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EXISTENCE OF SOLUTIONS FOR AN n-DIMENSIONAL
OPERATOR EQUATION AND APPLICATIONS TO BVPS

GEORGE L. KARAKOSTAS

ABSTRACT. By applying the Guo-Lakshmikantham fixed point theorem on
high dimensional cones, sufficient conditions are given to guarantee the exis-
tence of positive solutions of a system of equations of the form

n n
zi(t) =D > vijOwige(Mijelze]) + (Fiz)(t), te0,1], i=1,...,n.
k=1j=1
Applications are given to three boundary value problems: A 3-dimensional
3+3+3 order boundary value problem with mixed nonlocal boundary condi-
tions, a 2-dimensional 2+4 order nonlocal boundary value problem discussed
in [I4], and a 2-dimensional 2+2 order nonlocal boundary value problem dis-
cussed in [35]. In the latter case we provide some fairly simpler conditions
according to those imposed in [35].

1. INTRODUCTION

In most of the cases, where systems of boundary value problems are discussed
and make use of Krasnosel’skii’ s fixed point theorem (see [23], reformulated by
Guo-Lakshmikantham [6]), the authors construct an auxiliary scalar equation and
then use a cone in the real valued functions space. See, for example [8] O [10]
25, B6l, B9] and the references therein. Here, motivated from some ideas applied
to 2-dimensional systems in, e.g., [I4) 26], B0, B5], we suggest the use of a high-
dimensional cone to provide sufficient conditions for the existence of positive solu-
tions of an operator equation of the form

2(t) = (Rz)(t) + (Fz)(t), tel0,1]=:1, (1.1)

lying in a cone of the space C,,(I) := C(I,R)" ~ C(I,R™), where F is a compact
operator acting on C’n(I ) and taking values therein.

Equation can be thought of as a perturbation of the compact operator
equation x = Fx. And, if the perturbation R is a contraction, then Krasnosel’skii’s
fixed point theorem (see, e.g., [22]) may provide sufficient conditions for the exis-
tence of solutions (lying into a pre-specified closed convex set). In this case the
right-hand side of maps a (nonempty) closed, convex, set into itself. A more
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general version of Krasnosel’skii’s fixed point theorem can be found elsewhere in
[19).

In this article we assume that the perturbation R is a (not necessarily contrac-
tion) function and it has the coordinate-separated form

:ZZ'Yij(t)wijk(Aijk[xkba tel,i=1,...,n, (1.2)

k=1j=1

where, for all indices 7,7, k,€ {1,2,...,n} the item A;;;[-] is a linear functional
acting on the coordinate xy of z := (x,,x2,...x,). (Detailed conditions will be
given in the text.)

A system of the form — is generated by a great number of boundary value
problems. In [12] Infante et al., investigate the pair of the differential equations

u'(t) + g1(t) fi(t u(t),v(t) =0, te(0,1)
1)(4) (t) = gQ(t)fQ(t’u(t)vv(t))7 te (07 1);

associated with the boundary conditions

u(0) = fuifu], w(l) = d12fv],
v(0) = Bor[v], 0"(0)=0, wv(1)=0, v"(1)+ da2fu] =0,

where §;; and §;; are linear functionals defined by means of Riemann - Stieltjies
integrals as follows:

1
Bijw] :/0 w(s)dBij;(s), (1.3)
5islw] = /0 w(s)dCiy (s).

This system leads to the pair of integral equations of the form

1
= > al®) (Hua(Bualu]) + Lus(Builo]) ) + /O a1, )1 () f1(s, u(s), v(s))ds,

1=1,2

= 3 0 (Gl 4 B3+ [ R, )0a(6) o) (),

1=1,2
(1.4)
discussed, mainly, in [I4]. The authors, in order to get their results do use of an
idea applied by Infante in [I1] and the classical fixed point index theory. These
forms include as special cases several multi-point and integral conditions, assumed
elsewhere, as, e.g., in [I} 2 B, 4 [, 12, 15, 16, 17, I8, 24 BT, 38].

A 2-dimensional second order differential system with Dirichlet boundary condi-
tions (first-type) is studied by Xiyou Cheng at al. [3] and by Bingmei Liu et al. [24],
while the same equation with mixed boundary conditions is studied, e.g., by Ling
Hu et al. in [10]. The 2-dimensional Sturm-Liouville problem for a second order
ordinary differential equation discussed by Henderson et al. in [7] and Yang in [35]
leads to a system of the form , but with zero the first summation terms in the
right side. Thus, only, the Hammerstein integral parts appear. See, also, Zhilin
Yang [37]. The works due to Pietramala [28] and D. Franco et al. [I3] refer to
perturbed Hammerstein type integral equations. Some 2-dimensional n 4 m-order
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multi-point singular boundary value problems with mixed type boundary condi-
tions are discussed by Hua Su et al. in [30]. The case of p-Laplacian, investigated,
e.g, by Baofang Liu et al. in [26] for systems and by Karakostas in [20, [21], for
1-dimensional equations, is not covered by our situation, since in those cases the
corresponding operators are expressed implicitly and, therefore, the perturbation
R is not expressed coordinate separated.

In this article we shall apply the Guo-Lakshmikantham fixed point theorem on
cones in C,,(I). For the (classical) case of 1-dimensional cone (namely, cones in
C1(I) = C(I,R)), we refer, first, to the Hammerstein-type integral equation

u(t) = v(t)afu] + / k(t, $)g(s) (s, u(s))ds.

which is generated by a great number of local and non-local boundary value prob-
lems, and it is investigated by several authors as, e.g., by Webb [32] and Webb et
al. in [34, B3]. Here, a[u] means a linear functional of the form . Also, we refer
to Henderson et al. in [§] who studied a system of the form

u(t) :/0 G1(t,s)f(s,v(s))ds, te€0,T]

T
o(t) = /0 Gt 8)g(s, u(s))ds, € [0,T]

generated by a 2-dimensional second order boundary value problem with Liouville-
type boundary conditions. Due to the form of the system, the authors of [§] prefer
(quite naturally) to use a one dimensional equation and then to seek for sufficient
conditions which guarantee the existence of positive fixed points of the operator

T T
(A0 = [ Galt.5)5(s. [ Galo Dig(ru(r)in)ds.
0 0
See, also, the references in [§]. The same idea was already used for ordinary differ-
ential equations, e.g., in [29] [39], while for functional differential equations, e.g., in
[9] and the references therein.

In section [4 we shall apply our general existence results to the 3-dimensional
system of third order differential equations of the form

w + X;(u) =0, i=1,2,3, (1.5)

with u := (u1, ug, u3), associated with the mixed nonlocal boundary conditions
n
(% (0) =A Z Aik[uk},
k=1
wi(1) = XY Biglusl, (1.6)
k=1
u;’(O) = Fij [uk], .

forv=1,2,3.
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Another example, which we shall discuss, is the system of second-order nonlocal
boundary value problem

—u" = f(t’uv ’U),
" = g(t,u,v),
u(0) = v(0) =0,

investigated in [35]. We show that, under rather mild conditions (which differ from
those in [35]), at least one positive solution exists.

We close the paper by showing that the existence results of [I4] can be obtained
by applying our general theorem.

2. SOME PRELIMINARIES

Following a classical procedure, we look for conditions guaranteeing the existence
of a fixed point of the operator equation

z="Tx,

where T is the operator defined by

(T2)i(t) =Y > yii(Wwijn(Nijlzx]) + (Fix)(t), tel, i=1,...n (21)

k=1j=1
The domain of T is the space C,,(I) endowed with the norm |[||z||| := max; [|2;| s,
where || - | stands for the sup-norm in the space C(I,R).

The main tools, which we shall use, lie on the following well known results of
the fixed point index, see, e.g., [6] 23].

Theorem 2.1. Let E be a Banach space, K a cone in E, and Q(K) a bounded

open subset of K with 0 € Q(K). Suppose that S : Q(K) — K is a completely
continuous operator. If

Su # pu, Yu € IUK), p>1,

then the fized point index
i(S,QK),K)=1.

Theorem 2.2. Let E be Banach space, K a cone in E and Q(K) a bounded open

subset of K. Suppose that S : Q(K) — K is a completely continuous operator. If
there exists ug € K \ {0} such that

u—Su # pug, Vu € INUK), pn>0,
then the fized point index
i(S,Q(K),K) = 0.

An obvious combination of Theorems [2.] and [2:2] imply the existence of a
(nonzero) fixed point in the cone.



EJDE-2014/71 SOLUTION FOR AN OPERATOR EQUATION 5

Before presenting our results, we want to recall some facts from the Perron-
Frobenius matrix theory concerning positive matrices. In particular we borrow
some results from [27].

Let (-,-) be the known inner product in R™ and let > be the strict coordinate-
wise partial order in R™. Extending the notation, for a square matrix A, the symbol
A >0 (resp. A > 0) means that each entry of A is nonnegative (resp. positive).
Also, AT stands for the transpose of A, A~! for the inverse of A and p(A) is used
for the spectral radius of A, namely the quantity

p(A) :=max{|A| : A € C, det(Al,xn — A) = 0}.
An n x n matrix A that can be expressed in the form
A= $lpxn — Ba

where B = (b;;), with b;; > 0,1 < 4,5 < n, and s > p(B), is called an M-matrix.
Obviously, an M-matrix is nonsingular.

[27, Theorem 1] provides forty conditions which are equivalent to the fact that
the matrix with non-positive off-diagonal entries is an M-matrix.

Theorem 2.3. Each of the following conditions is equivalent to the statement: A
is an M-matriz.

(F15) A is inverse-positive. That is, A~1 exists and A~! > 0.
(F16) A is monotone. That is,

Ar >0 = x>0, forall ze&R™

(N39) A has all positive diagonal elements, and there exists a positive diagonal
matriz D such that AD 1is strictly diagonally dominant. That is it satisfies
the condition

a;id; > E |a7;j|dj,
J#i
fori=1,2,...,n.

3. MAIN RESULTS

We start by setting our main conditions:

(C1) All the functions w;j; map [0, +00) into itself, continuously.
(C2) There exist n x n-square nonnegative matrices (a;;), (b;;) and for each k =
1,2,...,n, a matrix (7;;%) such that

aij:() — bij:O,
aij§ < wii(§) < bi&, £>0,
k#i = wijr(§) < nijr€, §>0.
(C3) For all indices ¢,7,k the function A;j; is linear and it maps the space
C*(I) = C(I,RT) into R, continuously.
(C4) For each i the function F; maps C,(I) into C(I,R) and it is completely
continuous.

(C5) For each i = 1,2,...,n, there exist continuous functions U; : C"(I) —
[0, 4+00), such that

telandz >0 = (Fz)(t) < Ui(z).
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(C6) There exists ¢ > 0 and, for each ¢ = 1,2,...,n, there exist nontrivial
intervals [, 8;] C I, such that
t € o, Bi] and x > 0 = (Fz)(t) > cUs(x).
(CT7) For each 14, j, the function ~;; maps the interval I into R™, it is continuous
and there exists o;; € (0,1], such that

aijllVijlloo < vij(t), t € [, Bi].

dos e aij/bij, if bij > Qij > 0
" ]., if bij = aij = 0,
and ¢; := min{c, min; 0;;d;;}, which, obviously, satisfies
0ij@ij > Gibij,
foralli,j=1,2,...,n.
Now, for each i = 1,2,...,n, define the cone
K ={ueCT(I):ult) > ¢llulle, tE o, B}
Then, the cartesian product
K = XiKi
is a (vector) cone in C,,(I).
For any fixed p > 0, define the cone section
K, = {z e K : |l < p}.
We shall show the following result.

Lemma 3.1. Under the previous conditions, the operator T defined by (2.1) maps
the cone K into itself and it is completely continuous.

Proof. Take any « € K. Then z; € K; and so we have on the one hand

n n

I(Ta)illoo <D0 i llocbijAijlzi] + Uix),

k=1j=1
and on the other hand, for all ¢ € [, 5i],

(T2)i(t) = > Y 0375 llcosy Mg [a] + Us(x)

k=1 j=1

> CZ[Z Z Vil oo bij Nijr[za] + Ui(x)]

k=1 j=1
> G(T);loe-
The latter says that TK C K.
The complete continuity property of the operator 1" follows, easily, from condi-

tions (C1)—(C4). O
Next, for any fixed p > 0, define the set

V,={x € K:sup min z,(t) < p}.
p =1 p, min (t) <p}

Obviously, it satisfies the relation

K,cV,cC Kp/g, (3.1)
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where ¢ := min,; (;. Set
Pijk = Nik[Yi5]kj

and consider the n x n square matrix Py, := (p;jx). Let

Zim = Y > Ao [V g A [1] 4 A [0, (3.2)

k#m j=1

where

U;
©, := max sup (z)
b lllzlll=p P

Also, we let the n-dimensional vectors
Zm = (Zlma Z2myy - ey an)Ta
di := (||7i1llsobits |72l sobi2; - - - ||’Ym||oobm)T
as well as the quantities
n n
M, = Z Z ”’YinoomjkAijk[l] +0, i=12...,n
ki j=1

Lemma 3.2. Assume that for each k = 1,2,...,n, the item I,x, — Px is an M-
matriz and, moreover, the inequality

(diy (Inxn — Pr) " tz) + My, < 1, (3.3)

holds, for some p >0 and all k =1,2,...,n. Then the operator T defined in (2.1))
satisfies the relation

xk(T,K,) =
Proof. To show the result we shall apply Theorem [2.I] namely we shall show that
px # Tz,
for all x € 0K, and any p > 1. Indeed, let us assume that there is gy > 1 with
pr =Tx,
for some « € K,. Then, there is a coordinate x;, of = satisfying
il = p and Ja;] < p,

for all indices j.

From (3.2]) we have
xio( ) < N"Tlo Z Z’Wo] wlojk 10Jk[xk]) + (Fiox)(t)

k=1 j=1

Z ZUJ blojAm]lo mlo + Z Z’YZOJ nlojkAZo]k[xk] (Fiox)(t)'

k#ig j=1

(3.4)
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From the positivity of the functionals A; ;;, it follows that

Nigiig [Tio) Y Nigiig ios1bioj Miogio [Tio]
j=1

n n
3D Nigiio[iogio sk i [28] + Aigiiy [Fiy ).
kig j=1
n
< Z Aigiio ['Yioj]bioinojio [1'10} (35)
j=1
n n
+ P( Z Z Nigiio [’yioj]niojkAink[l] + Aigiio [1]®P)
kio j=1
n
= > Nigiio Diog1bioj Moo [Tio] + PZiio-
j=1
Letting
vik = Aggelzr], vk = (Vik, Vo, - - Unk) T
we obtain the system of vector inequalities
Viy < Piovio + pziy-
Therefore we have
(Inxn — Pig)viy < p2iy- (3.6)
From our assumption and Theorem @ we know that the matrix I,,«,, — F;
inverse-positive and monotone. Thus from (3.6)), we obtain

U'io S P(Inxn - Pl )7121;0' (3-7)
Now, from (3.4)) we obtain

o is

n

(1) <> Vios (Bbioi Nigjio[Tiol + D > Vios Wik Nigirlr] + (Fipx)(2)

j=1 k#io j=1
<3 Wiogllocbiost + 2 32 D iasloomiasnNiage[1] + ©,
Jj=1 k#io j=1
= <dio’ Ui0> + pMiop'
Therefore, due to (3.7) we have
iy (1) < p(digs (Tnxn — Pig) " 2i0) + pMiyp. (3.8)
From here it follows that
1 <Adiy, Lnxn — P )7121‘0> + Mo,

which contradicts to (3.3). This completes the proof. O
To proceed, for i = 1,2,...,n, we define the sets

Ei(p) ={z = (z1,22,...,2,): 0< 2; < g,

0, := min inf ,
i z€Ei(p) P

j i, ps:vzsg},

the real number
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and the n-dimensional vectors

V; = (Azlz[1]7 A»LQZ[].], ey A”n[].])T, L= ]., 2, ey

hi = G(|[villootit, 1Vizllocizs - - - 1Vinllooain) ™, i=1,2,...,n.
Lemma 3.3. Assume that there is some p > 0 such that, for each i =1,2,...,n,
it holds
Opc[(hiy (Inxn — P) " 'vi) +1] > 1. (3.9)
Then the operator T defined in (2.1) satisfies the relation
ix(T,V,)=0.

Proof. The result will follow if we show that the conditions of Theorem [2.2] are
satisfied. So, let e be the n-vector (1,1,...,1)T. Clearly, this is an element of the
product cone K. We shall show that

x # Tx + pe,

for all x € OV, and any p > 0, Indeed, let us assume that there is a ¢ > 0 with
x = Tx+ pe, for some x € OV,. Therefore, we can assume that for some coordinate
Z;, of x it holds

min  z;,(t) =p

te[aiy,Big)
and
0< Lj (t) < ga
for all indices j # 4o and all ¢ € [a, 5;].
Next, for all t € I, from (2.1)), we have
Zig(1) = DN igj Dwigir(Nigsrlr]) + (Fipx) (1) + o
S (3.10)
> Yiog (B aigi Niogio i) + (Fio) (t) + 1,
j=1
and therefore, for all indices i = 1,2, ..., n, it holds
Nigiio[Tia] =D Nigiio Wioi1ias Miojio [Tio) + Aigiig [Fig ] + 11k [1]-
j=1
Letting, as previously, vjx := Ayjk[zg] and vy, := (vig, vok, . .., vnk)’, We obtain the

vector-inequality
Vig 2 Pigig + (pOpc + p)vig > Piyvig + pOycviy.

Since I, xn — P;, is an M-matrix, by Theorem [2.3] it is inversely positive, thus we
have

Vip 2 pOpc(Inxcn — Pig) Wi (3.11)
From (C4), (C6) and inequality (3.10), for all ¢ € [, 5i,], we obtain

n
ig(1) 2> GiglViojllooiojVjia + coB, +
j=1
namely it holds
Zio (t) > (hig, vig) + cpby + p.
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Thus, from (3.11)) and our hypothesis we obtain
p=_min @iy (t) = cpfy | (hig, (Tnxn = P) "via) + 1) + 1> p 41,
te[aio,ﬁio]

because of (3.9)). This is a contradiction and the proof is complete. (]

Now we can, easily, combine the results of Lemmas 23] and [2.2] to obtain the
main result of this paper, which stands as follows:

Theorem 3.4 (Existence results). Assume that conditions (C1),..., (C5) are sat-
isfied and, for each k = 1,2,...,n, the item I,xn, — Py is an M-matriz. If there

exist real numbers p1, p2 € (0,400) with
2
2 <p1

¢

satisfying relations (3.3) and (3.9), then the operator (2.1)) has at least one fixed
point in {x € K : B <|[lz[|][ < p1}.

4. SOME APPLICATIONS

Application 1. Consider the third-order ordinary differential equation asso-
ciated with the conditions , where A;r, B;kr, I';1 are positive bounded linear
functionals defined on the space C'(I,RT), with B;, > Ty, for all i,k = 1,2,3. Tt
is not hard to see that the problem is equivalent to the integral equation

u = Thu,
with the operator T : C5(I) — C3(I) defined by
(t—s)?

(Tu)(t) = Z Z%’j(t)wijk(/\ijk[uk]) +/0 5 Xi(u(s))ds, tel,

k=1j=

where 7;1(t) := %’ Yia(t) :=t, yis(t) =1, t € I,
Aiip[z] := Al [2],
Niok[z] == M(Bix — Lix)[z], =€ C(I,RT)
Aisg[x] := Nk [x]
and
wijk(s) =35, s€eR,

for all indices 4,7,k = 1,2, 3.
We make the following assumption:

(A1) For each i = 1,2, 3, there exist reals ¢;, p;, such that
0<q < Xi(z) <pi,
for all x := (x1,x2,x3) > 0.

We shall prove the following result.

Theorem 4.1. Under condition (Al), there exist \g and Ry > Ro > 0, such that,
given any A € (0,Xg), the relation (3.3) holds for all p > Ry while, the relation

(13.9) holds, for all 0 < p < Rs.
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Proof. First of all we observe that condition (C2) is satisfied with
aij:bij:mjkzl, i,j,k:172,3,
and condition (C6) holds by choosing U;(x) := p; and ¢ := min; ¢; /p;. Also we have

Iitlloo = 5, Iizllee = Ilyislloo = 1.
Now, fix any p > 0. Then we have
U .
O, = max sup (@) = max‘&.

bolllelll=p P vop

Also, it is easy to see that the vector z; is the value of the vector function ¥; given
by ¥, (-) := AA;(+) where

at the point
9i(p, A () 1= 0, + A (AiwlUyis () + Bik[Uvia(-) + Taw[1] (vir () — 7ia(-))).-
loti

Also, the vector d; is equal to (%, 1,1), for each i = 1,2, 3, and, finally, the constant
M;,, which corresponds to A, is given by

Mip(N) =AY (Ault] + Bult] + sTall]) + 6,

/ 2
k#i
Next, choose A; such that for each k = 1,2,3 and for all A € (0, A1) it holds
1> )\Akk[d)], 1+ )\Fkk[(ﬁ] > )\Bkk[gﬁ], 1> )\Fkk[qﬂ (41)
where
2
o) =1+t+ 5, tel.

Under these assumptions, we can easily see that the matrix P, with entries p;;1, is
defined by

Pk: = )\Qka
where @) has entries ¢;;; given by
auk = Trrlyesls a2k = (Bek — Tiew) ki), a3k := Awk[vrs]-
Due to (4.1) we can see that it holds
L = piir > Zpijka
J#i
for all indices 4,7,k = 1,2,3. Hence, according to [27, property (N3g)], the item

I3«3 — P is an M-matrix.
Now, the left quantity in relation (3.3) is given by
1 _
gre(p, A) = >\<(§, 1,1), (Isxs — AQk) " Ar(Dk(p, ) + My, (N),
which, obviously, depends continuously on the parameter (p, A) € (0, +00) x (0, A1)).
Since, obviously, we have

gk(p7 >‘) = 07

lim
(PsA) = (+00,07%)
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it follows that there exists (R, A2) € (0,400) x (0, 1)) such that
gk(pu)‘) <1, k:132737

for all p > Ry and A € (0, A2). This shows that is satisfied for all £ =1,2,3
and such p and A.

Next, define o := min; \/¢;/p; and let 8 := 1. By setting o; = « and 8; = S,
i=1,2,3, we see that condition (C7) is satisfied with

Ci:a2:C7 2213273
Hence the vectors v; and h; are given by

vi = (Diil1], Bii[1] = Tii[1], A [1])T = Aq[1],

1
hi = 042(57 1a 1)T7

while the quantity 6, is given by
) ; 1-
min inf Uiz) = mjn& =: —0.
i Alzll=p p iop P
Now, the left quantity in relation (3.9) is given by

0, =

1
fi(p7 )‘) = 7‘/%(/\)5
P
where

Vi(A) = Cé(a2 [<(%7 1,1), %(I:w?) — Qi) )] + 1)'

3

Obviously, the latter depends continuously on the parameter A € (0, A1) and more-
over it satisfies

Jim V() = cé(a2 [%Fii[l] + Biill] = Ti[1] + Au[1]] + 1)-

The quantity inside the parenthesis is strictly positive. Thus, there exists (Ra, \g) €
(0, R1) x (0, A2) such that

fi<P7>\)>17 i=1,2,3,
for all p < Ry and A € (0, Ag). This shows that (3.9) is, also, satisfied for all i. O

Thus we obtain the following existence result.

Theorem 4.2. Under the conditions of Theorem[{.1 there exists Ao > 0 such that,
for all X € (0, A\g), the problem (L.5)-(L.6) admits a positive solution.

Proof. Fix A < A\g. Then choose p1, p2 such that 0 < po < Ry < (R; < (p1 and
apply Theorem [l

Application 2. As we said in the introduction, in [35] the author studies the
system of second-order nonlocal boundary-value problem , where « and (3
are increasing non-constant functions defined on [0, 1] with «(0) = 0 = $(0) and
f,9€C([0,1] x Rt x R*R") and H; € C(RT,R"), (i = 1,2). Here the integrals
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are in the Riemann-Stieltjies sense. Setting the problem (1.6) in the form of ([1.1])-
(1.2f), we obtain the system of integral equations

u(t) :/01 K(t,s)f(s,u(s),v(s))ds—l—Hl(/olu(r)da(r))t,

L L (4.2)
v(t) :/0 K(Ls)g(s,u(s),v(s))ds—&-Hg(/o U(T)dﬂ(T))t,
where K(t,s) is the Green’s function
_Jt(l=s), 0<t<s<1,
K(t,s):= {s(l—t), 0<s<t<l. (4.3)

However, we can assume that the kernel K (t,s) can be a general kernel and not
necessarily of the previous form. Then we assume the following conditions:

(C1’) There exist a continuous function ® : I — RT, a positive real number ¢
and an interval [a, 8] C (0,1), such that

K(t,s) < ®(s), (t,s)elxI,
K(t,s) > c®(s), (t,8) € [a,B8] x 1.
This condition is satisfied by choosing, for instance, « = 1/3, 8 =2/3, ¢ =1/3 and
D(s) :=s(1—s).
(C2’) There exist positive real numbers a,, bi, i = 1,2, such that

1 1
51/ sda(s) < 1, 52/ sdf(s) < 1,
0

0
a6 < Hi(€) <big, i=1,2,
for all £ > 0.
Comparing system with —, we have
vi;(t)=t, i,j=12,
wi11(2) = Hi(z), waa(2) = Ha(z),

w112(2’) = w121(2’) = w122(2) = w211(2) = w212(z) = w211(2’) =0,

1 1
MA1(z) = / z(s)da(s), Aaa(z)= / z(s)dB(s),
0 0
Ai12 = A2 = Moo = Agi1 = Ao = A1 = 0.
Define

Ui (u,v) ::/0 D(s)f(s,uls),v(s))ds,

Us(u,v) ::/O D(s)g(s,u(s),v(s))ds

and, for each p > 0, let

1
O, = -~ max sup Ui(z1,z2),
P =12 (21 ,22) ||| =p

Then we obtain
ai; = G, by i=1b;, =12
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and
a12 = az1 = bz = by = 0.

Also, we have 05 = o, 4,j = 1,2,

P = Fl I gda(s) 8] P, = [0 0

b 0
dy= |1, do=|; |, My,=DMy,=86,.
0 by

Finally, we obtain 0;; = o, 4,5 = 1,2,

Bi(p) = {(z1,22) :0< 2 < £ p<an < B,
Ey(p) :={(z1,22): 0 < < g, p<xy < g},

1
0,:= — min inf U;(z),
pi=12z€E;(x)

W_Fth®y W_{ 0 ]’

0 by fol sdfB(s)

¢ := min{e, %}, ¢ := min{c, %},
bl b2

C:: min{(l,gg}, h1 = Cl |:C~l01:| s h2 = C2 |:~0:| .

az
After these denotations we can formulate the following theorem.

Theorem 4.3. Let p1, p2 > 0 be such that po¢ < p1, and

b2a(1)
0, |1 1 1,
pl[ " 1—b fl sda(s)}
b55(1)
o, 1+ 220 |
” { " 1-0b fol sdﬁ(s)} -
C%r@aﬁmm>}>L

1—b fol sda(s)
w[@@MﬁW@+q>l
7211 by fol sdp(s) '

Then the system of equations (4.2)) admits at least one positive solution.

0 by fol sdB(s)]’
211 = l~71®p04(1)7 201 =0 =212, 222 = b220,0(1),

EJDE-2014/71

Proof. The proof follows from Theorem once we observe that (4.4) and (4.5)
are relations (3.3) with p; instead of p, while (4.6]) and (4.7)) are relations (3.9) with

p2 instead of p.

O

Application 3. Next consider the system of equations ([1.4). It is easy to see that
this system takes the form (L.1)-(1.2), when n = 2, +;; are the same functions,

wij1 = Hij,  wijo = L1y, weji = Laj, wajo = Hay,
Aj1 = B, Mo =015, Aoji =025,  Agja = Bay,
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bij = hij2,  aij; = hij,
N2 = lijo,  M2j1 = lajo, 04 = Cij.

Also, here we have x1 = u,zo = v, as well as
1
(Fa)i(®) = [ Kt 9009 fi(5.01(5),aa(o)ds, 1= 1,2
0
where k1, ko satisfy the inequalities of the form

ki(t,s) < ®;(s), tel, ae sel,

and
¢i®i(s) < ki(t,s), te€lab], ac sel,
for some subinterval [a;, b;] of I. Hence conditions (C5), (C6) are satisfied with

1
Ui(z) = / B,()9:(5) fi(s, 21 (s), wals))ds.

It is not hard to see that for k = 1,2, the matrix Py is the same with Dy, in [I4] and,
under the conditions on Dy, stated in [14], the matrix Ioxo — Py is inverse-positive,
thus it is an M-matrix. Then our conditions are the same with those of [14] and

the existence results in [14, Theorem 2.7 (S1)] follow from theorem
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