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SOLUTION OF THE KDV EQUATION WITH FRACTIONAL
TIME DERIVATIVE VIA VARIATIONAL METHOD

YOUWEI ZHANG

Abstract. This article presents a formulation of the time-fractional general-

ized Korteweg-de Vries (KdV) equation using the Euler-Lagrange variational
technique in the Riemann-Liouville derivative sense. It finds an approximate

solitary wave solution, and shows that He’s variational iteration method is an

efficient technique in finding the solution.

1. Introduction

During the past three decades or so, fractional calculus has obtained considerable
popularity and importance as generalizations of integer-order evolution equation,
and used to model some meaningful things, such as fractional calculus can model
price volatility in finance [20, 44], in hydrology to model fast spreading of pollutants
[48], the most common hydrologic application of fractional calculus is the gener-
ation of fractional Brownian motion as a representation of aquifer material with
long-range correlation structure [8, 42]. Fractional differential equation is used to
to model the particle motions in a heterogeneous environment and long particle
jumps of the anomalous diffusion in physics [26, 33]. Other exact description of
the applications of engineering, mechanics and mathematics et al., we can refer to
[31, 34, 43, 47, 52]. If the Lagrangian of conservative system is constructed us-
ing fractional derivatives, the resulting equation of motion can be nonconservative.
Therefore, in many cases, the real physical processes could be modeled in a reliable
manner using fractional-order differential equation rather than integer-order equa-
tion [50]. Based on the stochastic embedding theory, Cresson [13] defined the frac-
tional embedding of differential operators and provided a fractional Euler-Lagrange
equation for Lagrangian systems, then investigated a fractional Noether-type the-
orem and a fractional Hamiltonian formulation of fractional Lagrangian systems.
The fractional Noether-type theorem was proved by Frederico and Torres [18]. For
the discussion of fractional constants of motion see also [14], and a more general
version of Noether-type’s theorem, valid for fractional problems of optimal control,
in the Riemann-Liouville sense, can be found in [19].
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The first necessary conditions of Euler-Lagrange were proved by Riewe in ref-
erences [40, 41], and the first to obtain sufficient optimality conditions for the
Euler-Lagrange fractional equation were Almeida and Torres in [4]. Herzallah and
Baleanu [25] presented the necessary and sufficient optimality conditions for the
Euler-Lagrange fractional equation of fractional variational problems, hereof the
first discussion about the space of functions where fractional variational problems
should be defined, in order to guarantee existence of solutions, is given in [9]. Euler-
Lagrange equation for fractional variational problems with multiple integrals were
studied before in [5, 15]. Malinowska [32] proves a fractional Noether-type theorem
for multidimensional Lagrangians and proved the fractional Noether-type theorem
for conservative and nonconservative generalized physical systems. Wu and Baleanu
[51] developed some new variational iteration formulae to find approximate solu-
tions of fractional differential equation and determined the Lagrange multiplier in
a more accurate way. For generalized fractional Euler-Lagrange equation and frac-
tional order Van der Pol-like oscillator, we can refer to the works by Odzijewicz
[37, 38], Attari et al [6] respectively. Other the known results we can see Baleanu
et al [7] and Inokuti et al [27]. In view of most of physical phenomena may be
considered as nonconservative, then they can be described using fractional-order
differential equation. Recently, several methods have been used to solve nonlinear
fractional evolution equation using techniques of nonlinear analysis, such as Ado-
mian decomposition method [45], homotopy analysis method [12, 30] and homotopy
perturbation method [49]. It was mentioned that the variational iteration method
has been used successfully to solve different types of integer and fractional nonlinear
evolution equation.

The KdV equation has been used to describe a wide range of physics phenom-
ena of the evolution and interaction to nonlinear waves. It was derived from the
propagation of dispersive shallow water waves and is widely used in fluid dynamics,
aerodynamics, continuum mechanics, as a model for shock wave formation, solitons,
turbulence, boundary layer behavior, mass transport, and the solution representing
the water’s free surface over a flat bed [11, 28, 17]. Camassa and Holm [10] put
forward the derivation of solution as a model for dispersive shallow water waves
and discovered that it is formally integrable dimensional Hamiltonian system, and
that its solitary waves are solitons. Most of classical mechanics techniques have
studied conservative systems, but almost of the processes observed in the physical
real world are nonconservative. In present paper, He’s variational iteration method
[21, 22, 35, 36] is applied to solve time-fractional generalized KdV equation

R
0 D

α
t u(x, t) + aup(x, t)ux(x, t) + buxxx(x, t) = 0,

where a, b are constants, u(x, t) is a field variable, the subscripts denote the partial
differentiation of the function u(x, t) with respect to the parameter x and t. x ∈
Ω(Ω ⊆ R) is a space coordinate in the propagation direction of the field and t ∈
T (= [0, t0](t0 > 0)) is the time, which occur in different contexts in mathematical
physics. a, b are constant coefficients and not equal to zero. The dissipative uxxx
term provides damping at small scales, and the non-linear term upux (p > 0) (which
has the same form as that in the KdV or one-dimensional Navier-Stokes equation)
stabilizes by transferring energy between large and small scales. For p = 1, we
can refer to the known results of time-fractional KdV equation: formulation and
solution using variational methods [16]. For p > 0, p 6= 1, there is a few of the
formulation and solution to time-fractional KdV equation. Thus the present paper
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considers that the formulation and solution to time-fractional KdV equation as the
index of the nonlinear term satisfies p > 0, p 6= 1. R0 D

α
t denotes the Riesz fractional

derivative. Making use of the variational iteration method, this work motivation
is devoted to formulate a time-fractional generalized KdV equation and derives an
approximate solitary wave solution.

This paper is organized as follows: Section 2 states some background material
from fractional calculus. Section 3 presents the principle of He’s variational iteration
method. Section 4 is devoted to describe the formulation of the time-fractional
generalized KdV equation using the Euler-Lagrange variational technique and to
derive an approximate solitary wave solution. Section 5 makes some analysis for
the obtained graphs and discusses the present work.

2. Preliminaries

We recall the necessary definitions for the fractional calculus (see [29, 39, 46])
which is used throughout the remaining sections of this paper.

Definition 2.1. A real multivariable function f(x, t), t > 0 is said to be in the
space Cγ , γ ∈ R with respect to t if there exists a real number r(> γ), such that
f(x, t) = trf1(x, t), where f1(x, t) ∈ C(Ω× T ). Obviously, Cγ ⊂ Cδ if δ ≤ γ.

Definition 2.2. The left-hand side Riemann-Liouville fractional integral of a func-
tion f ∈ Cγ , (γ ≥ −1) is defined by

0I
α
t f(x, t) =

1
Γ(α)

∫ t

0

f(x, τ)
(t− τ)1−α dτ, α > 0, t ∈ T,

0I
0
t f(x, t) = f(x, t).

Definition 2.3. The Riemann-Liouville fractional derivatives of the order α, with
n− 1 ≤ α < n, of a function f ∈ Cγ , (γ ≥ −1) are defined as

0D
α
t f(x, t) =

1
Γ(n− α)

∂n

∂tn

∫ t

0

f(x, τ)
(t− τ)α+1−n dτ,

tD
α
t0f(x, t) =

1
Γ(n− α)

∂n

∂tn

∫ t0

t

f(x, τ)
(τ − t)α+1−n dτ, t ∈ T.

Lemma 2.4. The integration formula of Riemann-Liouville fractional derivative,
for order 0 < α < 1,∫

T

f(x, t)0D
α
t g(x, t)dt =

∫
T

g(x, t)tDα
t0f(x, t)dt

is valid under the assumption that f, g ∈ C(Ω × T ) and that for arbitrary x ∈ Ω,
tD

α
t0f , 0D

α
t g exist at every point t ∈ T and are continuous in t.

Definition 2.5. The Riesz fractional integral of order α, n − 1 ≤ α < n, of a
function f ∈ Cγ , (γ ≥ −1) is defined as

R
0 I

α
t f(x, t) =

1
2
(

0I
α
t f(x, t) + tI

α
t0f(x, t)

)
=

1
2Γ(α)

∫ t0

0

|t− τ |α−1f(x, τ)dτ,

where 0I
α
t and tI

α
t0 are respectively the left- and right-hand side Riemann-Liouville

fractional integral operators.
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Definition 2.6. The Riesz fractional derivative of the order α, n − 1 ≤ α < n of
a function f ∈ Cγ , (γ ≥ −1) is defined by

R
0 D

α
t f(x, t) =

1
2
(

0D
α
t f(x, t) + (−1)ntDα

t0f(x, t)
)

=
1

2Γ(n− α)
dn

dtn

∫ t0

0

|t− τ |n−α−1f(x, τ)dτ,

where 0D
α
t and tD

α
t0 are respectively the left- and right-hand side Riemann-

Liouville fractional differential operators.

Lemma 2.7. Let α > 0 and β > 0 be such that n − 1 < α < n, m − 1 < β < m
and α+ β < n, and let f ∈ L1(Ω× T ) and 0I

m−α
t f ∈ ACm(Ω× T ). Then we have

the following index rule:

R
0 D

α
t

(
R
0 D

β
t f(x, t)

)
= R

0 D
α+β
t f(x, t)−

m∑
i=1

R
0 D

β−i
t f(x, t)|t=0

t−α−i

Γ(1− α− i)
.

Remark 2.8. One can express the Riesz fractional differential operator R0 D
α−1
t of

the order 0 < α < 1 as the Riesz fractional integral operator R0 I
1−α
τ , i.e.

R
0 D

α−1
t f(x, t) = R

0 I
1−α
t f(x, t), t ∈ T.

3. Variational iteration method

The variational iteration method provides an effective procedure for explicit and
solitary wave solutions of a wide and general class of differential systems repre-
senting real physical problems. Moreover, the variational iteration method can
overcome the foregoing restrictions and limitations of approximate techniques so
that it provides us with a possibility to analyze strongly nonlinear evolution equa-
tion. Therefore, we extend this method to solve the time-fractional KdV equation.
The basic features of the variational iteration method outlined as follows.

Considering a nonlinear evolution equation that consists of a linear part Lu(x, t),
nonlinear part Nu(x, t), and a free term g(x, t) represented as

Lu(x, t) +Nu(x, t) = g(x, t). (3.1)

According to the variational iteration method, the n + 1-th approximate solution
of (3.1) can be read using iteration correction functional as

un+1(x, t) = un(x, t) +
∫ t

0

λ(τ)
(
Lũ(x, τ) +N ũ(x, τ)− g(x, τ)

)
dτ, (3.2)

where λ(τ) is a Lagrangian multiplier and ũ(x, t) is considered as a restricted varia-
tion function, i.e., δũ(x, t) = 0. Extreming the variation of the correction functional
(3.2) leads to the Lagrangian multiplier λ(τ). The initial iteration u0(x, t) can be
used as the initial value u(x, 0). As n tends to infinity, the iteration leads to the
solitary wave solution of (3.1), i.e.

u(x, t) = lim
n→∞

un(x, t).
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4. Time fractional generalized KdV equation

The generalized KdV equation in (1+1) dimensions is given as

ut(x, t) + aup(x, t)ux(x, t) + buxxx(x, t) = 0, (4.1)

where p > 0 a, b are constants, u(x, t) is a field variable, x ∈ Ω is a space coordinate
in the propagation direction of the field and t ∈ T is the time. Employing a
potential function v(x, t) on the field variable, set u(x, t) = vx(x, t) yields the
potential equation of the generalized KdV equation (4.1) in the form,

vxt(x, t) + avpx(x, t)vxx(x, t) + bvxxxx(x, t) = 0. (4.2)

The Lagrangian of this generalized KdV equation (4.1) can be defined using the
semi-inverse method [23, 24] as follows. The functional of the potential equation
(4.2) can be represented as

J(v) =
∫

Ω

dx

∫
T

(
v(x, t)

(
c1vxt(x, t) + c2av

p
x(x, t)vxx(x, t) + c3bvxxxx(x, t)

))
dt,

(4.3)
with ci(i = 1, 2, 3) is unknown constant to be determined later. Integrating (4.3)
by parts and taking vt|Ω = vx|Ω = vx|T = 0 yield

J(v) =
∫

Ω

dx

∫
T

(
− c1vx(x, t)vt(x, t)−

c2a

p+ 1
vp+2
x (x, t)− c3bvx(x, t)vxxx(x, t)

)
dt.

(4.4)
The constants ci(i = 1, 2, . . . , 6) can be determined taking the variation of the
functional (4.4) to make it optimal. By applying the variation of the functional,
integrating each term by parts, and making use of the variation optimum condition
of the functional J(v), it yields the following expression

− 2c1vxt(x, t)− c2a(p+ 2)vpx(x, t)vxx(x, t)− 2c3bvxxxx(x, t) = 0. (4.5)

We notice that the obtained result (4.5) is equivalent to (4.2), so one has that
the constants ci(i = 1, 2, . . . , 6) are respectively

c1 = −1
2
, c2 = − 1

p+ 2
, c3 = −1

2
.

In addition, the functional expression given by (4.4) obtains directly the Lagrangian
form of the generalized KdV equation,

L(vt, vx, vxxx) =
1
2
vx(x, t)vt(x, t) +

a

(p+ 1)(p+ 2)
vp+2
x (x, t) +

b

2
vx(x, t)vxxx(x, t).

Similarly, the Lagrangian of the time-fractional version of the generalized KdV
equation could be read as

F (0D
α
t v, vx, vxxx)

=
1
2
vx(x, t)0D

α
t v(x, t) +

a

(p+ 1)(p+ 2)
vp+2
x (x, t) +

b

2
vx(x, t)vxxx(x, t),

(4.6)

where α ∈]0, 1]. Then the functional of the time-fractional generalized KdV equa-
tion will take the expression

J(v) =
∫

Ω

dx

∫
T

F (0D
α
t v, vx, vxxx)dt, (4.7)
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where the time-fractional Lagrangian F (0D
α
t v, vx, vxxx) is given by (4.6). Following

Agrawal’s method [1, 2, 3], the variation of functional (4.7) with respect to v(x, t)
leads to

δJ(v) =
∫

Ω

dx

∫
T

( ∂F

∂0Dα
t v
δ(0D

α
t v(x, t)) +

∂F

∂vx
δvx(x, t) +

∂F

∂vxxx
δvxxx(x, t)

)
dt.

(4.8)
By Lemma 2.4, upon integrating the right-hand side of (4.8), one has

δJ(v) =
∫

Ω

dx

∫
T

(
tD

α
T

( ∂F

∂0Dα
t v

)
− ∂

∂x

( ∂F
∂vx

)
− ∂3

∂x3

( ∂F

∂vxxx

))
δvdt,

noting that δv|T = δv|Ω = δvx|Ω = 0.
Obviously, optimizing the variation of the functional J(v), i.e., δJ(v) = 0, yields

the Euler-Lagrange equation for time-fractional generalized KdV equation in the
following expression

tD
α
T

( ∂F

∂0Dα
t v

)
− ∂

∂x

( ∂F
∂vx

)
− ∂3

∂x3

( ∂F

∂vxxx

)
= 0. (4.9)

Substituting the Lagrangian of the time-fractional generalized KdV equation (4.6)
into Euler-Lagrange formula (4.9) obtains

tD
α
T

(1
2
vx(x, t)

)
− 0D

α
t

(1
2
vx(x, t)

)
− avpx(x, t)vxx(x, t)− bvxxxx(x, t) = 0.

Once again, substituting the potential function vx(x, t) for u(x, t), yields the
time-fractional generalized KdV equation for the state function u(x, t) as

1
2
(

0D
α
t u(x, t)− tD

α
Tu(x, t)

)
+ aup(x, t)ux(x, t) + buxxx(x, t) = 0. (4.10)

According to the Riesz fractional derivative R
0 D

α
t u(x, t), the time-fractional gen-

eralized KdV equation represented in (4.10) can write as
R
0 D

α
t u(x, t) + aup(x, t)ux(x, t) + buxxx(x, t) = 0. (4.11)

Acting from left-hand side by the Riesz fractional operator R0 D
1−α
t on (4.11) leads

to
∂

∂t
u(x, t)− R

0 D
α−1
t u(x, t)|t=0

tα−2

Γ(α− 1)

+ R
0 D

1−α
t

(
aup(x, t)

∂

∂x
u(x, t) + b

∂3

∂x3
u(x, t)

)
= 0,

(4.12)

from Lemma 2.7. In view of the variational iteration method, combining with
(4.12), the n + 1-th approximate solution of (4.11) can be read using iteration
correction functional as

un+1(x, t) = un(x, t) +
∫ t

0

λ(τ)
[ ∂
∂τ
un(x, τ)− R

0 D
α−1
τ un(x, τ)|τ=0

τα−2

Γ(α− 1)

+ R
0 D

1−α
τ

(
aũpn(x, τ)

∂

∂x
ũn(x, τ) + b

∂3

∂x3
ũn(x, τ)

)]
dτ, n ≥ 0,

(4.13)

where the function ũn(x, t) is considered as a restricted variation function, i.e.,
δũn(x, t) = 0. The extreme of the variation of (4.13) subject to the restricted
variation function straightforwardly yields

δun+1(x, t) = δun(x, t) +
∫ t

0

λ(τ)δ
∂

∂τ
un(x, τ)dτ
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= δun(x, t) + λ(τ)δun(x, τ)|τ=t −
∫ t

0

∂

∂τ
λ(τ)δun(x, τ)dτ = 0.

This expression reduces to the stationary conditions

∂

∂τ
λ(τ) = 0, 1 + λ(τ) = 0,

which converted to the Lagrangian multiplier at λ(τ) = −1. Therefore, the correc-
tion functional (4.13) takes the following form

un+1(x, t) = un(x, t)−
∫ t

0

[ ∂
∂τ
un(x, τ)− R

0 I
1−α
τ un(x, τ)|τ=0

τα−2

Γ(α− 1)

+ R
0 D

1−α
τ

(
aupn(x, τ)

∂

∂x
un(x, τ) + b

∂3

∂x3
un(x, τ)

)]
dτ, n ≥ 0,

(4.14)

since α − 1 < 0, the fractional derivative operator R
0 D

α−1
t reduces to fractional

integral operator R0 I
1−α
t by Remark 2.8.

In view of the right-hand side Riemann-Liouville fractional derivative is inter-
preted as a future state of the process in physics. For this reason, the right-
derivative is usually neglected in applications, when the present state of the process
does not depend on the results of the future development, and so the right-derivative
is used equal to zero in the following calculations. The zero order solitary wave so-
lution can be taken as the initial value of the state variable, which is taken in this
case as

u0(x, t) = u(x, 0) = k sech2/p(
p

2
√
b
(x+ η0)),

where k =
( (p+1)(p+2)

2a

) 1
p , η0 is a constant.

Substituting this zero order approximate solitary wave solution into (4.14) and
using the Definition 2.6 leads to the first order approximate solitary wave solution

u1(x, t) = k sech2/p(
p

2
√
b
(x+ η0))

(
1 +

tα√
bΓ(α+ 1)

tanh(
p

2
√
b
(x+ η0))

)
.

Substituting the first order approximate solitary wave solution into (4.14), using
the Definition 2.6 then leads to the second order approximate solitary wave solution
in the following form

u2(x, t)

= k sech2/p(
p

2
√
b
(x+ η0)) +

tα

Γ(α+ 1)

[akp+1

√
b

sech
2
p +2(

p

2
√
b
(x+ η0))

× tanh
( p

2
√
b
(x+ η0)

)
+

k√
b

sech2/p(
p

2
√
b
(x+ η0)) tanh3(

p

2
√
b
(x+ η0))

− 3kp
2
√
b

sech
2
p +2(

p

2
√
b
(x+ η0))− kp2

2
√
b

sech
2
p +2(

p

2
√
b
(x+ η0))

× tanh(
p

2
√
b
(x+ η0))

]
− t2α

Γ(2α+ 1)

[akp+1

b
sech

2
p +2(

p

2
√
b
(x+ η0))

(p
2
− 3p+ 2

2
tanh2(

p

2
√
b
(x+ η0))

)
− 3kp2(p+ 2)

8b
sech2/p(

p

2
√
b
(x+ η0)) tanh2(

p

2
√
b
(x+ η0))
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− 3kp2(p+ 2)
8b

sech
2
p +2(

p

2
√
b
(x+ η0)) +

3kp(p+ 2)2

8b
sech2/p(

p

2
√
b
(x+ η0))

× tanh2(
p

2
√
b
(x+ η0)) +

kp3

8b
sech2/p(

p

2
√
b
(x+ η0))

− k(p+ 2)3

8b
sech2/p(

p

2
√
b
(x+ η0)) tanh4(

p

2
√
b
(x+ η0))

+
3k(p+ 2)2

8b
sech

2
p +2(

p

2
√
b
(x+ η0)) tanh2(

p

2
√
b
(x+ η0))

+
kp2(p+ 2)

4b
sech

2
p +2(

p

2
√
b
(x+ η0)) tanh2(

p

2
√
b
(x+ η0))

]
− Γ(2α+ 1)t3α

Γ(3α+ 1)(Γ(α+ 1))2

[apkp+1

2b
√
b

sech
2
p +2(

p

2
√
b
(x+ η0)) tanh(

p

2
√
b
(x+ η0))

×
(
p− p+ 2

2
tanh2(

p

2
√
b
(x+ η0))

)]
.

Using Definition 2.6 and the Maple package or Mathematics, we obtain u3(x, t),
u4(x, t) and so on, substituting n− 1 order approximate solitary wave solution into
(4.14), there leads to the n order approximate solitary wave solution. As n tends
to infinity, the iteration leads to the solitary wave solution of the time-fractional
generalized KdV equation

u(x, t) = k sech2/p
( p

2
√
b
(x− t+ η0)

)
.

Figure 1. The function u as a 3-dimensions graph for order α:
(A1) α = 4/5, (A2) α = 1/2

5. Discussion

The target of present work is to explore the effect of the fractional order derivative
on the structure and propagation of the resulting solitary waves obtained from time-
fractional generalized KdV equation. We derive the Lagrangian of the generalized
KdV equation by the semiinverse method, then take a similar form of Lagrangian to
the time-fractional generalized KdV equation. Using the Euler-Lagrange variational
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Figure 2. The function u as a function of space x at time t = 1
for order α: (B1) 3-dimensions graph, (B2) 2-dimensions graph

Figure 3. The amplitude of the function u as a function of time
t at space x = 1 for order α: (C1) 3-dimensions graph, (C2) 2-
dimensions graph

technique, we continue our calculations until the three-order iteration. During this
period, our approximate calculations are carried out concerning the solution of
the time-fractional generalized KdV equation taking into account the values of
the coefficients and some meaningful values namely, 4

5 , 1
2 and p = 3, a = 10, b =

1, η0 = 0. The solitary wave solution of time-fractional generalized KdV equation
are obtained. In addition, 3-dimensional representation of the solution u(x, t) for
the time-fractional generalized KdV equation with space x and time t for different
values of the order α is presented respectively in Figure 1, the solution u is still a
single soliton wave solution for all values of the order α. It shows that the balancing
scenario between nonlinearity and dispersion is still valid. Figure 2 presents the
change of amplitude and width of the soliton due to the variation of the order α, 2-
and 3-dimensional graphs depicted the behavior of the solution u(x, t) at time t = 1
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corresponding to different values of the order α. This behavior indicates that the
increasing of the value α is uniform both the height and the width of the solitary
wave solution. That is, the order α can be used to modify the shape of the solitary
wave without change of the nonlinearity and the dispersion effects in the medium.
Figure 3 devoted to study the expression between the amplitude of the soliton and
the fractional order at different time values. These figures show that at the same
time, the increasing of the fractional α increases the amplitude of the solitary wave
to some value of α.
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