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EXISTENCE OF SOLUTIONS FOR AN n-DIMENSIONAL
OPERATOR EQUATION AND APPLICATIONS TO BVPS

GEORGE L. KARAKOSTAS

Abstract. By applying the Guo-Lakshmikantham fixed point theorem on

high dimensional cones, sufficient conditions are given to guarantee the exis-
tence of positive solutions of a system of equations of the form

xi(t) =

nX
k=1

nX
j=1

γij(t)wijk(Λijk[xk]) + (Fix)(t), t ∈ [0, 1], i = 1, . . . , n.

Applications are given to three boundary value problems: A 3-dimensional
3+3+3 order boundary value problem with mixed nonlocal boundary condi-

tions, a 2-dimensional 2+4 order nonlocal boundary value problem discussed

in [14], and a 2-dimensional 2+2 order nonlocal boundary value problem dis-
cussed in [35]. In the latter case we provide some fairly simpler conditions

according to those imposed in [35].

1. Introduction

In most of the cases, where systems of boundary value problems are discussed
and make use of Krasnosel’skii’ s fixed point theorem (see [23], reformulated by
Guo-Lakshmikantham [6]), the authors construct an auxiliary scalar equation and
then use a cone in the real valued functions space. See, for example [8, 9, 10,
25, 36, 39] and the references therein. Here, motivated from some ideas applied
to 2-dimensional systems in, e.g., [14, 26, 30, 35], we suggest the use of a high-
dimensional cone to provide sufficient conditions for the existence of positive solu-
tions of an operator equation of the form

x(t) = (Rx)(t) + (Fx)(t), t ∈ [0, 1] =: I, (1.1)

lying in a cone of the space C̃n(I) := C(I,R)n ' C(I,Rn), where F is a compact
operator acting on C̃n(I) and taking values therein.

Equation (1.1) can be thought of as a perturbation of the compact operator
equation x = Fx. And, if the perturbation R is a contraction, then Krasnosel’skii’s
fixed point theorem (see, e.g., [22]) may provide sufficient conditions for the exis-
tence of solutions (lying into a pre-specified closed convex set). In this case the
right-hand side of (1.1) maps a (nonempty) closed, convex, set into itself. A more
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general version of Krasnosel’skii’s fixed point theorem can be found elsewhere in
[19].

In this article we assume that the perturbation R is a (not necessarily contrac-
tion) function and it has the coordinate-separated form

(Rx)i(t) :=
n∑
k=1

n∑
j=1

γij(t)wijk(Λijk[xk]), t ∈ I, i = 1, . . . , n, (1.2)

where, for all indices i, j, k,∈ {1, 2, . . . , n} the item Λijk[·] is a linear functional
acting on the coordinate xk of x := (xn, x2, . . . xn). (Detailed conditions will be
given in the text.)

A system of the form (1.1)-(1.2) is generated by a great number of boundary value
problems. In [12] Infante et al., investigate the pair of the differential equations

u′′(t) + g1(t)f1(t, u(t), v(t)) = 0, t ∈ (0, 1)

v(4)(t) = g2(t)f2(t, u(t), v(t)), t ∈ (0, 1),

associated with the boundary conditions

u(0) = β11[u], u(1) = δ12[v],

v(0) = β21[v], v′′(0) = 0, v(1) = 0, v′′(1) + δ22[u] = 0,

where βij and δij are linear functionals defined by means of Riemann - Stieltjies
integrals as follows:

βij [w] =
∫ 1

0

w(s)dBij(s), (1.3)

δij [w] =
∫ 1

0

w(s)dCij(s).

This system leads to the pair of integral equations of the form

u(t) =
∑
i=1,2

γ1i(t)
(
H1i(β1i[u]) + L1i(δ1i[v])

)
+
∫ 1

0

k1(t, s)g1(s)f1(s, u(s), v(s))ds,

v(t) =
∑
i=1,2

γ2i(t)
(
L2i(δ2i[u]) +H2i(β2i[v])

)
+
∫ 1

0

k2(t, s)g2(s)f2(s, u(s), v(s))ds,

(1.4)
discussed, mainly, in [14]. The authors, in order to get their results do use of an
idea applied by Infante in [11] and the classical fixed point index theory. These
forms include as special cases several multi-point and integral conditions, assumed
elsewhere, as, e.g., in [1, 2, 3, 4, 5, 12, 15, 16, 17, 18, 24, 31, 38].

A 2-dimensional second order differential system with Dirichlet boundary condi-
tions (first-type) is studied by Xiyou Cheng at al. [3] and by Bingmei Liu et al. [24],
while the same equation with mixed boundary conditions is studied, e.g., by Ling
Hu et al. in [10]. The 2-dimensional Sturm-Liouville problem for a second order
ordinary differential equation discussed by Henderson et al. in [7] and Yang in [35]
leads to a system of the form (1.4), but with zero the first summation terms in the
right side. Thus, only, the Hammerstein integral parts appear. See, also, Zhilin
Yang [37]. The works due to Pietramala [28] and D. Franco et al. [13] refer to
perturbed Hammerstein type integral equations. Some 2-dimensional n+m-order
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multi-point singular boundary value problems with mixed type boundary condi-
tions are discussed by Hua Su et al. in [30]. The case of p-Laplacian, investigated,
e.g, by Baofang Liu et al. in [26] for systems and by Karakostas in [20, 21], for
1-dimensional equations, is not covered by our situation, since in those cases the
corresponding operators are expressed implicitly and, therefore, the perturbation
R is not expressed coordinate separated.

In this article we shall apply the Guo-Lakshmikantham fixed point theorem on
cones in C̃n(I). For the (classical) case of 1-dimensional cone (namely, cones in
C̃1(I) = C(I,R)), we refer, first, to the Hammerstein-type integral equation

u(t) = γ(t)α[u] +
∫ 1

0

k(t, s)g(s)f(s, u(s))ds,

which is generated by a great number of local and non-local boundary value prob-
lems, and it is investigated by several authors as, e.g., by Webb [32] and Webb et
al. in [34, 33]. Here, α[u] means a linear functional of the form (1.3). Also, we refer
to Henderson et al. in [8] who studied a system of the form

u(t) =
∫ T

0

G1(t, s)f(s, v(s))ds, t ∈ [0, T ]

v(t) =
∫ T

0

G2(t, s)g(s, u(s))ds, t ∈ [0, T ]

generated by a 2-dimensional second order boundary value problem with Liouville-
type boundary conditions. Due to the form of the system, the authors of [8] prefer
(quite naturally) to use a one dimensional equation and then to seek for sufficient
conditions which guarantee the existence of positive fixed points of the operator

(Au)(t) =
∫ T

0

G1(t, s)f
(
s,

∫ T

0

G2(s, τ)g(τ, u(τ))dτ
)
ds.

See, also, the references in [8]. The same idea was already used for ordinary differ-
ential equations, e.g., in [29, 39], while for functional differential equations, e.g., in
[9] and the references therein.

In section 4 we shall apply our general existence results to the 3-dimensional
system of third order differential equations of the form

u′′′i +Xi(u) = 0, i = 1, 2, 3, (1.5)

with u := (u1, u2, u3), associated with the mixed nonlocal boundary conditions

ui(0) = λ

n∑
k=1

Aik[uk],

u′i(1) = λ

n∑
k=1

Bik[uk],

u′′i (0) = λ

n∑
k=1

Γij [uk], .

(1.6)

for i = 1, 2, 3.
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Another example, which we shall discuss, is the system of second-order nonlocal
boundary value problem

−u′′ = f(t, u, v),

−v′′ = g(t, u, v),

u(0) = v(0) = 0,

u(1) = H1

(∫ 1

0

u(s)dα(s)
)
,

v(1) = H2

(∫ 1

0

v(s)dβ(s)
)
,

(1.7)

investigated in [35]. We show that, under rather mild conditions (which differ from
those in [35]), at least one positive solution exists.

We close the paper by showing that the existence results of [14] can be obtained
by applying our general theorem.

2. Some preliminaries

Following a classical procedure, we look for conditions guaranteeing the existence
of a fixed point of the operator equation

x = Tx,

where T is the operator defined by

(Tx)i(t) =
n∑
k=1

n∑
j=1

γij(t)wijk(Λijk[xk]) + (Fix)(t), t ∈ I, i = 1, . . . , n. (2.1)

The domain of T is the space C̃n(I) endowed with the norm |‖x‖| := maxi ‖xi‖∞,
where ‖ · ‖∞ stands for the sup-norm in the space C(I,R).

The main tools, which we shall use, lie on the following well known results of
the fixed point index, see, e.g., [6, 23].

Theorem 2.1. Let E be a Banach space, K a cone in E, and Ω(K) a bounded
open subset of K with 0 ∈ Ω(K). Suppose that S : Ω(K) → K is a completely
continuous operator. If

Su 6= µu, ∀u ∈ ∂Ω(K), µ ≥ 1,

then the fixed point index
i(S,Ω(K),K) = 1.

Theorem 2.2. Let E be Banach space, K a cone in E and Ω(K) a bounded open
subset of K. Suppose that S : Ω(K) → K is a completely continuous operator. If
there exists u0 ∈ K \ {0} such that

u− Su 6= µu0, ∀u ∈ ∂Ω(K), µ ≥ 0,

then the fixed point index
i(S,Ω(K),K) = 0.

An obvious combination of Theorems 2.1 and 2.2 imply the existence of a
(nonzero) fixed point in the cone.
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Before presenting our results, we want to recall some facts from the Perron-
Frobenius matrix theory concerning positive matrices. In particular we borrow
some results from [27].

Let 〈·, ·〉 be the known inner product in Rn and let ≥ be the strict coordinate-
wise partial order in Rn. Extending the notation, for a square matrix A, the symbol
A ≥ 0 (resp. A > 0) means that each entry of A is nonnegative (resp. positive).
Also, AT stands for the transpose of A, A−1 for the inverse of A and ρ(A) is used
for the spectral radius of A, namely the quantity

ρ(A) := max{|λ| : λ ∈ C, det(λIn×n −A) = 0}.

An n× n matrix A that can be expressed in the form

A = sIn×n −B,

where B = (bij), with bij > 0, 1 ≤ i, j ≤ n, and s > ρ(B), is called an M -matrix.
Obviously, an M -matrix is nonsingular.

[27, Theorem 1] provides forty conditions which are equivalent to the fact that
the matrix with non-positive off-diagonal entries is an M -matrix.

Theorem 2.3. Each of the following conditions is equivalent to the statement: A
is an M -matrix.
(F15) A is inverse-positive. That is, A−1 exists and A−1 > 0.
(F16) A is monotone. That is,

Ax ≥ 0 =⇒ x ≥ 0, for all x ∈ Rn.

(N39) A has all positive diagonal elements, and there exists a positive diagonal
matrix D such that AD is strictly diagonally dominant. That is it satisfies
the condition

aiidi >
∑
j 6=i

|aij |dj ,

for i = 1, 2, . . . , n.

3. Main results

We start by setting our main conditions:
(C1) All the functions wijk map [0,+∞) into itself, continuously.
(C2) There exist n× n-square nonnegative matrices (aij), (bij) and for each k =

1, 2, . . . , n, a matrix (ηijk) such that

aij = 0 =⇒ bij = 0,

aijξ ≤ wiji(ξ) ≤ bijξ, ξ ≥ 0,

k 6= i =⇒ wijk(ξ) ≤ ηijkξ, ξ ≥ 0.

(C3) For all indices i, j, k the function Λijk is linear and it maps the space
C+(I) = C(I,R+) into R+, continuously.

(C4) For each i the function Fi maps C̃n(I) into C(I,R) and it is completely
continuous.

(C5) For each i = 1, 2, . . . , n, there exist continuous functions Ui : Cn(I) →
[0,+∞), such that

t ∈ I and x ≥ 0 =⇒ (Fix)(t) ≤ Ui(x).
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(C6) There exists c > 0 and, for each i = 1, 2, . . . , n, there exist nontrivial
intervals [αi, βi] ⊆ I, such that

t ∈ [αi, βi] and x ≥ 0 =⇒ (Fix)(t) ≥ cUi(x).

(C7) For each i, j, the function γij maps the interval I into R+, it is continuous
and there exists σij ∈ (0, 1], such that

σij‖γij‖∞ ≤ γij(t), t ∈ [αi, βi].

Put

dij :=

{
aij/bij , if bij ≥ aij > 0
1, if bij = aij = 0,

and ζi := min{c,minj σijdij}, which, obviously, satisfies

σijaij ≥ ζibij ,
for all i, j = 1, 2, . . . , n.

Now, for each i = 1, 2, . . . , n, define the cone

Ki := {u ∈ C+(I) : u(t) ≥ ζi‖u‖∞, t ∈ [αi, βi]}.
Then, the cartesian product

K := ×iKi

is a (vector) cone in C̃n(I).
For any fixed ρ > 0, define the cone section

Kρ := {x ∈ K : |‖x‖| < ρ}.
We shall show the following result.

Lemma 3.1. Under the previous conditions, the operator T defined by (2.1) maps
the cone K into itself and it is completely continuous.

Proof. Take any x ∈ K. Then xi ∈ Ki and so we have on the one hand

‖(Tx)i‖∞ ≤
n∑
k=1

n∑
j=1

‖γij‖∞bijΛijk[xk] + Ui(x),

and on the other hand, for all t ∈ [αi, βi],

(Tx)i(t) ≥
n∑
k=1

n∑
j=1

σij‖γij‖∞aijΛijk[xk] + cUi(x)

≥ ζi
[ n∑
k=1

n∑
j=1

‖γij‖∞bijΛijk[xk] + Ui(x)
]

≥ ζi‖(Tx)i‖∞.
The latter says that TK ⊆ K.

The complete continuity property of the operator T follows, easily, from condi-
tions (C1)–(C4). �

Next, for any fixed ρ > 0, define the set

Vρ := {x ∈ K : sup
i

min
t∈[αi,βi]

xi(t) < ρ}.

Obviously, it satisfies the relation

Kρ ⊂ Vρ ⊂ Kρ/ζ , (3.1)
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where ζ := mini ζi. Set

pijk := Λkik[γkj ]bkj ,

and consider the n× n square matrix Pk := (pijk). Let

zim :=
n∑

k 6=m

n∑
j=1

Λmim[γmj ]ηmjkΛmjk[1] + Λmim[1]Θρ, (3.2)

where

Θρ := max
i

sup
|‖x‖|=ρ

Ui(x)
ρ

.

Also, we let the n-dimensional vectors

zm := (z1m, z2m, . . . , znm)T ,

di := (‖γi1‖∞bi1, ‖γi2‖∞bi2, . . . , ‖γin‖∞bin)T

as well as the quantities

Miρ :=
n∑
k 6=i

n∑
j=1

‖γij‖∞ηijkΛijk[1] + Θρ, i = 1, 2, . . . , n.

Lemma 3.2. Assume that for each k = 1, 2, . . . , n, the item In×n − Pk is an M -
matrix and, moreover, the inequality

〈dk, (In×n − Pk)−1zk〉+Mkρ < 1, (3.3)

holds, for some ρ > 0 and all k = 1, 2, . . . , n. Then the operator T defined in (2.1)
satisfies the relation

iK(T,Kρ) = 1.

Proof. To show the result we shall apply Theorem 2.1, namely we shall show that

µx 6= Tx,

for all x ∈ ∂Kρ and any µ ≥ 1. Indeed, let us assume that there is µ ≥ 1 with

µx = Tx,

for some x ∈ ∂Kρ. Then, there is a coordinate xi0 of x satisfying

‖xi0‖ = ρ and ‖xj‖ ≤ ρ,

for all indices j.
From (3.2) we have

xi0(t) ≤ µxi0(t) =
n∑
k=1

n∑
j=1

γi0j(t)wi0jk(Λi0jk[xk]) + (Fi0x)(t)

≤
n∑
j=1

γi0j(t)bi0jΛi0ji0 [xi0 ] +
n∑

k 6=i0

n∑
j=1

γi0j(t)ηi0jkΛi0jk[xk] + (Fi0x)(t).

(3.4)
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From the positivity of the functionals Λi0ii0 it follows that

Λi0ii0 [xi0 ] ≤
n∑
j=1

Λi0ii0 [γi0j ]bi0jΛi0ji0 [xi0 ]

+
n∑

k 6=i0

n∑
j=1

Λi0ii0 [γi0j ]ηi0jkΛi0jk[xk] + Λi0ii0 [Fi0x].

≤
n∑
j=1

Λi0ii0 [γi0j ]bi0jΛi0ji0 [xi0 ]

+ ρ
( n∑
k 6=i0

n∑
j=1

Λi0ii0 [γi0j ]ηi0jkΛi0jk[1] + Λi0ii0 [1]Θρ

)
=

n∑
j=1

Λi0ii0 [γi0j ]bi0jΛi0ji0 [xi0 ] + ρzii0 .

(3.5)

Letting
vjk := Λkjk[xk], vk := (v1k, v2k, . . . , vnk)T ,

we obtain the system of vector inequalities

vi0 ≤ Pi0vi0 + ρzi0 .

Therefore we have
(In×n − Pi0)vi0 ≤ ρzi0 . (3.6)

From our assumption and Theorem 2.3 we know that the matrix In×n − Pi0 is
inverse-positive and monotone. Thus from (3.6), we obtain

vi0 ≤ ρ(In×n − Pi0)−1zi0 . (3.7)

Now, from (3.4) we obtain

xi0(t) ≤
n∑
j=1

γi0j(t)bi0jΛi0ji0 [xi0 ] +
n∑

k 6=i0

n∑
j=1

γi0j(t)ηi0jkΛi0jk[xk] + (Fi0x)(t)

≤
n∑
j=1

‖γi0j‖∞bi0jvj + ρ
[ n∑
k 6=i0

n∑
j=1

‖γi0j‖∞ηi0jkΛi0jk[1] + Θρ

]
= 〈di0 , vi0〉+ ρMi0ρ.

Therefore, due to (3.7) we have

xi0(t) ≤ ρ〈di0 , (In×n − Pi0)−1zi0〉+ ρMi0ρ. (3.8)

From here it follows that

1 ≤ 〈di0 , (In×n − Pi0)−1zi0〉+Mi0ρ,

which contradicts to (3.3). This completes the proof. �

To proceed, for i = 1, 2, . . . , n, we define the sets

Ei(ρ) := {x = (x1, x2, . . . , xn) : 0 ≤ xj ≤
ρ

ζ
, j 6= i, ρ ≤ xi ≤

ρ

ζ
},

the real number

θρ := min
i

inf
x∈Ei(ρ)

Ui(x)
ρ

,
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and the n-dimensional vectors

νi := (Λi1i[1],Λi2i[1], . . . ,Λini[1])T , i = 1, 2, . . . , n,

hi := ζi(‖γi1‖∞ai1, ‖γi2‖∞ai2, . . . , ‖γin‖∞ain)T , i = 1, 2, . . . , n.

Lemma 3.3. Assume that there is some ρ > 0 such that, for each i = 1, 2, . . . , n,
it holds

θρc
[
〈hi, (In×n − Pi)−1νi〉+ 1

]
> 1. (3.9)

Then the operator T defined in (2.1) satisfies the relation

iK(T, Vρ) = 0.

Proof. The result will follow if we show that the conditions of Theorem 2.2 are
satisfied. So, let e be the n-vector (1, 1, . . . , 1)T . Clearly, this is an element of the
product cone K. We shall show that

x 6= Tx+ µe,

for all x ∈ ∂Vρ and any µ ≥ 0, Indeed, let us assume that there is a µ ≥ 0 with
x = Tx+µe, for some x ∈ ∂Vρ. Therefore, we can assume that for some coordinate
xi0 of x it holds

min
t∈[αi0 ,βi0 ]

xi0(t) = ρ

and
0 ≤ xj(t) ≤

ρ

ζ
,

for all indices j 6= i0 and all t ∈ [αj , βj ].
Next, for all t ∈ I, from (2.1), we have

xi0(t) =
n∑
k=1

n∑
j=1

γi0j(t)wi0jk(Λi0jk[xk]) + (Fi0x)(t) + µ

≥
n∑
j=1

γi0j(t)ai0jΛi0ji0 [xi0 ] + (Fi0x)(t) + µ,

(3.10)

and therefore, for all indices i = 1, 2, . . . , n, it holds

Λi0ii0 [xi0 ] ≥
n∑
j=1

Λi0ii0 [γi0j ]ai0jΛi0ji0 [xi0 ] + Λi0ii0 [Fi0x] + µΛi0ii0 [1].

Letting, as previously, vjk := Λkjk[xk] and vk := (v1k, v2k, . . . , vnk)T , we obtain the
vector-inequality

vi0 ≥ Pi0vi0 +
(
ρθρc+ µ

)
νi0 ≥ Pi0vi0 + ρθρcνi0 .

Since In×n − Pi0 is an M -matrix, by Theorem 2.3, it is inversely positive, thus we
have

vi0 ≥ ρθρc(In×n − Pi0)−1νi0 . (3.11)
From (C4), (C6) and inequality (3.10), for all t ∈ [αi0 , βi0 ], we obtain

xi0(t) ≥
n∑
j=1

ζi0‖γi0j‖∞ai0jvji0 + cρθρ + µ

namely it holds
xi0(t) ≥ 〈hi0 , vi0〉+ cρθρ + µ.
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Thus, from (3.11) and our hypothesis we obtain

ρ = min
t∈[αi0 ,βi0 ]

xi0(t) ≥ cρθρ
[
〈hi0 , (In×n − Pi0)−1νi0〉+ 1

]
+ µ > ρ+ µ,

because of (3.9). This is a contradiction and the proof is complete. �

Now we can, easily, combine the results of Lemmas 2.1 and 2.2 to obtain the
main result of this paper, which stands as follows:

Theorem 3.4 (Existence results). Assume that conditions (C1),. . . , (C5) are sat-
isfied and, for each k = 1, 2, . . . , n, the item In×n − Pk is an M -matrix. If there
exist real numbers ρ1, ρ2 ∈ (0,+∞) with

ρ2

ζ
< ρ1

satisfying relations (3.3) and (3.9), then the operator (2.1) has at least one fixed
point in {x ∈ K : ρ2ζ ≤ |‖x‖| ≤ ρ1}.

4. Some applications

Application 1. Consider the third-order ordinary differential equation (1.5) asso-
ciated with the conditions (1.6), where Aik, Bik, Γik are positive bounded linear
functionals defined on the space C(I,R+), with Bik ≥ Γik, for all i, k = 1, 2, 3. It
is not hard to see that the problem is equivalent to the integral equation

u = Tu,

with the operator T : C̃3(I)→ C̃3(I) defined by

(Tu)i(t) =
n∑
k=1

n∑
j=1

γij(t)wijk(Λijk[uk]) +
∫ t

0

(t− s)2

2
Xi(u(s))ds, t ∈ I,

where γi1(t) := t2

2 , γi2(t) := t, γi3(t) := 1, t ∈ I,

Λi1k[x] := λΓik[x],

Λi2k[x] := λ(Bik − Γik)[x], x ∈ C(I,R+)

Λi3k[x] := λAik[x]

and
wijk(s) := s, s ∈ R,

for all indices i, j, k = 1, 2, 3.
We make the following assumption:
(A1) For each i = 1, 2, 3, there exist reals qi, pi, such that

0 < qi ≤ Xi(x) ≤ pi,

for all x := (x1, x2, x3) ≥ 0.
We shall prove the following result.

Theorem 4.1. Under condition (A1), there exist λ0 and R1 > R2 > 0, such that,
given any λ ∈ (0, λ0), the relation (3.3) holds for all ρ > R1 while, the relation
(3.9) holds, for all 0 < ρ < R2.
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Proof. First of all we observe that condition (C2) is satisfied with

aij = bij = ηijk = 1, i, j, k = 1, 2, 3,

and condition (C6) holds by choosing Ui(x) := pi and c := mini qi/pi. Also we have

‖γi1‖∞ =
1
2
, ‖γi2‖∞ = ‖γi3‖∞ = 1.

Now, fix any ρ > 0. Then we have

Θρ = max
i

sup
|‖x‖|=ρ

Ui(x)
ρ

= max
i

pi
ρ
.

Also, it is easy to see that the vector zi is the value of the vector function Ψi given
by Ψi(·) := λ∆i(·) where

∆i(·) := (Γii[·], Bii[·]− Γii[·], Ai1[·])T

at the point

ϑi(ρ, λ)(·) := Θρ + λ
∑
k 6=i

(
Aik[1]γi3(·) +Bik[1]γi2(·) + Γik[1](γi1(·)− γi2(·))

)
.

Also, the vector di is equal to ( 1
2 , 1, 1), for each i = 1, 2, 3, and, finally, the constant

Miρ, which corresponds to λ, is given by

Miρ(λ) = λ
∑
k 6=i

(
Aik[1] +Bik[1] +

1
2

Γik[1]
)

+ Θρ.

Next, choose λ1 such that for each k = 1, 2, 3 and for all λ ∈ (0, λ1) it holds

1 > λAkk[φ], 1 + λΓkk[φ] > λBkk[φ], 1 > λΓkk[φ] (4.1)

where

φ(t) := 1 + t+
t2

2
, t ∈ I.

Under these assumptions, we can easily see that the matrix Pk with entries pijk is
defined by

Pk := λQk,

where Qk has entries qijk given by

q1jk := Γkk[γkj ], q2jk := (Bkk − Γkk)[γkj ], q3jk := Akk[γkj ].

Due to (4.1) we can see that it holds

1− piik >
∑
j 6=i

pijk,

for all indices i, j, k = 1, 2, 3. Hence, according to [27, property (N39)], the item
I3×3 − Pk is an M -matrix.

Now, the left quantity in relation (3.3) is given by

gk(ρ, λ) := λ〈(1
2
, 1, 1), (I3×3 − λQk)−1∆k(ϑk(ρ, λ))〉+Mkρ(λ),

which, obviously, depends continuously on the parameter (ρ, λ) ∈ (0,+∞)×(0, λ1)).
Since, obviously, we have

lim
(ρ,λ)→(+∞,0+)

gk(ρ, λ) = 0,
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it follows that there exists (R1, λ2) ∈ (0,+∞)× (0, λ1)) such that

gk(ρ, λ) < 1, k = 1, 2, 3,

for all ρ > R1 and λ ∈ (0, λ2). This shows that (3.3) is satisfied for all k = 1, 2, 3
and such ρ and λ.

Next, define α := mini
√
qi/pi and let β := 1. By setting αi = α and βi = β,

i = 1, 2, 3, we see that condition (C7) is satisfied with

ζi = α2 = ζ, i = 1, 2, 3.

Hence the vectors νi and hi are given by

νi = (Γii[1], Bii[1]− Γii[1], Aii[1])T = ∆i[1],

hi = α2(
1
2
, 1, 1)T ,

while the quantity θρ is given by

θρ = min
i

inf
|‖x‖|=ρ

Ui(x)
ρ

= min
i

pi
ρ

=:
1
ρ
θ̃.

Now, the left quantity in relation (3.9) is given by

fi(ρ, λ) :=
1
ρ
Vi(λ),

where

Vi(λ) := cθ̃
(
α2
[
〈(1

2
, 1, 1),

qi
pi

(I3×3 − λQi)−1νi〉
]

+ 1
)
.

Obviously, the latter depends continuously on the parameter λ ∈ (0, λ1) and more-
over it satisfies

lim
λ→0+

Vi(λ) = cθ̃
(
α2
[1
2

Γii[1] +Bii[1]− Γii[1] +Aii[1]
]

+ 1
)
.

The quantity inside the parenthesis is strictly positive. Thus, there exists (R2, λ0) ∈
(0, R1)× (0, λ2) such that

fi(ρ, λ) > 1, i = 1, 2, 3,

for all ρ < R2 and λ ∈ (0, λ0). This shows that (3.9) is, also, satisfied for all i. �

Thus we obtain the following existence result.

Theorem 4.2. Under the conditions of Theorem 4.1 there exists λ0 > 0 such that,
for all λ ∈ (0, λ0), the problem (1.5)-(1.6) admits a positive solution.

Proof. Fix λ < λ0. Then choose ρ1, ρ2 such that 0 < ρ2 < R2 < ζR1 < ζρ1 and
apply Theorem 3.4. �

Application 2. As we said in the introduction, in [35] the author studies the
system of second-order nonlocal boundary-value problem (1.6), where α and β
are increasing non-constant functions defined on [0, 1] with α(0) = 0 = β(0) and
f, g ∈ C([0, 1]× R+ × R+,R+) and Hi ∈ C(R+,R+), (i = 1, 2). Here the integrals
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are in the Riemann-Stieltjies sense. Setting the problem (1.6) in the form of (1.1)-
(1.2), we obtain the system of integral equations

u(t) =
∫ 1

0

K(t, s)f(s, u(s), v(s))ds+H1

(∫ 1

0

u(τ)dα(τ)
)
t,

v(t) =
∫ 1

0

K(t, s)g(s, u(s), v(s))ds+H2

(∫ 1

0

v(τ)dβ(τ)
)
t,

(4.2)

where K(t, s) is the Green’s function

K(t, s) :=

{
t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

(4.3)

However, we can assume that the kernel K(t, s) can be a general kernel and not
necessarily of the previous form. Then we assume the following conditions:

(C1’) There exist a continuous function Φ : I → R+, a positive real number c
and an interval [α, β] ⊂ (0, 1), such that

K(t, s) ≤ Φ(s), (t, s) ∈ I × I,
K(t, s) ≥ cΦ(s), (t, s) ∈ [α, β]× I.

This condition is satisfied by choosing, for instance, α = 1/3, β = 2/3, c = 1/3 and
Φ(s) := s(1− s).

(C2’) There exist positive real numbers ãi, b̃i, i = 1, 2, such that

b̃1

∫ 1

0

sdα(s) < 1, b̃2

∫ 1

0

sdβ(s) < 1,

ãiξ ≤ Hi(ξ) ≤ b̃iξ, i = 1, 2,

for all ξ ≥ 0.
Comparing system (4.2) with (1.1)-(1.2), we have

γij(t) = t, i, j = 1, 2,

w111(z) = H1(z), w222(z) = H2(z),

w112(z) = w121(z) = w122(z) = w211(z) = w212(z) = w211(z) = 0,

Λ111(z) =
∫ 1

0

z(s)dα(s), Λ222(z) =
∫ 1

0

z(s)dβ(s),

Λ112 = Λ121 = Λ122 = Λ211 = Λ212 = Λ211 = 0.

Define

U1(u, v) :=
∫ 1

0

Φ(s)f(s, u(s), v(s))ds,

U2(u, v) :=
∫ 1

0

Φ(s)g(s, u(s), v(s))ds

and, for each ρ > 0, let

Θρ :=
1
ρ

max
i=1,2

sup
|‖(x1,x2)‖|=ρ

Ui(x1, x2),

Then we obtain
aii = ãi, bii := b̃i, i = 1, 2
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and
a12 = a21 = b12 = b21 = 0.

Also, we have σij = α, i, j = 1, 2,

P1 =
[
b̃1
∫ 1

0
sdα(s) 0
0 0

]
P2 =

[
0 0
0 b̃2

∫ 1

0
sdβ(s)

]
,

z11 = b̃1Θρα(1), z21 = 0 = z12, z22 = b22Θρβ(1),

d1 =
[
b̃1
0

]
, d2 =

[
0
b̃2

]
, M1ρ = M2ρ = Θρ.

Finally, we obtain σij = α, i, j = 1, 2,

E1(ρ) := {(x1, x2) : 0 ≤ x2 ≤
ρ

α
, ρ ≤ x1 ≤

ρ

α
},

E2(ρ) := {(x1, x2) : 0 ≤ x1 ≤
ρ

α
, ρ ≤ x2 ≤

ρ

α
},

θρ :=
1
ρ

min
i=1,2

inf
x∈Ei(x)

Ui(x),

ν1 =
[
b̃1
∫ 1

0
sdα(s)
0

]
, ν2 =

[
0

b̃2
∫ 1

0
sdβ(s)

]
,

ζ1 := min{c, αã1

b̃1
}, ζ2 := min{c, αã2

b̃2
},

ζ := min{ζ1, ζ2}, h1 := ζ1

[
ã1

0

]
, h2 := ζ2

[
0
ã2

]
.

After these denotations we can formulate the following theorem.

Theorem 4.3. Let ρ1, ρ2 > 0 be such that ρ2ζ < ρ1, and

Θρ1

[
1 +

b̃21α(1)

1− b̃1
∫ 1

0
sdα(s)

]
< 1, (4.4)

Θρ1

[
1 +

b̃22β(1)

1− b̃2
∫ 1

0
sdβ(s)

]
< 1, (4.5)

cθρ2

[ζ1ã1b̃1
∫ 1

0
sdα(s)

1− b̃1
∫ 1

0
sdα(s)

+ 1
]
> 1, (4.6)

cθρ2

[ζ2ã2b̃2
∫ 1

0
sdβ(s)

1− b̃2
∫ 1

0
sdβ(s)

+ 1
]
> 1. (4.7)

Then the system of equations (4.2) admits at least one positive solution.

Proof. The proof follows from Theorem 3.4, once we observe that (4.4) and (4.5)
are relations (3.3) with ρ1 instead of ρ, while (4.6) and (4.7) are relations (3.9) with
ρ2 instead of ρ. �

Application 3. Next consider the system of equations (1.4). It is easy to see that
this system takes the form (1.1)-(1.2), when n = 2, γij are the same functions,

w1j1 = H1j , w1j2 = L1j , w2j1 = L2j , w2j2 = H2j ,

Λ1j1 = β1j , Λ1j2 = δ1j , Λ2j1 = δ2j , Λ2j2 = β2j ,
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bij = hij2, aij = hij1,

η1j2 = l1j2, η2j1 = l2j2, σij = cij .

Also, here we have x1 = u, x2 = v, as well as

(Fx)i(t) =
∫ 1

0

ki(t, s)gi(s)fi(s, x1(s), x2(s))ds, i = 1, 2,

where k1, k2 satisfy the inequalities of the form

ki(t, s) ≤ Φi(s), t ∈ I, a.e. s ∈ I,
and

ciΦi(s) ≤ ki(t, s), t ∈ [ai, bi], a.e. s ∈ I,
for some subinterval [ai, bi] of I. Hence conditions (C5), (C6) are satisfied with

Ui(x) :=
∫ 1

0

Φi(s)gi(s)fi(s, x1(s), x2(s))ds.

It is not hard to see that for k = 1, 2, the matrix Pk is the same with Dk in [14] and,
under the conditions on Dk stated in [14], the matrix I2×2 −Pk is inverse-positive,
thus it is an M -matrix. Then our conditions are the same with those of [14] and
the existence results in [14, Theorem 2.7 (S1)] follow from theorem 3.4.

Acknowledgments. I would like to thank the anonymous referees for their careful
reading of the manuscript and their helpful remarks.
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