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NON-EXISTENCE OF LIMIT CYCLES FOR PLANAR VECTOR
FIELDS

JAUME GINÉ

Abstract. This article presents sufficient conditions for the non-existence of
limit cycles for planar vector fields. Classical methods for the nonexistence of

limit cycles are connected with the theory developed here.

1. Introduction

Two fundamental problems of the qualitative theory of planar differential equa-
tions are the center problem, and the determination of the number of limit cycles
and their location in the phase space, see for instance [1, 11, 17]. We recall that a
limit cycle is an isolated periodic solution of a differential equation, see [19]. The
notion of limit cycle of a planar vector field was defined by Poincaré [16] at the end
of 19th century. It was not until some decades later that van der Pol [18], Liénard
[14] and Andronov [1] proved that the periodic orbit of a self-sustained oscillation
occurring in a vacuum tube circuit was in fact a limit cycle. This fact had been
established by Poincaré himself 20 years before, see [12]. Later on the limit cy-
cles have been studied extensively by mathematicians and physicists focusing on
properties such as nonexistence, existence, and uniqueness.

The classical method for proving the nonexistence of limit cycles in a simply
connected region is the Bendixson–Dulac method, see for instance [19] where vari-
ants can be found. The method of Dulac functions also gives upper bounds for the
number of closed trajectories in a multiply connected region, see also [19].

The problem of existence is the subject of the Poincaré–Bendixson theorem.
The uniqueness problem is, in general, more difficult. Some criteria are known but
the sufficient conditions of the known methods are very restrictive, see [19] and
references therein. The Poincaré return map defined in a transversal section to the
planar flow is one of the best methods for studying the nonexistence, existence and
uniqueness of limit cycles, but in general such analysis is not very easy.

When the planar differential system has more than one limit cycle, the problem
of their distribution on the plane appears. In fact all these problems are collected
in the 16th Hilbert problem about the maximum number and distribution of limit
cycles for a polynomial vector field of degree n, see [15].
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In this work we consider C1 two-dimensional autonomous systems of differential
equations

ẋ = P (x, y), ẏ = Q(x, y) , (1.1)
defined on an open subset U of R2 and their corresponding vector field X = P∂/∂x+
Q∂/∂y on U . A non-constant C1 function V : U → R is an inverse integrating factor
for X if it satisfies XV = V divX on U ; that is, if

P
∂V

∂x
+Q

∂V

∂y
= V

(∂P
∂x

+
∂Q

∂y

)
, (1.2)

holds on U . In such a case the function 1/V is an integrating factor for the system
of differential equations on U \ Σ, where Σ = {(x, y) ∈ U : V (x, y) = 0} = V −1(0).
Since V −1(0) is made up by solutions of the differential system (1.1) the set V −1(0)
is invariant under the local flow induced by X and as we will see immediately
it contains any limit cycle contained in U of X . The knowledge of an inverse
integrating factor defined in U allows the computation of a first integral in W =
U \ {V = 0} by the line integral

H(x, y) =
∫ (x,y)

(x0,y0)

P (x, y)dy −Q(x, y)dx
V (x, y)

,

where (x0, y0) ∈W is any point. The inverse integrating factor has also been used
to study the center problem, see [3, 4, 10].

In [9] the following result was established.

Theorem 1.1. Let (P,Q) be a C1 vector field defined in the open subset U of R2.
Let V = V (x, y) be a C1 solution of the linear partial differential equation (1.2).
If γ is a limit cycle of the vector field (P,Q) in the simply connected domain of
definition of V , then γ is contained in Σ = {(x, y) ∈ U : V (x, y) = 0}.

The proof of this result is straightforward. The existence of the inverse integrat-
ing factor V defined in a simply connected region U implies that the vector field
(P/V,Q/V ) is Hamiltonian in U \ Σ. Since the flow of a Hamiltonian vector field
preserves area and in a neighborhood of a limit cycle a flow does not preserve the
area, the theorem follows. In fact the same result is obtained for any polycycle
which is a limit set of the vector field (P,Q), see [7, 8] and the references therein.
Moreover it is known that there always exists a smooth inverse integrating factor
in a neighborhood of a limit cycle of a planar analytic vector fields, see [7]. From
this result it is clear that the inverse integrating factor has an important role in the
qualitative study of differential equations and in particular in the study of the limit
cycles, see [8] and references therein. From Theorem 1.1 we can give the following
corollary.

Corollary 1.2. Let (P,Q) be a C1 vector field defined in the open subset U of R2.
Let V = V (x, y) be a C1 solution of the linear partial differential equation (1.2).
Let Σ = {(x, y) ∈ U : V (x, y) = 0}. The divergence ∂(P/V )/∂x + ∂(Q/V )/∂y
is identically zero in the simply connected domain of definition of V \ Σ and then
any limit cycle (in fact a closed trajectory) which lies entirely in the domain of
definition of V must be contained in Σ.

In this article we are interested in the study of nonexistence of limit cycles using
the inverse integrating factor. From Theorem 1.1 we can study the existence and
nonexistence of limit cycles of planar vector fields from the explicit knowledge of an
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inverse integrating factor. For instance, in [6] it is shown that system (1.1) with a
Darboux inverse integrating factor of the form V = exp(R) with rational R cannot
have limit cycles. It is clear that this result is, in fact, a straightforward consequence
of Theorem 1.1. First we recall the classical theorems about nonexistence of limit
cycles.

Theorem 1.3 (Bendixson). If the divergence ∂P/∂x+ ∂Q/∂y of system (1.1) has
constant sign in a simply connected region U , and is not identically zero on any
subregion of U , then system (1.1) does not possess any limit cycle (in fact a closed
trajectory) which lies entirely in U .

The proof is by contradiction assuming the existence of a limit cycle and applying
Green’s formula. In fact mainly depends on the following fact.

Proposition 1.4. In the interior D of any closed trajectory of system (1.1) of a
simply connected region we have∫ ∫

D

(∂P
∂x

+
∂Q

∂y

)
dx dy = 0. (1.3)

The classical Bendixson theorem and the inverse integrating factor are related
by the following proposition.

Proposition 1.5. Let (P,Q) be a C1 vector field defined in the open subset U of R2.
Let V = V (x, y) be a C1 solution of the linear partial differential equation (1.2). Let
Σ = {(x, y) ∈ U : V (x, y) = 0}. If the divergence ∂P/∂x + ∂Q/∂y of system (1.1)
has constant sign in the simply connected domain of definition of V \ Σ, then any
limit cycle (in fact a closed trajectory) which lies entirely in the simply connected
domain of definition of V must be contained in Σ.

Proof. Assume that γ is a closed trajectory of system (1.1) which lies entirely in the
simply connected domain of definition of V then integrating along γ the equality
(1.2) we obtain∮

γ

P ∂V
∂x +Q∂V

∂y

V
dt =

∮
γ

d ln |V |
dt

dt = −
∮
γ

(∂P
∂x

+
∂Q

∂y

)
dt.

Obviously the left hand side of the above formula is equal to zero. On the other
hand, the integrand on the right hand side of the equality has constant sign in
the simply connected domain of definition of V . Hence its integral value should
be different from zero, a contradiction with the existence of the closed trajectory
except if the trajectory γ is contained in Σ = {(x, y) ∈ U : V (x, y) = 0} because in
that case the integrand of right hand side is not well-defined. �

Theorem 1.6 (Bendixson-Dulac). If there exists a continuously differentiable func-
tion B(x, y) in a simply connected region U such that ∂(BP )/∂x+ ∂(BQ)/∂y has
constant sign and is not identically zero in any subregion, then system (1.1) does
not possess any limit cycle (in fact a closed trajectory) which lies entirely in U .

The proof of Theorem 1.6 follows from the proof of Theorem 1.3 using BP and
BQ instead of P and Q respectively. The function B(x, y) is called Dulac function,
and the method of proving nonexistence of closed trajectories is called the method
of Dulac functions. The relation of the Bendixson-Dulac theorem and the inverse
integrating factor is established through the following proposition.
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Proposition 1.7. Let (P,Q) be a C1 vector field defined in the open subset U of R2.
Let V = V (x, y) be a C1 solution of the linear partial differential equation (1.2). Let
B(x, y) a continuously differentiable function in U such that ∂(BP )/∂x+∂(BQ)/∂y
has constant sign, then any limit cycle (in fact a closed trajectory) which lies entirely
in the simply connected domain of definition of V must be contained in Σ = {(x, y) ∈
U : V (x, y) = 0}.

Proof. In the proof we use the result that if V is an inverse integrating factor of
the vector field (P,Q) then the vector (BP,BQ) has the inverse integrating factor
BV , see [3]. Therefore we can write the following equality∮

γ

BP ∂BV
∂x +BQ∂BV

∂y

BV
dt =

∮
γ

d ln |BV |
dt

dt = −
∮
γ

(∂BP
∂x

+
∂BQ

∂y

)
dt,

and analogous arguments than in the proof of Proposition 1.5 are valid. �

In fact Theorem 1.3 and 1.6 can be extended to multiply connected regions, see
[19]. The next important result in order to study the nonexistence and existence of
limit cycles was obtained in [5].

Theorem 1.8 (Cherkas). Suppose that in a simply connected domain U ⊂ R2,
there exists a function Ψ(x, y) of class C1 and a number k > 0 such that

kΨ divX + XΨ > 0,

then the domain U contains no limit cycles of system (1.1).

2. Statement of the main results

The following result provides a necessary for (1.1) to have an inverse integrating
factor of a the form V (f(x, y)).

Theorem 2.1. The vector field X = (P,Q) defined in an open subset U of R2

admits an inverse integrating factor of the form V = V (z) where z = f(x, y) if and
only if

divX
(Pfx +Qfy)

= α(z), (2.1)

where α(z) is a function exclusively of z and in such case the inverse integrating
factor is of the form

V = exp
( ∫ z

α(s) ds
)
. (2.2)

Moreover if γ is a limit cycle of the vector field (P,Q) in the simply connected
domain of definition of (2.2), then γ is contained in Σ = {(x, y) ∈ U : e

R z α(s)ds =
0}.

The following corollary to Theorem 2.1 imposes conditions for (1.1) not to have
limit cycles.

Corollary 2.2. The following statements hold:
(i) Taking z = f(x, y) = x if α(z) is a function x (or taking z = f(x, y) = y

if α(z) is a function y), then system (1.1) which has the associated vector
field X = (P,Q) defined in the open subset U of R2 has no limit cycles in
the domain of definition of (2.2).
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(ii) Taking z = f(x, y) = xy if α(z) is a function xy, then system system (1.1)
which has the associated vector field X = (P,Q) defined in the open subset
U of R2 has no limit cycles in the domain of definition of (2.2).

In [13], these two statements of corollary 2.2 are given but they are not stated
correctly. In both cases the authors of [13] state that, under the described con-
ditions, system (1.1) does not have limit cycles. This is wrong. The correct con-
clusion is that system (1.1) does not have limit cycles in the simply connected
domain of definition of (2.2). In general this domain of definition is not all R2 as
the following example shows. Suppose that α(s) = 1/(s ln s) which implies that
V = exp

( ∫ x
α(s)ds

)
= lnx. Therefore applying Theorem 1.1 if γ is a limit cycle of

the vector field (P,Q) in the domain of definition of V , which is in this case x > 0,
then γ is contained in Σ = {(x, y) ∈ U : V (x, y) = 0}. Therefore the vector field
(P,Q) has no limit cycles for x > 0 but it can have limit cycles in the domain x ≤ 0.
Another example is given later in the proof of Proposition 4.1 where α(s) = −1/s
and V = 1/x. In fact the statement of Theorem 1.1 is not correctly stated in [13].

3. Proof of Theorem 2.1 and Corollary 2.2

Proof of Theorem 2.1. We assume that V = V (z) where z = f(x, y), then applying
the chain rule, equality (1.2) is transformed into

P
dV

dz

∂f

∂x
+Q

dV

dz

∂f

∂y
= V

(∂P
∂x

+
∂Q

∂y

)
. (3.1)

We can isolate dV/dz from equation (3.1) and we have

dV
dz

V
=

(
∂P
∂x + ∂Q

∂y

)
Pfx +Qfy

, (3.2)

where fx and fy are the partial derivatives of f with respect to x and y. The left
hand-side of equation (3.2) is a function of z, hence the right hand-side must be
also a function of z and we obtain

dV
dz

V
=

(
∂P
∂x + ∂Q

∂y

)
Pfx +Qfy

= α(z). (3.3)

If equality (3.3) is satisfied we get that the inverse integrating factor takes the form

V = e
R z

(
∂P
∂x

+ ∂Q
∂y

)
P fx+Qfy = e

R z α(s)ds.

Now applying Theorem 1.1 the proof of Theorem 2.1 follows. �

Proof of Corollary 2.2. (i) In the case z = f(x, y) = x and α(z) is a function x we
have that equation (3.3) takes the form d

dx (log V ) = (∂P∂x + ∂Q
∂y )/P = α(x). Hence

V = e
R x α(s)ds and applying Theorem 1.1 the result follows. The proof is analogous

for the case z = f(x, y) = y and when α(z) is a function y.
(ii) In the case z = f(x, y) = xy and α(z) is a function xy we have that equation

(3.3) takes the form d
dz (log V ) = (∂P∂x + ∂Q

∂y )/(Py+Qx) = α(z). Hence V = e
R z α(z)dz

and applying Theorem 1.1 we obtain the result. �



6 J. GINÉ EJDE-2014/75

4. Examples

In this section we give two examples where we apply the results developed in
this work.

Proposition 4.1. Consider the differential system

ẋ = −x− 4xy − 5y2, ẏ = 3x+ 2y + y2. (4.1)

System (4.1) has no limit cycles in the domain R2 \ {(x, y) | x+ y2 = 0}.

Proof. Assume that system (4.1) has an inverse integrating factor which is a func-
tion of x+ y2. Therefore if we take the particular case z = x+ y2 in equation (3.1)
we obtain

(−x− 4xy − 5y2)
dV

dz
+ (3x+ 2y + y2)

dV

dz
(2y) = V (1− 2y). (4.2)

Isolating dV/dz from this equation and we have
dV
dz

V
=

1− 2y
(−1 + 2y)(x+ y2)

= − 1
x+ y2

= −1
z
. (4.3)

Integrating the differential equation (4.3) we obtain

V = e−
R z 1

sds =
1
z

=
1

x+ y2
.

Hence, applying Theorem 1.1 the result follows. In fact if system (4.1) has a limit
cycle, this limit cycle must cut the curve x+ y2 = 0. �

To prove the next result we need to recall the following proposition given in [3]
whose proof is obvious from the definition of inverse integrating factor.

Proposition 4.2. Let (P1, Q1) and (P2, Q2) be two C1 vector fields defined in an
open subset U ⊂ R2, which have the same inverse integrating factor V (x, y); i.e.,

P1
∂V

∂x
+Q1

∂V

∂y
−
(∂P1

∂x
+
∂Q1

∂y

)
V = 0,

P2
∂V

∂x
+Q2

∂V

∂y
−
(∂P2

∂x
+
∂Q2

∂y

)
V = 0,

then the vector field (P1 + λP2, Q1 + λQ2) has also the function V (x, y) as inverse
integrating factor, for arbitrary values of the parameter λ.

Using this proposition we can establish the following result.

Proposition 4.3. Consider the differential system

ẋ = x+ 8xy − 5y2, ẏ = 6x− 2y − 2y2. (4.4)

System (4.4) has no limit cycles in all R2.

Proof. To obtain the result we decompose the system into two homogeneous sys-
tems.

P1 = x, Q1 = 6x− 2y, P2 = 8xy − 5y2, Q2 = −2y2.

Now we try to compute the inverse integrating factor for each homogeneous system.
It is well-known have that the inverse integrating factor of any homogeneous system
is given by V = yPn − xQn, see [2]. Therefore the vector field (P1, Q1) has the
inverse integrating factor V1 = x(2x − y) and the vector field (P2, Q2) has the
inverse integrating factor V2 = y2(2x − y). Moreover the respective first integrals
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associated to each integrating factor are H1 = x2(2x − y) and H2 = y4(2x − y)
respectively.

We cannot directly apply Proposition 4.2 because the two vector fields have a
different inverse integrating factor. Now we apply another well-known result which
says that if V is an inverse integrating factor and if H is a first integral then V H is
also an inverse integrating factor. Hence we look for an inverse integrating factor of
system (4.4) that satisfies V = V1F1(H1) = V2F2(H2), where F1(H1) and F2(H2)
are arbitrary functions of H1 and H2 respectively. In our case we have

V = x(2x− y)F1(x2(2x− y)) = y2(2x− y)F2(y4(2x− y)), (4.5)

which simplifying implies

F1(x2(2x− y)) =
y2

x
F2(y4(2x− y)). (4.6)

Now we take u = y2/x and equation (4.6) takes the form

F1(β) = uF2(u2β), (4.7)

where β = x2(2x− y). For equation (4.7) be satisfied we need to take

F2(u2β) =
1√
u2β

=
1

u
√
β
, with u > 0,

which implies F1(β) = 1/
√
β and substituting in (4.5) we have

V = x(2x− y)
1

x
√

2x− y
=
√

2x− y, with 2x− y > 0, (4.8)

Now we can apply Proposition 4.2 because the two vector fields (P1, Q1) and
(P2, Q2) have the same inverse integrating factor and consequently (4.8) is also
the inverse integrating factor of system (4.4). Moreover, for the case y − 2x > 0,
it is easy to see that V =

√
y − 2x is also an inverse integrating factor of system

(4.4). Now it is clear that we could have applied Theorem 2.1 with z = 2x + y
in order to find the inverse integrating factor. Finally we can apply Theorem 1.1
and we obtain that in the domain 2x− y ≥ 0 there are not limit cycles and in the
domain y − 2x ≥ 0. Moreover the line 2x− y = 0 is an invariant algebraic curve of
system (4.8), and consequently no limit cycle can cross this line. Therefore system
(4.8) has no limit cycles in all R2. �

The method developed in the previous example can also applied to the example of
Proposition 4.1. In that case the common inverse integrating factor is V =

√
x+ y

which ensures the nonexistence of limit cycles in the domain x+ y ≥ 0.
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