 1).$$

If u and v are respectively sub- and super-solution of (2.1), such as

$$(1 + |u|)^{q-1}u \in W^{1,p}_0(\Omega), \quad (1 + |v|)^{q-1}v \in W^{1,p}_0(\Omega), \quad \bar{q} = \frac{(N-p)(q - (p-1))}{p(p-q)}$$

(2.7)

then $u \leq v$ in Ω.
Theorem 2.2 ([22]). Under the hypotheses: $q < \frac{N(p-1)}{N-1}$, $2 - \frac{1}{N} < p \leq 2$, \([22]\), \([2.3]\), \([2.4]\) and \([2.5]\), such that

\[|H(x, \xi) - H(x, \eta)| \leq \gamma (b(x) + |\xi|^{q-1} + |\eta|^{q-1})|\xi - \eta|, \quad \gamma > 0, \quad b(x) \in L^r(\Omega), \]

\[r > \frac{N(p-1)}{N(p-1)-(N-1)}, \quad 1 \leq q < \frac{N(p-1)}{(N-1)}. \]

If u and v are respectively sub- and super-solution of \((2.1)\), then $u \leq v$ in Ω.

Theorem 2.3 ([22]). Under the hypotheses: $p > 2$, $q > \frac{p}{2} + \frac{(p-1)}{N-1}$, \([2.4]\), \([2.5]\), and

\[|a(x, \xi) - a(x, \eta)|(|\xi - \eta| \geq \alpha(1 + |\xi|^2 + |\eta|^2)^{\frac{p-2}{2}}|\xi - \eta|^2, \quad \alpha > 0 \]

\[|H(x, \xi) - H(x, \eta)| \leq \gamma (b(x) + |\xi|^{q-1} + |\eta|^{q-1})|\xi - \eta|, \quad \gamma > 0, \]

\[b(x) \in L^N(\Omega) \quad \text{where} \quad 1 \leq q \leq \frac{p}{2} + \frac{p}{N}. \]

If u and v are respectively sub- and super-solution of \((2.1)\), such as

\[(1 + |u|)^{q-1}u \in W^{1,p}_0(\Omega), \quad (1 + |v|)^{q-1}v \in W^{1,p}_0(\Omega), \quad \eta = \frac{(N-p)(q-\frac{p}{2})}{p(q-1)} \]

then $u \leq v$ in Ω.

Theorem 2.4 ([3]). Assume that $1 < p$ and let f be a non-negative continuous function such that $\frac{f(x,u)}{u^{s-1}}$ is decreasing for $s > 0$. Suppose that $u, v \in W^{1,p}_0(\Omega)$ are such that

\[-\Delta_p u \geq f(x, u), \quad u > 0 \text{ in } \Omega, \]

\[-\Delta_p v \leq f(x, v), \quad v > 0 \text{ in } \Omega. \]

Then $u \geq v$ in Ω.

Since we are dealing with a generalized notion of solution, we recall here the definition of entropy solutions for elliptic problems.

Definition 2.5. Let u be a measurable function. We say that $u \in T^{1,p}_0(\Omega)$ if $T_k(u) \in W^{1,p}_0(\Omega)$ for all $k > 0$, where

\[T_k(s) = \begin{cases} k \text{sgn}(s) & \text{if } |s| \geq k, \\ s & \text{if } |s| \leq k. \end{cases} \]

Let $H \in L^1(\Omega)$. Then $u \in T^{1,p}_0(\Omega)$ is an entropy solution to the problem

\[-\Delta_p u = H \quad \text{in } \Omega, \]

\[u|_{\partial\Omega} = 0, \]

if for all $k > 0$ and all $v \in W^{1,p}_0(\Omega) \cap L^\infty(\Omega)$, we have

\[\int_\Omega |\nabla u|^{p-2}(\nabla u, \nabla (T_k(u - v))) = \int_\Omega HT_k(u - v). \]

We refer to \([3]\) and \([17]\) for more properties of entropy solutions. It is clear that if u is an entropy solution to problem \((1.1)\), then u is a distributional solution to \((1.1)\).
3. The absorption case

In this section we consider the problem

\[-\Delta_p u + |\nabla u|^{\nu} = f(x, u) \quad \text{in } \Omega,\]
\[u > 0 \quad \text{in } \Omega,\]
\[u = 0 \quad \text{on } \partial \Omega.\]

(3.1)

Theorem 3.1. Assume that the assumptions on \(f\) hold. If \(0 < \nu \leq p\), then problem (3.1) has at least one entropy solution \(u \in W^{1,p}_0(\Omega)\).

Proof. We split the proof into several steps.

Step 1: Construction of supersolution and subsolution. To obtain the existence result we will use sub-supersolution argument. Let us consider the problem

\[-\Delta_p w = f(x, w) \quad \text{in } \Omega,\]
\[w > 0 \quad \text{in } \Omega,\]
\[w = 0 \quad \text{on } \partial \Omega.\]

(3.2)

Then under the hypothesis on \(f\), problem (3.2) possesses a unique solution \(w\) which is a supersolution of (3.1). For the subsolution to problem (3.1), we consider \(u = 0\). Finally by Theorem 2.4 we reach that \(u \leq w\). To obtain the existence result we use a monotonicity argument. Since no general comparison principle is known for this kind of problems, we will consider different values of \(p\).

The following steps 2, 3 and 4 are devoted to proving the existence of solution in the singular case, namely \(p < 2\), but for different ranges of \(p\) and \(\nu\).

Step 2: Existence result for \(\frac{2N}{N+1} \leq p < 2\) **and** \(1 \leq \nu \leq p - 1 + \frac{p}{N}\). **In this case,** by [22] Theorems 3.1 and 3.2 we know that a comparison principle holds for the operator \(-\Delta_p u + |\nabla u|^{\nu}\) in the space \(W^{1,p}_0(\Omega)\).

Then, we define the sequence \(\{u_n\}_{n \in \mathbb{N}}\) as follows: \(u_0 = u\) and for \(n \geq 1\), \(u_n\) is the solution to problem

\[-\Delta_p u_n + |\nabla u_n|^{\nu} = f(x, u_{n-1}) \quad \text{in } \Omega,\]
\[u_n > 0 \quad \text{in } \Omega,\]
\[u_n = 0 \quad \text{on } \partial \Omega.\]

(3.3)

We claim that the sequence \(\{u_n\}_{n \in \mathbb{N}}\) is increasing in \(n\) and for all \(n \geq 0\), \(u_n \leq w\). Notice that the last statement follows easily from Theorem 2.4. To prove the monotonicity of \(\{u_n\}_{n \in \mathbb{N}}\), we will use the comparison result obtained in [22]. It is clear that \(u_1\) solves

\[-\Delta_p u_1 + |\nabla u_1|^{\nu} = f(x, u_0)\]

By the definition of \(u_0\), we obtain that

\[-\Delta_p u_1 + |\nabla u_1|^{\nu} \geq -\Delta_p u_0 + |\nabla u_0|^{\nu}\]

Thus, by the comparison principle in [22], we reach \(u_1 \geq u_0\). Let us show that \(u_2 \geq u_1\). As above, \(u_2\) satisfies

\[-\Delta_p u_2 + |\nabla u_2|^{\nu} = f(x, u_1)\]

Since \(f\) is a nondecreasing function, it follows that

\[-\Delta_p u_2 + |\nabla u_2|^{\nu} \geq -\Delta_p u_1 + |\nabla u_1|^{\nu}\].
Hence \(u_2 \geq u_1 \). Therefore, the result follows by induction and then the claim follows.

Thus, using \(u_n \) as a test function in (3.3) and by the non decreasing property of \(f \), we obtain that \(\|u_n\|_{W_0^{1,p}(\Omega)} \leq C \). Hence we obtain the existence of \(u \in W_0^{1,p}(\Omega) \) such that \(u_n \rightharpoonup u \) weakly in \(W_0^{1,p}(\Omega) \) and \(u_n \to u \) strongly in \(L^\sigma(\Omega) \) for all \(\sigma < p^* \).

Since \(u \leq u \leq w \in L^\infty(\Omega) \), it follows that \(u \in L^\infty(\Omega) \) and \(u_n \to u \) strongly in \(L^\sigma(\Omega) \) for all \(\sigma \geq 1 \).

Therefore, to have the existence result, we just have to prove that \(|\nabla u_n|^{\nu} \to |\nabla u|^{\nu} \) in \(L^1(\Omega) \). By the hypothesis on \(\nu \), we can see that \(\nu < p \), then using \((u - u_n) \) as a test function in (3.3), it follows that

\[
\int \Omega |\nabla u_n|^{p-2}\nabla u_n \nabla u dx - \int \Omega |\nabla u_n|^p dx + \int \Omega |\nabla u_n|^{\nu}(u - u_n)dx = \lambda \int \Omega f(x, u_{n-1})(u - u_n)dx.
\]

By the Dominated Convergence Theorem and as \(f \) is assumed to be Hölder continuous, we obtain
\[
\int \Omega f(x, u_{n-1})(u - u_n)dx = o(1).
\]

Now using Hölder inequality and the fact that \(\nu < p \), we obtain
\[
\int \Omega |\nabla u_n|^{\nu}(u - u_n)dx \leq \left(\int \Omega |\nabla u_n|^p dx \right)^{\nu/p} \left(\int (u - u_n)^{p-\nu} dx \right)^{\frac{p-\nu}{p}} = o(1).
\]

We obtain
\[
\int \Omega |\nabla u_n|^{p-2}\nabla u_n \nabla u dx - \int \Omega |\nabla u_n|^p dx = o(1).
\]

Then, using Young inequality there results
\[
\int \Omega |\nabla u_n|^p dx = \int \Omega |\nabla u_n|^{p-2}\nabla u_n \nabla u dx + o(1)
\leq \frac{p-1}{p} \int \Omega |\nabla u_n|^p + \frac{1}{p} \int \Omega |\nabla u|^p dx + o(1).
\]

Thus,
\[
\int \Omega |\nabla u_n|^p dx \leq \int \Omega |\nabla u|^p dx + o(1).
\]

It is clear that
\[
\int \Omega |\nabla u|^p dx \leq \lim \inf \int \Omega |\nabla u_n|^p dx \leq \lim \sup \int \Omega |\nabla u_n|^p dx \leq \int \Omega |\nabla u|^p dx.
\]

Therefore, \(\|u_n\|_{W_0^{1,p}(\Omega)} \to \|u\|_{W_0^{1,p}(\Omega)} \) and then \(u_n \to u \) strongly in \(W_0^{1,p}(\Omega) \). Hence the existence result follows in this case.

Step 3: Existence result for \(\frac{2N}{N+1} \leq p < 2 \) **and** \(p - 1 + \frac{\nu}{N} \leq \nu \leq p \). **In this case,** to get a monotone sequence, we have to change the approximation. Since \(\frac{2N}{N+1} \leq p \) then \(\nu \geq 1 \).
For fixed $n \in \mathbb{N}^*$, we define the sequence $\{v_{n,k}\}_{k \in \mathbb{N}}$ as follow: $v_{n,0} = 1$ and for $k \geq 1$, $v_{n,k}$ is the solution to problem

$$-\Delta_p v_{k,n} + \frac{|\nabla v_{k,n}|^\nu}{1 + \frac{1}{n}|\nabla v_{k,n}|^\nu} = f(x, v_{k-1,n}) \quad \text{in } \Omega,$$

$$v_{k,n} > 0 \quad \text{in } \Omega,$$

$$v_{k,n} = 0 \quad \text{on } \partial \Omega. \quad (3.4)$$

Let us begin by proving that the sequence $\{v_{k,n}\}_{k \in \mathbb{N}}$ is increasing in k and that $v_{k,n} \leq w$, for all $k \geq 0$. For simplicity, we set

$$H_n(\xi) = \frac{|\xi|^\nu}{1 + \frac{1}{n}|\xi|^\nu} \quad \text{where } \xi \in \mathbb{R}^N.$$

It is clear that $v_{1,n}$ solves

$$-\Delta_p v_{1,n} + H_n(\nabla v_{1,n}) = f(x, v_{0,n}).$$

By the definition of $v_{0,n}$, we obtain that

$$-\Delta_p v_{1,n} + H_n(\nabla v_{1,n}) \geq -\Delta_p v_{0,n} + H_n(\nabla v_{0,n}).$$

It is clear that H_n satisfies the hypotheses of the comparison principle in [22]. Hence we reach $v_{1,n} \geq v_{0,n}$. In the same way, and using an induction argument, we conclude that $v_{k,n} \geq v_{k-1,n}$ for all $k \in \mathbb{N}^*$.

Now, as in the proof of the previous step, using $v_{k,n}$ as a test function in (3.4) and the hypothesis on f, we obtain that $\|v_{k,n}\|_{W^{1,p}_0(\Omega)} \leq C$. Thus we obtain the existence of $u_n \in W^{1,p}_0(\Omega)$ such that $v_{k,n} \rightharpoonup u_n$ weakly in $W^{1,p}_0(\Omega)$. As in the previous step, we can show that $v_{k,n} \to u$ strongly in $W^{1,p}_0(\Omega)$.

Note that by the previous computation we obtain easily that

$$v_{k,n} \geq v_{k,n+1} \quad \text{for all } k \geq 1.$$

Hence we conclude that u_n is the minimal solution to problem

$$-\Delta_p u_n + \frac{|\nabla u_n|^\nu}{1 + \frac{1}{n}|\nabla u_n|^\nu} = f(x, u_n) \quad \text{in } \Omega,$$

$$u_n > 0 \quad \text{in } \Omega,$$

$$u_n = 0 \quad \text{on } \partial \Omega, \quad (3.5)$$

with $u_n \leq u_{n+1}$ for all $n \geq 1$. It is clear that $u \leq u_n \leq w \in L^\infty(\Omega)$. Then, as above using u_n as a test function in (3.5), we reach that $\|u_n\|_{W^{1,p}_0(\Omega)} \leq C$ and thus, we obtain the existence of $u \in W^{1,p}_0(\Omega)$ such that $u_n \rightharpoonup u$ weakly in $W^{1,p}_0(\Omega)$.

If $\nu < p$, then we follow the above computation to reach that $u_n \to u$ strongly in $W^{1,p}_0(\Omega)$ and the existence result holds.

If $\nu = p$, then as in Step 2, we obtain that

$$f(x, u_{n-1}) \to f(x, u) \quad \text{strongly in } L^1(\Omega).$$

We set $k_n(x) \equiv f(x, u_{n-1})$, then

$$-\Delta_p u_n + |\nabla u_n|^p = k_n(x)$$

with $k_n \to k \equiv f(x, u)$ strongly in $L^1(\Omega)$. Therefore, using the result of [23], we conclude that $u_n \to u$ strongly in $W^{1,p}_0(\Omega)$ and the result follows.
Step 4: Existence result for $\frac{2N}{N+1} \leq p < 2$ and $0 < \nu \leq 1$. In this case, we adopt a new approximation of the gradient term, namely we set

$$Q_n(\xi) = (|\xi| + \frac{1}{n})^\nu \quad \text{where } \xi \in \mathbb{R}^N.$$

For fixed $n \in \mathbb{N}^*$, we define the sequence $\{v_{n,k}\}_{k \in \mathbb{N}}$ as follows: $v_{n,0} = u$ and for $k \geq 1$, $v_{n,k}$ is the solution to problem

$$-\Delta_p v_{k,n} + Q_n(\nabla v_{k,n}) = f(x, v_{k-1,n}) \quad \text{in } \Omega,$$

$$v_{k,n} > 0 \quad \text{in } \Omega,$$

$$v_{k,n} = 0 \quad \text{on } \partial \Omega. \quad (3.6)$$

As above we have $v_{k,n} \leq w$ for all $k \geq 0$. It is clear that Q_n satisfies the condition of [22] Theorems 3.1 and 3.2].

We claim that the sequence $\{v_{k,n}\}_{k \in \mathbb{N}}$ is increasing in k, for all fixed n. To prove the claim, we observe that $v_{1,n}$ solves

$$-\Delta_p v_{1,n} + Q_n(\nabla v_{1,n}) = f(x, v_{0,n}).$$

By the definition of $v_{0,n}$, we obtain that

$$-\Delta_p v_{1,n} + Q_n(\nabla v_{1,n}) \geq -\Delta_p v_{0,n} + Q_n(\nabla v_{0,n}).$$

Hence, using again the comparison principle in [22], we reach that $v_{1,n} \geq v_{0,n}$. In the same way, using an iteration argument, we conclude that $v_{k,n} \geq v_{k-1,n}$ for all $k \in \mathbb{N}^*$ and then the claim follows.

Now for fixed k, we claim that $v_k \leq v_{k,n+1}$. Using the non decreasing property and the regularity of f we see that the claim follows if we can prove that $v_{1,n} \leq v_{1,n+1}$.

By the definition of $v_{1,n}$ and $v_{1,n+1}$, we have

$$-\Delta_p v_{1,n} + Q_n(\nabla v_{1,n}) = -\Delta_p v_{1,n+1} + Q_n(\nabla v_{1,n+1}) \leq -\Delta_p v_{1,n+1} + Q_n(\nabla v_{1,n+1}).$$

Thus, using the comparison principle of [22], we conclude that $v_{1,n} \leq v_{1,n+1}$. The general result follows by induction.

Now, as in the previous steps, using $v_{k,n}$ as a test function in (3.6) and by the Hölder continuity of f, we obtain that $\|v_{k,n}\|_{W^{1,p}_0(\Omega)} \leq C$. Thus, we obtain the existence of $u_n \in W^{1,p}_0(\Omega)$ such that $v_{k,n} \rightarrow u_n$ weakly in $W^{1,p}_0(\Omega)$ as $k \rightarrow \infty$. The compactness arguments used in the first step allow us to prove that $v_{k,n} \rightarrow u_n$ strongly in $W^{1,p}_0(\Omega)$. Hence, we find that u_n is the minimal solution to problem

$$-\Delta_p u_n + Q_n(\nabla u_n) = f(x, u_n) \quad \text{in } \Omega,$$

$$u_n > 0 \quad \text{in } \Omega,$$

$$u_n = 0 \quad \text{on } \partial \Omega, \quad (3.7)$$

with $u_n \leq u_{n+1}$ for all $n \geq 1$. It is clear that $u \leq u_n \leq w \in L^\infty(\Omega)$. Then, as above, using u_n as a test function in (3.6), we obtain easily that $\|u_n\|_{W^{1,p}_0(\Omega)} \leq C$. Thus, we obtain the existence of $u \in W^{1,p}_0(\Omega)$ such that $u_n \rightarrow u$ weakly in $W^{1,p}_0(\Omega)$. Since $\nu < p$, we conclude that $u_n \rightarrow u$ strongly in $W^{1,p}_0(\Omega)$ as above, and the existence result follows.

Step 5: Existence result for $2 < p$ and $\nu \leq p$. To deal with the degenerate case $p > 2$, we will make a perturbation in the principal part of the operator, namely
for $\varepsilon > 0$, we consider the next approximating problems
\begin{align}
-L_{\varepsilon} u + |\nabla u|^\nu &= f(x,u) \quad \text{in } \Omega,
\quad u > 0 \quad \text{in } \Omega,
\quad u = 0 \quad \text{on } \partial \Omega,
\end{align}
where
\[-L_{\varepsilon} u = -\text{div}(\varepsilon + |\nabla u|^2)^{\frac{\nu-2}{2}} \nabla u)\).

We begin by proving that problem (3.8) has a minimal solution u_{ε} at least for ε small. Fixed $\varepsilon > 0$, then we define w_{ε} to be the unique solution of problem
\begin{align}
-L_{\varepsilon} w_{\varepsilon} &= f(x,w_{\varepsilon}) \quad \text{in } \Omega,
\quad w_{\varepsilon} > 0 \quad \text{in } \Omega,
\quad w_{\varepsilon} = 0 \quad \text{on } \partial \Omega,
\end{align}
(see [19] for the proof of the uniqueness result). It is clear that w_{ε} is a bounded supersolution to (3.8) and $\|w_{\varepsilon}\|_{L^\infty} \leq C$ for all $\varepsilon \geq 0$. The function $u = 0$ is also a subsolution of (3.8).

Now, for ε fixed we define the sequence $\{v_{n,k}\}_{k \in \mathbb{N}}$ as follows: $v_{0,n} = w_{\varepsilon}$ and for $k \geq 1$, $v_{n,k}$ is the solution to problem
\begin{align}
-L_{\varepsilon} v_{k,n} + D_n(\nabla v_{k,n}) &= f(x,v_{k-1,n}) \quad \text{in } \Omega,
\quad v_{k,n} > 0 \quad \text{in } \Omega,
\quad v_{k,n} = 0 \quad \text{on } \partial \Omega,
\end{align}
where
\[D_n(\xi) = \begin{cases}
\frac{|\xi|^\nu}{1 + |\xi|^p} & \text{if } 1 < \nu \leq p \\
\left(\frac{1}{p} \right)^\nu & \text{if } \nu \leq 1.
\end{cases}\]

It is clear that $v_{k,n} \leq w_{\varepsilon}$ for all $k \geq 0$.

We claim that the sequence $\{v_{k,n}\}_{k \in \mathbb{N}}$ is increasing in k for every fixed n. To prove the claim, we observe that $v_{1,n}$ solves
\[-L_{\varepsilon} v_{1,n} + D_n(\nabla v_{1,n}) = f(x,v_{0,n}).\]
By the definition of $v_{0,n}$, we obtain that
\[-L_{\varepsilon} v_{1,n} + D_n(\nabla v_{1,n}) \geq -L_{\varepsilon} v_{0,n} + D_n(\nabla v_{0,n}).\]
Hence, using the comparison principle in [22] Theorem 4.1], we reach that $v_{1,n} \geq v_{0,n}$. In the same way, using an induction argument, we conclude that $v_{k,n} \geq v_{k-1,n}$ for all $k \in \mathbb{N}^*$ and then the claim follows.

Using $v_{k,n}$ as a test function in (3.10) we easily get that $\|v_{k,n}\|_{W_0^{1,p}(\Omega)} \leq C$. Thus, we obtain the existence of $u_n \in W_0^{1,p}(\Omega)$ such that $v_{k,n} \rightarrow u_n$ weakly in $W_0^{1,p}(\Omega)$. By the compactness argument used in the Step 2, we obtain that $u_{k,n} \rightarrow u_n$ strongly in $W_0^{1,p}(\Omega)$ and u_n is the minimal solution to the problem
\begin{align}
-L_{\varepsilon} u_n + D_n(\nabla u_n) &= f(x,u_n) \quad \text{in } \Omega,
\quad u_n > 0 \quad \text{in } \Omega,
\quad u_n = 0 \quad \text{on } \partial \Omega.
\end{align}
Now, we pass to the limit in n.
Using \(u_n \) as a test function in (3.11) and as \(f \) is assumed to be Hölder continuous, we find that \(\|u_n\|_{W^{1,p}_0(\Omega)} \leq C \). Thus, we obtain the existence of \(u_\varepsilon \in W^{1,p}_0(\Omega) \) such that \(u_n \rightharpoonup u_\varepsilon \) weakly in \(W^{1,p}_0(\Omega) \).

If \(\nu < p \), then using the compactness arguments of Step 2 and by the result of [23], we obtain that \(u_n \to u_\varepsilon \) strongly in \(W^{1,p}_0(\Omega) \). Hence it follows that \(u_\varepsilon \) is the minimal solution to problem

\[
-L_\varepsilon u_\varepsilon + |\nabla u_\varepsilon|^{\nu} = f(x, u_\varepsilon) \quad \text{in } \Omega,
\]

\[
u > 0 \quad \text{in } \Omega,
\]

\[
u = 0 \quad \text{on } \partial \Omega.
\]

(3.12)

If \(\nu = p \), then by the argument of the last part of Step 3 and using the compactness result of [23], we reach the strong convergence of \(\{u_n\}_{n \in \mathbb{N}} \) in \(W^{1,p}_0(\Omega) \). Thus, we obtain a minimal solution to (3.12) also in this case.

To finish, we just have to pass to the limit in \(\varepsilon \). Notice that, in general, the sequence \(\{u_\varepsilon\}_{\varepsilon} \) is not necessarily monotone in \(\varepsilon \). Using \(u_\varepsilon \) as a test function in (3.12) we reach that \(\|u_\varepsilon\|_{W^{1,p}_0(\Omega)} \leq C \) and then \(u_\varepsilon \rightharpoonup u \) weakly in \(W^{1,p}_0(\Omega) \). Since \(\underline{u} \leq u_\varepsilon \leq \overline{u}_\varepsilon \leq C \), then we easily get that

\[
f(x, u_\varepsilon) \to f(x, u) \text{ strongly in } L^1(\Omega).
\]

Since \(\nu < p \), then using a variation of the compactness result of [23], there results that \(u_\varepsilon \to u \) strongly in \(W^{1,p}_0(\Omega) \). Hence \(u \) solves

\[
-\Delta_p u + |\nabla u|^{\nu} = f(x, u) \quad \text{in } \Omega,
\]

\[
u > 0 \quad \text{in } \Omega,
\]

\[
u = 0 \quad \text{on } \partial \Omega.
\]

(3.13)

and the existence result follows. It is clear that \(\underline{u} \leq u \leq \overline{u} \).

4. THE REACTION CASE

In this section, we study the reaction case, namely we consider the problem

\[
-\Delta_p u = f(x, u) + |\nabla u|^{\nu} \quad \text{in } \Omega,
\]

\[
u > 0 \quad \text{in } \Omega,
\]

\[
u = 0 \quad \text{on } \partial \Omega,
\]

(4.1)

with \(\nu < p - 1 \). The main existence result reads as follows.

Theorem 4.1. Suppose that the hypotheses made on \(f \) hold. Then, problem (4.1) has at least one entropy solution.

Proof. As in the proof of Theorem 3.1, problem (4.1) has a subsolution \(\underline{u} = 0 \). To obtain a supersolution, we first consider problem

\[
-\Delta_p u = f(x, u) + 1 \quad \text{in } \Omega,
\]

\[
u > 0 \quad \text{in } \Omega,
\]

\[
u = 0 \quad \text{on } \partial \Omega.
\]

(4.2)

By the assumptions on \(f \), we reach that problem (4.2) has a unique positive solution \(v \in C^{1,\sigma}(\Omega) \) with \(\sigma < 1 \). Then for \(C > 1 \) we have

\[
-\Delta_p(Cv) = C^{p-1} f(x, v) + C^{p-1}.
\]

By hypothesis (1.2), we obtain \(-\Delta_p(Cv) \geq f(x, Cv) + C^{p-1} \).
Since \(\nu < p-1 \), one can always choose \(C \) large enough to have \(C^{p-1} > C^\nu |\nabla v|^{\nu} + 1 \). Thus

\[-\Delta_p (Cv) \geq f(x, Cv) + |\nabla Cv|^{\nu} + 1\]

and then \(\overline{u} = Cv \) is a supersolution to problem (4.1).

To prove the existence, we follow the arguments used in the previous section. By the comparison principle in Theorem 2.4 we have that \(u \leq \overline{u} \).

First case: \(\frac{2N}{N+1} \leq p < 2 \) and \(\nu < p - 1 \). Since \(p < 2 \), then \(\nu < 1 \), thus as in the proof of Theorem 3.1, we obtain the existence of \(u_n \), the minimal solution to problem

\[-\Delta_p u_n = f(x, u_n) + Q_n(\nabla u_n) \quad \text{in } \Omega,\]

\[u_n > 0 \quad \text{in } \Omega,\]

\[u_n = 0 \quad \text{on } \partial \Omega,\]

where

\[Q_n(\xi) = (|\xi| + \frac{1}{n})^{\nu} \quad \text{for } \xi \in \mathbb{R}^N.\]

It is clear that \(u \leq u_n \leq \overline{u} \). Using \(u_n \) as a test function in (4.3) and by the fact that \(\nu < p - 1 \), it follows that \(\|u_n\|_{W^{1,p}_0(\Omega)} \leq C \).

Then we obtain the existence of \(u \in W^{1,p}_0(\Omega) \) such that \(u_n \rightarrow u \) weakly in \(W^{1,p}_0(\Omega) \) and the existence result follows.

Second case: \(2 < p \) and \(\nu < p - 1 \). For fixed \(\varepsilon > 0 \) small, we claim that problem

\[-L_\varepsilon u = f(x, u) + |\nabla u|^{\nu} \quad \text{in } \Omega,\]

\[u > 0 \quad \text{in } \Omega,\]

\[u = 0 \quad \text{on } \partial \Omega,\]

where

\[-L_\varepsilon u = -\text{div}(\varepsilon + |\nabla u|^2)^{\frac{p-2}{2}} \nabla u),\]

has a minimal solution \(u_\varepsilon \), at least for \(\varepsilon \) small such that \(u \leq u_\varepsilon \leq \overline{u} \).

Since \(u, \overline{u} \in C^{1,\alpha}(\overline{\Omega}) \), then for \(\varepsilon \) small we reach that \(u \) (respectively \(\overline{u} \)) is a subsolution (respectively supersolution) to (4.3).

Fix an \(\varepsilon \) small enough so that the previous statement still holds true, and define

\[D_n(\xi) = \begin{cases} \frac{|\xi|^{\nu}}{1 + \frac{\varepsilon}{n} |\xi|} & \text{if } 1 < \nu < p - 1, \\ \left(|\xi| + \frac{1}{n}\right)^\nu & \text{if } \nu \leq 1. \end{cases} \]

Let \(u_n \) be the minimal solution to problem

\[-L_\varepsilon u_n = f(x, u_n) + D_n(\nabla u_n) \quad \text{in } \Omega,\]

\[v_{k,n} > 0 \quad \text{in } \Omega,\]

\[v_{k,n} = 0 \quad \text{on } \partial \Omega,\]

Notice that \(u_n = \lim_{k \to \infty} v_{n,k} \) where the sequence \(\{v_{n,k}\}_{k \in \mathbb{N}} \) is defined as follows:

\[v_{n,0} = u \quad \text{and for } k \geq 1, \quad v_{k,n} \text{ is the solution to problem} \]

\[-L_\varepsilon v_{k,n} = f(x, v_{k-1,n}) + D_n(\nabla v_{k,n}) \quad \text{in } \Omega,\]

\[v_{k,n} > 0 \quad \text{in } \Omega,\]

\[v_{k,n} = 0 \quad \text{on } \partial \Omega.\]
Using \(u_n \) as a test function in (4.5) and as \(f \) is a nondecreasing Hölder continuous function, we reach \(\| u_n \|_{W_0^{1,p}(\Omega)} \leq C \). Thus, we obtain the existence of \(u_\varepsilon \in W_0^{1,p}(\Omega) \) such that \(u_n \rightharpoonup u_\varepsilon \) weakly in \(W_0^{1,p}(\Omega) \). By the compactness argument in Step 2 of Theorem 3.1 we obtain that \(u_n \rightarrow u_\varepsilon \) strongly in \(W_0^{1,p}(\Omega) \) and \(u_\varepsilon \) is the minimal solution to (4.4). It is clear that \(u \leq u_\varepsilon \leq \overline{u} \), and the claim follows.

The last step is to pass to the limit in \(\varepsilon \). Using \(u_\varepsilon \) as a test function in (4.4), we reach that \(\| u_\varepsilon \|_{W_0^{1,p}(\Omega)} \leq C \) and then \(u_\varepsilon \rightarrow u \) weakly in \(W_0^{1,p}(\Omega) \).

Since \(\nu < p \), a modification of the arguments used in the proof of Theorem 3.1 allows us to obtain that \(u_\varepsilon \rightarrow u \) strongly in \(W_0^{1,p}(\Omega) \). Thus \(u \) solves
\[
\begin{align*}
-\Delta_p u &= f(x, u) + |\nabla u|^\nu \quad \text{in } \Omega, \\
u &> 0 \quad \text{in } \Omega, \\
 u &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\] (4.6)

\[\square\]

Remark 4.2. Observe that the condition 1.4 imposed on \(f \) to ensure that 0 is a strict subsolution, is not necessary, indeed one can drop it, and consider as sub-solution the function introduced in [12], in [19] and in [20], defined by \(u = Mh(c\varphi_1) \) where \(M \) and \(c \) are positive constants to be chosen, \(\varphi_1 \) is the first eigenfunction of the p-laplacian and \(h \) is the solution to the differential equation
\[
h''(t) = q(h(t))g(h(t)),
\]
\[
h > 0, \quad h' > 0,
\]
\[
h(0) = h'(0) = 0.
\]

where \(q : (0, +\infty) \rightarrow (0, +\infty) \) is a non-increasing and Hölder continuous function, and \(g(s) \) behaves like \(\frac{1}{s^\beta} \), for some \(\beta > 0 \).

Acknowledgments. I am deeply grateful to Professors B. Abdellaoui and V. Radulescu, and to the anonymous referees for providing constructive comments that help in improving the contents of this article.

References

[18] P. Lindqvist; On the equation $\Delta_p u + \lambda |u|^{p-2} u = 0$, Proc. Amer. Math. Soc. 109, no. 1 (1990), 157-164.
[22] A. Porretta; On the comparison principle for p-Laplace type operators with first order terms, Resultsand developments, Quaderni di Matematica 23, Department of Mathematics, Seconda Università di Napoli, Caserta, 2008.

Sofiane El-Hadi Miri
Université de Tlemcen, Faculté de Technologie, BP 230, Tlemcen 13000, Algérie.
Laboratoire d’Analyse Non Linéaire et Mathématiques Appliquées, Université de Tlemcen, BP 119, Tlemcen, Algérie.
E-mail address: mirisofiane@yahoo.fr