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ENTROPY SOLUTIONS FOR NONLINEAR ELLIPTIC
EQUATIONS WITH VARIABLE EXPONENTS

CHAO ZHANG

Abstract. In this article we prove the existence and uniqueness of entropy

solutions for p(x)-Laplace equations with a Radon measure which is absolutely

continuous with respect to the relative p(x)-capacity. Moreover, the existence
of entropy solutions for weighted p(x)-Laplace equation is also obtained.

1. Introduction

The study of partial differential equations and variational problems with non-
standard growth conditions has been received considerable attention by many mod-
els coming from various branches of mathematical physics, such as elastic mechan-
ics, image processing and electro-rheological fluid dynamics, etc. We refer the
readers to [7, 10, 24, 26] and references therein.

Let Ω be a bounded open domain in RN (N ≥ 2) with Lipschitz boundary ∂Ω.
In this article we consider the nonlinear elliptic problem

− div
(
w(x)|∇u|p(x)−2∇u

)
= f in Ω,

u = 0 on ∂Ω,
(1.1)

where the variable exponent p : Ω→ (1,∞) is a continuous function, w is a weight
function and f ∈ L1(Ω).

When dealing with the p-Laplacian type equations with L1 or measure data, it
is reasonable to work with entropy solutions or renormalized solutions, which need
less regularity than the usual weak solutions. The notion of entropy solutions has
been proposed by Bénilan et al. in [3] for the nonlinear elliptic problems. This
framework was extended to related problems with constant p in [1, 5, 6, 23] and
variable exponents p(x) in [2, 25, 27, 28]. The interesting and difficult cases are
those of 1 < p ≤ N , since the variational methods of Leray-Lions (see [21]) can be
easily applied for p > N .

Recently, when w(x) ≡ 1, the existence and uniqueness of entropy solutions of
p(x)-Laplace equation with L1 data were proved in [27] by Sanchón and Urbano.
The proofs rely crucially on a priori estimates in Marcinkiewicz spaces with vari-
able exponents. Moreover, in [28] we extended the results in [27] to the case of a
signed measure µ in L1(Ω) + W−1,p′(·)(Ω). In view of a refined method which is
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slightly different from [27], we obtained that the entropy solution of problem (1.1)
is also a renormalized solution and proved the uniqueness of entropy solutions and
renormalized solutions, and thus the equivalence of entropy solutions and renor-
malized solutions. Especially, when p is a constant function, w is an Ap weight
and f ∈ L1(Ω), Cavalheiro in [6] proved the existence of entropy solutions for the
Dirichlet problem (1.1).

This work is a natural extension of the results in [6, 28]. The novelties in this
paper are mainly two parts. First, when p is a constant function, we know from [5]
that µ ∈ L1(Ω) + W−1,p′(Ω) if and only if µ ∈ Mp

b(Ω), i.e., every signed measure
that is zero on the sets of zero p-capacity can be decomposed into the sum of
a function in L1(Ω) and an element in W−1,p′(Ω), and conversely, every signed
measure in L1(Ω) + W−1,p′(Ω) has zero measure for the sets of zero p-capacity.
In our previous paper [28], we proposed an open problem: what about the similar
decomposition result for the variable exponent case? By using the similar arguments
as in [5] and employing the properties of Lp(·)(Ω) and the relative p(·)-capacity (see
[17]), we try to give a positive answer for this question. Although the proof follows
basically the steps in [5], it is not a straightforward generalization of the same
result for constant exponents which needs a more careful analysis to derive the
conclusion. Second, as far as we know, there are no papers concerned with the
entropy solutions for the weighted p(x)-Laplace equations. The main difficulty is
that there are few results for the Ap(·)-weight whenever p is not constant function.
We refer the readers to paper [16] by Hästö and Diening for the latest results.
The properties of weighted variable exponent Lebesgue-Sobolev spaces in [16, 19]
provide a way to prove the existence of entropy solutions for problem (1.1).

Now we review the definitions and basic properties of the weighted general-
ized Lebesgue spaces Lp(x)(Ω, w) and weighted generalized Lebesgue-Sobolev spaces
W k,p(x)(Ω, w).

Let w be a measurable positive and a.e. finite function in RN . Set C+(Ω) =
{h ∈ C(Ω) : minx∈Ω h(x) > 1}. For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈ C+(Ω), we introduce the weighted variable exponent Lebesgue space
Lp(·)(Ω, w) to consist of all measurable functions such that∫

Ω

w(x)|u(x)|p(x) dx <∞,

endowed with the Luxemburg norm

‖u‖Lp(x)(Ω,w) = inf
{
λ > 0 :

∫
Ω

w(x)
∣∣∣u(x)
λ

∣∣∣p(x)

dx ≤ 1
}
.

For any positive integer k, denote

W k,p(x)(Ω, w) = {u ∈ Lp(x)(Ω, w) : Dαu ∈ Lp(x)(Ω, w), |α| ≤ k},
with the norm

‖u‖Wk,p(x)(Ω,w) =
∑
|α|≤k

‖Dαu‖Lp(x)(Ω,w).

An interesting feature of a generalized Lebesgue-Sobolev space is that smooth func-
tions are not dense in it without additional assumptions on the exponent p(x). This
was observed by Zhikov [29] in connection with Lavrentiev phenomenon. However,
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when the exponent p(x) is log-Hölder continuous, i.e., there is a constant C such
that

|p(x)− p(y)| ≤ C

− log |x− y|
(1.2)

for every x, y ∈ Ω with |x− y| ≤ 1/2, then smooth functions are dense in variable
exponent Sobolev spaces and there is no confusion in defining the Sobolev space
with zero boundary values, W 1,p(·)

0 (Ω), as the completion of C∞0 (Ω) with respect
to the norm ‖u‖W 1,p(·)(Ω) (see [15]).

Let Tk denote the truncation function at height k ≥ 0:

Tk(r) = min{k,max{r,−k}} =


k if r ≥ k,
r if |r| < k,

−k if r ≤ −k.

Denote

T 1,p(·)
0 (Ω) = {u : u is measurable, Tk(u) ∈W 1,p(·)

0 (Ω, w), for every k > 0}.

Next we define the very weak gradient of a measurable function u ∈ T 1,p(·)
0 (Ω).

As a matter of the fact, working as in [3, Lemma 2.1], we have the following result.

Proposition 1.1. For every function u ∈ T 1,p(·)
0 (Ω), there exists a unique mea-

surable function v : Ω→ RN , which we call the very weak gradient of u and denote
v = ∇u, such that

∇Tk(u) = vχ{|u|<k} for a.e. x ∈ Ω and for every k > 0,

where χE denotes the characteristic function of a measurable set E. Moreover, if
u belongs to W 1,1

0 (Ω, w), then v coincides with the weak gradient of u.

The notion of the very weak gradient allows us to give the following definition
of entropy solutions for problem (1.1).

Definition 1.2. A function u ∈ T 1,p(·)
0 (Ω) is called an entropy solution to problem

(1.1) if ∫
Ω

w(x)|∇u|p(x)−2∇u · ∇Tk(u− φ) dx =
∫

Ω

fTk(u− φ) dx, (1.3)

for all φ ∈W 1,p(x)
0 (Ω, w) ∩ L∞(Ω).

The rest of this paper is organized as follows. In Section 2, we prove the exis-
tence and uniqueness of entropy solutions for p(x)-Laplace equation with a Radon
measure which is absolutely continuous with respect to the relative p(·)-capacity.
The existence of entropy solutions for weighted p(x)-Laplace equation will be con-
sidered in Section 3. In the following sections C will represent a generic constant
that may change from line to line even if in the same inequality.

2. Unweighted case

In this section, we prove the existence and uniqueness of entropy solutions for
the following problem

−div
(
|∇u|p(x)−2∇u

)
= µ in Ω,

u = 0 on ∂Ω,
(2.1)
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where µ a Radon measure which is absolutely continuous with respect to the relative
p(·)-capacity. First we state some results that will be used later.

Lemma 2.1 ([13, 20]). (1) The space Lp(·)(Ω) is a separable, uniform convex Ba-
nach space, and its conjugate space is Lp

′(·)(Ω) where 1/p(x) + 1/p′(x) = 1. For
any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have∣∣ ∫

Ω

uv dx
∣∣ ≤ ( 1

p−
+

1
(p−)′

)
‖u‖Lp(x)(Ω)‖v‖Lp′(x)(Ω) ≤ 2‖u‖Lp(x)(Ω)‖v‖Lp′(x)(Ω);

(2) If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for any x ∈ Ω, then there exists the contin-
uous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω), whose norm does not exceed |Ω|+ 1.

Lemma 2.2 ([13]). If we denote

ρ(u) =
∫

Ω

|u|p(x) dx, ∀u ∈ Lp(x)(Ω),

then

min{‖u‖p−
Lp(x)(Ω)

, ‖u‖p+

Lp(x)(Ω)
} ≤ ρ(u) ≤ max{‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)
}.

Lemma 2.3 ([13]). W k,p(x)(Ω) is a separable and reflexive Banach space.

Lemma 2.4 ([18, 20]). Let p ∈ C+(Ω) satisfy the log-Hölder continuity condition
(1.2). Then, for u ∈W 1,p(·)

0 (Ω), the p(·)-Poincaré inequality

‖u‖Lp(x)(Ω) ≤ C‖∇u‖Lp(x)(Ω)

holds, where the positive constant C depends on p, N and Ω.

Lemma 2.5 ([9, 12]). Let Ω ⊂ RN be an open, bounded set with Lipschitz bound-
ary and p(x) ∈ C+(Ω) with 1 < p− ≤ p+ < N satisfy the log-Hölder continuity
condition (1.2). If q ∈ L∞(Ω) with q− > 1 satisfies

q(x) ≤ p∗(x) :=
Np(x)
N − p(x)

, ∀x ∈ Ω,

then we have
W 1,p(x)(Ω) ↪→ Lq(x)(Ω)

and the imbedding is compact if infx∈Ω(p∗(x)− q(x)) > 0.

A variable exponent version of the relative p(·)-capacity of the condenser has been
used in [17]. This alternative capacity of a set is taken relative to a surrounding open
subset of RN . Suppose that p+ < ∞ and p(x) satisfies the log-Hölder continuity
condition (1.2). Let K ⊂ Ω. The relative p(·)-capacity of K in Ω is the number

capp(·)(K,Ω) = inf
{∫

Ω

|∇ϕ|p(x) dx : ϕ ∈ C∞0 (Ω) and ϕ ≥ 1 in K
}
.

For an open set U ⊂ Ω we define

capp(·)(U,Ω) = sup
{

capp(·)(K,Ω) : K ⊂ U compact
}

and for an arbitrary E ⊂ Ω,

capp(·)(E,Ω) = inf
{

capp(·)(U,Ω) : U ⊃ E open
}
.

Then
capp(·)(E,Ω) = sup

{
capp(·)(K,Ω) : K ⊂ E compact

}
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for all Borel sets E ⊂ Ω. The number capp(·)(E,Ω) is called the variational p(·)-
capacity of E relative to Ω. We usually call it simply the relative p(·)-capacity of
the pair. The relative p(·)-capacity is an outer capacity.

We say that a function f : Ω→ R is p(·)-quasi continuous if for every ε > 0 there
exists an open set A ⊂ Ω with capp(·)(A,Ω) ≤ ε, such that f |Ω\A is continuous.
Every u ∈W 1,p(·)(Ω) has a p(·)-quasi continuous representative (see [5, 17]), always
denoted in this paper by ũ, which is essentially unique.

Denote by Mb(Ω) the space of all signed measures on Ω, i.e., the space of all
σ-additive set functions µ with values in R defined on the Borel σ-algebra. If µ
belongs toMb(Ω), then |µ| (the total variation of µ) is a bounded positive measure
on Ω. We will denote byMp(·)

b (Ω) the space of all measures µ inMb(Ω) such that
µ(E) = 0 for every set E satisfying capp(·)(E,Ω) = 0. Examples of measures in

Mp(·)
b (Ω) are the L1(Ω) functions, or the measures in W−1,p′(·)(Ω).
Next we have a decomposition of a measure in Mp(·)

b (Ω).

Proposition 2.6. Assume that p(x) satisfies the log-Hölder condition (1.2) with
1 < p− ≤ p+ < +∞. Let µ be an element ofMb(Ω). Then µ ∈ L1(Ω)+W−1,p′(·)(Ω)
if and only if µ ∈ Mp(·)

b (Ω). Thus, if µ ∈ Mp(·)
b (Ω), there exist f in L1(Ω) and F

in (Lp
′(·)(Ω))N , such that

µ = f − divF,

in the sense of distributions.

Proof. Necessity. If µ belongs to L1(Ω) +W−1,p′(·)(Ω), then there exist f ∈ L1(Ω)
and F ∈ Lp′(·)(Ω) such that µ = f − divF . We just need to show that µ(E) = 0
for every set E ⊂ Ω such that capp(·)(E,Ω) = 0. It is easy to see that µ ∈Mb(Ω).
From the definition of p(·)-capacity and the similar arguments as in Lemma 2.4 of
[22], there is a Borel set E0 ⊂ Ω such that E ⊂ E0 and capp(·)(E0,Ω) = 0. Let
K ⊂ E0 be compact and Ω′ ⊂ Ω an open set containing K. Then there is a sequence
(ϕj) ⊂ C∞0 (Ω′) such that 0 ≤ ϕj ≤ 1, ϕj = 1 in K and

∫
Ω′
|∇ϕj |p(x)dx → 0 as

j →∞. Then we have

|µ(K)| ≤
∣∣ ∫

Ω′
ϕj dµ

∣∣ ≤ ∣∣ ∫
Ω′
fϕj dx+

∫
Ω′
F · ∇ϕj dx

∣∣.
Choosing the regular functions {fn} such that ‖fn − f‖L1(Ω) → 0 as n → ∞ and
applying Lemmas 2.1, 2.2 and 2.4 yield that

|µ(K)| ≤
∫

Ω′
|fn − f | · |ϕj | dx+

∫
Ω′
|fn| · |ϕj | dx+

∫
Ω′
|F | · |∇ϕj | dx

≤ ‖ϕj‖L∞(Ω′)‖fn − f‖L1(Ω′) + 2‖fn‖Lp′(x)(Ω′)‖ϕj‖Lp(x)(Ω′)

+ 2‖F‖Lp′(x)(Ω′)‖∇ϕj‖Lp(x)(Ω′)

≤ ‖ϕj‖L∞(Ω′)‖fn − f‖L1(Ω′) + C‖fn‖Lp′(x)(Ω′)‖∇ϕj‖Lp(x)(Ω′)

+ 2‖F‖Lp′(x)(Ω′)‖∇ϕj‖Lp(x)(Ω′)

≤ ‖ϕj‖L∞(Ω′)‖fn − f‖L1(Ω′) + C‖fn‖Lp′(x)(Ω′)

(∫
Ω′
|∇ϕj |p(x) dx

)γ
+ 2‖F‖Lp′(x)(Ω′)

(∫
Ω′
|∇ϕj |p(x) dx

)γ
,
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where

γ =

{
1/p− if ‖∇ϕj‖Lp(x)(Ω′) ≥ 1,
1/p+ if ‖∇ϕj‖Lp(x)(Ω′) ≤ 1.

It follows that for all compact K ⊂ E0,

|µ(K)| ≤ C‖fn − f‖L1(Ω′) as j →∞,
where C is a positive constant that does not depend on n. Moreover, it implies that
µ(K) = 0 as n→∞, and then µ(E) ≤ µ(E0) = sup{µ(K) : K ⊂ E0 compact} = 0
by the regularity of µ.

Sufficiency. Motivated by the ideas developed in [5, 8, 11] with constant expo-
nents, we sketch the proof. In the following we assume that µ is positive. (If not,
we write µ = µ+ − µ−.)

Step 1. First we prove that every measure µ in Mp(·)
b (Ω) can be decomposed

as µ = fγmeas, i.e., dµ = fdγmeas, with f a positive Borel measurable function
in L1(Ω, γmeas) and γmeas a positive measure in W−1,p′(·)(Ω). Indeed, for any
u ∈ W

1,p(·)
0 (Ω), let ũ be the p(·)-quasi continuous representative of u. Since ũ

is uniquely defined up to sets of zero p(·)-capacity, we can define the functional
F : W 1,p(·)

0 (Ω)→ [0,+∞] by

F (u) =
∫

Ω

max{ũ, 0} dµ.

Clearly, F is convex and lower semi-continuous on W
1,p(·)
0 (Ω). Since W 1,p(·)(Ω) is

separable from Lemma 2.3, the function F is the supremum of a countable family of
continuous affine functions. Therefore, there exist a sequence {λn} in W−1,p′(·)(Ω)
and a sequence {an} in R such that

F (u) = sup
n∈N
{〈λn, u〉+ an}

for every u ∈W 1,p(·)
0 (Ω). Since, for any positive t, tF (u) = F (tu) ≥ t〈λn, u〉+an for

every n, dividing by t and let t→ +∞, we get F (u) ≥ 〈λn, u〉 for all u ∈W 1,p(·)
0 (Ω).

For u = 0, we deduce that an ≤ 0. Thus

F (u) ≥ sup
n
〈λn, u〉 ≥ sup

n
{〈λn, u〉+ an} = F (u), (2.2)

which implies that
F (u) = sup

n∈N
〈λn, u〉. (2.3)

In view of (2.3) and the definition of F , for all ϕ ∈ C∞0 (Ω), we have

〈λn, ϕ〉 ≤ sup
n
〈λn, ϕ〉 = F (ϕ) =

∫
Ω

ϕ+ dµ ≤ ‖µ‖Mb(Ω)‖ϕ‖L∞(Ω). (2.4)

Thus, applying this inequality to ϕ and −ϕ, we obtain

|〈λn, ϕ〉| ≤ ‖µ‖Mb(Ω)‖ϕ‖L∞(Ω),

which implies that λn ∈ W−1,p′(·)(Ω) ∩Mb(Ω). Moreover, since F (−ϕ) = 0 for
any nonnegative ϕ ∈ C∞0 (Ω), we have 〈λn, ϕ〉 ≥ 0. By the Riesz representation
theorem there exists a nonnegative measure on Ω, which we denote by λmeas

n , such
that

〈λn, ϕ〉 =
∫

Ω

ϕdλmeas
n , for all such ϕ,
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which implies λmeas
n ∈ M+

b (Ω) (that is to say λn ∈ W−1,p′(·)(Ω) ∩M+
b (Ω)). Using

again (2.4) to any nonnegative ϕ ∈ C∞0 (Ω), we obtain

λmeas
n ≤ µ, ‖λmeas

n ‖Mb(Ω) ≤ ‖µ‖Mb(Ω). (2.5)

Define

γ =
∞∑
n=1

λn
2n(‖λn‖W−1,p′(·)(Ω) + 1)

. (2.6)

It is obvious that the series is absolutely convergent in W−1,p′(·)(Ω). Then we have,
for all ϕ ∈ C∞0 (Ω),

|〈γ, ϕ〉| =
∣∣ ∞∑
n=1

〈λn, ϕ〉
2n(‖λn‖W−1,p′(·)(Ω) + 1)

∣∣
≤
∞∑
n=1

‖λmeas
n ‖Mb(Ω)‖ϕ‖L∞(Ω)

2n

≤ ‖µ‖Mb(Ω)‖ϕ‖L∞(Ω),

and γ ∈W−1,p′(·)(Ω)∩Mb(Ω). Since the series
∑∞
n=1

λmeas
n

2n(‖λn‖
W−1,p′(·)(Ω)

+1) strongly

converges in Mb(Ω). Applying (2.6) to functions of C∞0 (Ω), we can see that

γmeas =
∞∑
n=1

λmeas
n

2n(‖λn‖W−1,p′(·)(Ω) + 1)
.

In particular, γmeas is a nonnegative measure (each λmeas
n is nonnegative).

Since λmeas
n � γmeas, there exists a nonnegative function fn ∈ L1(Ω, dγmeas)

such that λmeas
n = fnγ

meas. Thus (2.3) implies∫
Ω

ϕdµ = sup
n

∫
Ω

fnϕdγ
meas, (2.7)

for any nonnegative ϕ ∈ C∞0 (Ω). We also have, by (2.5), fnγmeas ≤ µ, that is∫
B

fn dγ
meas ≤ µ(B), (2.8)

for any Borelian subset B ⊂ Ω and every n.
Denote

Bs =
{
x ∈ B : fs(x) = max{f1(x), . . . , fk(x)} and fs(x) > f1(x), . . . , fs−1(x)

}
.

It is obvious that Bi (i = 1, . . . , k) are disjoint and B = ∪ks=1Bs. Then by (2.8) we
have ∫

Bs

fs dγ
meas ≤ µ(Bs);

that is, ∫
Bs

sup{f1, . . . , fk} dγmeas ≤ µ(Bs).

Summing up the above inequalities for s = 1, . . . , k, we deduce that∫
B

sup{f1, . . . , fk} dγmeas ≤ µ(B),
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for any Borelian subset B ⊂ Ω and any k ≥ 1. Letting k →∞, we obtain from the
monotone convergence theorem that∫

B

f dγmeas ≤ µ(B),

where f = supn fn. Then from (2.7) we conclude that∫
Ω

ϕdµ = sup
n

∫
Ω

fnϕdγ
meas ≤ sup

n

∫
Ω

fϕ dγmeas

=
∫

Ω

fϕ dγmeas ≤
∫

Ω

ϕdµ,

for any nonnegative ϕ ∈ C∞0 (Ω), which yields that

µ = fγmeas.

Since µ(Ω) < +∞, it follows that f ∈ L1(Ω, dγmeas).
Step 2. Let Kn be an increasing sequence of compact sets contained in Ω such

that ∪+∞
n=1Kn = Ω. Denote µ(1)

n = Tn(fχKn
)γmeas. It is obvious that {µ(1)

n } is
an increasing sequence of positive measure in W−1,p′(·)(Ω) with compact support
in Ω. Set µ0 = µ

(1)
0 and µn = µ

(1)
n − µ(1)

n−1. Then µ =
∑+∞
n=1 µn, and the series

converges strongly inMb(Ω). Since µn ≥ 0 and ‖µn‖Mb(Ω) = µn(Ω), we know that∑+∞
n=1 ‖µn‖Mb(Ω) <∞.

Step 3. Let ρ ≥ 0 be a function in C∞0 (RN ) with
∫

RN ρ(x) dx = 1. Let {ρn} be a
sequence of mollifiers associated to ρ; i.e., ρn(x) = nNρ(nx) for every x ∈ RN . For
n ∈ N, if µn is the measure defined in Step 2, the log-Hölder continuity condition
(1.2) implies that {µn ∗ ρm} converges to µn in W−1,p′(·)(Ω) as m tends to infinity.
By the properties of µn and ρm, µn ∗ ρm belongs to C∞0 (Ω) if m is large enough.

Choose m = mn such that µn ∗ ρmn belongs to C∞0 (Ω) and ‖µn ∗ ρmn −
µn‖W−1,p′(·)(Ω) ≤ 2−n. Then µn = fn + gn, where fn = µn ∗ ρmn and gn =
µn − µn ∗ ρmn

. The choice of mn implies that the series
∑+∞
n=1 gn converges

in W−1,p′(·)(Ω) and g =
∑+∞
n=1 gn belongs to W−1,p′(·)(Ω). Since ‖fn‖L1(Ω) =

‖µn ∗ ρmn
‖L1(Ω) ≤ ‖µn‖Mb(Ω), by Step 2 the series

∑+∞
n=1 fn is absolutely con-

vergent in L1(Ω), and f0 =
∑+∞
n=1 fn belongs to L1(Ω). Therefore, the three se-

ries
∑+∞
n=1 µn,

∑+∞
n=1 gn and

∑+∞
n=1 fn converge in the sense of distributions. Then

µ = f0 + g. This completes the proof. �

Remark 2.7. From Proposition 2.6, we can conclude that µ ∈Mp(·)
b (Ω) is a signed

measure in L1(Ω) +W−1,p′(·)(Ω); i.e.,

µ = f − divF in the sense of distributions,

where f ∈ L1(Ω) and F ∈ (Lp
′(·)(Ω))N . Therefore, the equality (1.3) can be written

as ∫
Ω

|∇u|p(x)−2∇u · ∇Tk(u− φ) dx

=
∫

Ω

fTk(u− φ) dx+
∫

Ω

F · ∇Tk(u− φ) dx,
(2.9)

for all φ ∈W 1,p(x)
0 (Ω) ∩ L∞(Ω).
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Based on the decomposition of a measure in Mp(·)
b (Ω), we have the following

result, whose proof can be found in [28].

Theorem 2.8. Assume that p(x) satisfies the log-Hölder condition (1.2) and µ ∈
M

p(·)
b (Ω). Then there exists a unique entropy solution u ∈ T 1,p(·)

0 (Ω) for problem
(2.1).

3. Weighted case

In this section, we are ready to prove the existence of entropy solutions for
weighted p(x)-Laplace problem (1.1).

3.1. Preliminaries. Let w be a weight function satisfying that
(W1) w ∈ L1

loc(Ω) and w−1/(p(x)−1) ∈ L1
loc(Ω);

(W2) w−s(x) ∈ L1(Ω) with s(x) ∈
(
N
p(x) ,∞

)
∩ [ 1

p(x)−1 ,∞).

Lemma 3.1 ([16, 19]). If we denote

ρ(u) =
∫

Ω

w(x)|u|p(x) dx, ∀u ∈ Lp(x)(Ω, w),

then

min{‖u‖p−
Lp(x)(Ω,w)

, ‖u‖p+

Lp(x)(Ω,w)
} ≤ ρ(u) ≤ max{‖u‖p−

Lp(x)(Ω,w)
, ‖u‖p+

Lp(x)(Ω,w)
}.

Lemma 3.2 ([19]). If (W1) holds, W 1,p(x)(Ω, w) is a separable and reflexive Ba-
nach space.

For p, s ∈ C+(Ω), set

ps(x) :=
p(x)s(x)
1 + s(x)

< p(x),

where s(x) is given in (W2). Assume that we fix the variable exponent restrictions

p∗s(x) :=

{
p(x)s(x)N

(s(x)+1)N−p(x)s(x) if N > ps(x),

arbitrary if N ≤ ps(x),
(3.1)

for almost all x ∈ Ω.
Next we state a continuous imbedding theorem for the weighted variable expo-

nent Sobolev space.

Lemma 3.3 ([19]). Let p, s ∈ C+(Ω) and let (W1) and (W2) be satisfied. Then we
have the continuous imbedding

W 1,p(x)(Ω, w) ↪→ Lr(x)(Ω)

provided that r ∈ C+(Ω) and r(x) ≤ p∗s(x) for all x ∈ Ω and the embedding is
compact if infx∈Ω(p∗s(x)− r(x)) > 0.

We conclude this subsection by proving a priori estimate for entropy solutions
of problem (1.1), which plays a key role in proving our main result.

Proposition 3.4. If u is an entropy solution of problem (1.1), then there exists a
positive constant C such that for all k > 1,

meas{|u| > k} ≤ C(M + 1)
(p∗s )−

p−

k
(p∗s)−(1− 1

p−
)
,
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where
M = ‖f‖L1(Ω), (p∗s)− :=

p−s−N

(s− + 1)N − p−s−
.

Proof. Choosing φ = 0 in the entropy equality (1.3), we obtain∫
Ω

w(x)|∇Tk(u)|p(x) dx =
∫
{|u|≤k}

w(x)|∇u|p(x) dx ≤ k‖f‖L1(Ω),

which implies that for all k > 1,
1
k

∫
Ω

w(x)|∇Tk(u)|p(x) dx ≤M, (3.2)

where M = ‖f‖L1(Ω).
Recalling Sobolev embedding theorem in Lemma 3.3, we have the following con-

tinuous embedding

W
1,p(x)
0 (Ω, w) ↪→ Lp

∗
s(x)(Ω) ↪→ L(p∗s)−(Ω),

where p∗s(x) := p(x)s(x)N
(s(x)+1)N−p(x)s(x) and (p∗s)− := p−s−N

(s−+1)N−p−s− . It follows from
Lemma 3.1 and (2.2) that for every k > 1,

‖Tk(u)‖
L(p∗s )− (Ω)

≤ C‖∇Tk(u)‖Lp(x)(Ω,w)

≤ C
(∫

Ω

w(x)|∇Tk(u)|p(x) dx
)β
≤ C(Mk)β ,

where

β =

{
1
p−

if ‖∇Tk(u)‖Lp(x)(Ω,w) ≥ 1,
1
p+

if ‖∇Tk(u)‖Lp(x)(Ω,w) ≤ 1.

Noting that {|u| ≥ k} = {|Tk(u)| ≥ k}, we have

meas{|u| > k} ≤
(‖Tk(u)‖

L(p∗s )− (Ω)

k

)(p∗s)−
≤ CMβ(p∗s)−

k(p∗s)−(1−β)
≤ C(M + 1)

(p∗s )−
p−

k
(p∗s)−(1− 1

p−
)
.

This completes the proof. �

3.2. Main result.

Theorem 3.5. Let (W1) and (W2) be satisfied. Then there exists an entropy
solution for problem (1.1).

Proof. We first introduce the approximation problems. Find a sequence of C∞0 (Ω)
functions {fn} strongly converging to f in L1(Ω) such that

‖fn‖L1(Ω) ≤ C
(
‖f‖L1(Ω) + 1

)
. (3.3)

Then we consider approximate problems of (1.1)

−div
(
w(x)|∇un|p(x)−2∇un

)
= fn in Ω,

un = 0 on ∂Ω.
(3.4)

Then from the result in [14], we can easily find a unique weak solution un ∈
W

1,p(·)
0 (Ω, w) of problem (3.4), which is obviously an entropy solution, satisfying

that for all φ ∈W 1,p(x)
0 (Ω, w) ∩ L∞(Ω),∫

Ω

w(x)|∇un|p(x)−2∇un · ∇Tk(un − φ) dx =
∫

Ω

fnTk(un − φ) dx.
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Following the same arguments as in Proposition 3.4 and (1.2), we have∫
Ω

w(x)|∇Tk(un)|p(x) dx ≤ Ck(‖f‖L1(Ω) + 1). (3.5)

Our aim is to prove that a subsequence of these approximate solutions {un} con-
verges to a measurable function u, which is an entropy solution of problem (1.1).
We will divide the proof into several steps.

Step 1. We shall prove the convergence in measure of {un} and we shall find
a subsequence which is almost everywhere convergent in Ω. For every fixed ε > 0,
and every positive integer k, we know that

{|un − um| > ε} ⊂ {|un| > k} ∪ {|um| > k} ∪ {|Tk(un)− Tk(um)| > ε}.

Using Sobolev embedding theorem in Lemma 3.3, we find that W 1,p(x)(Ω, w) can
embed into Lq(Ω) with q < (p∗s)− compactly. Then we know {Tkun} is convergent
in Lq(Ω) with q < (p∗s)−. It follows from Proposition 3.4 that

lim sup
n,m→∞

meas{|un − um| > ε} ≤ Ck−α,

where α = (p∗s)−(1− 1
p−

) > 0 and the constant C depends on p(·), s(·) and ‖f‖L1(Ω).
Because of the arbitrariness of k, we prove that

lim sup
n,m→∞

meas{|un − um| > ε} = 0,

which implies the convergence in measure of {un}, and then we find an a.e. con-
vergent subsequence (still denoted by {un}) in Ω such that

un → u a.e. in Ω. (3.6)

Step 2. We shall prove that

∇Tk(un)→ ∇Tk(u) strongly in W
1,p(x)
0 (Ω, w), (3.7)

for every k > 0. Let h > k. We choose

wn = T2k

(
un − Th(un) + Tk(un)− Tk(u)

)
as a test function in (3.4). If we set M = 4k+h, then it is easy to see that ∇wn = 0
where {|un| > M}. Therefore, we may write the weak form of (3.4) as∫

Ω

w(x)|∇TM (un)|p(x)−2∇TM (un) · ∇wn dx =
∫

Ω

fnwn dx.

Splitting the integral in the left-hand side on the sets where {|un| ≤ k} and where
{|un| > k} and discarding some nonnegative terms, we find∫

Ω

w(x)|∇TM (un)|p(x)−2∇TM (un) · ∇T2k(un − Th(un) + Tk(un)− Tk(u)) dx

≥
∫

Ω

w(x)|∇Tk(un)|p(x)−2∇Tk(un) · ∇(Tk(un)− Tk(u)) dx

−
∫
{|un|>k}

w(x)
∣∣|∇TM (un)|p(x)−2∇TM (un)

∣∣|∇Tk(u)| dx.
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It follows from the above inequality that∫
Ω

w(x)
(
|∇Tk(un)|p(x)−2∇Tk(un)− |∇Tk(u)|p(x)−2∇Tk(u)

)
· ∇(Tk(un)− Tk(u)) dx

≤
∫
{|un|>k}

w(x)
∣∣|∇TM (un)|p(x)−2∇TM (un)

∣∣|∇Tk(u)| dx

+
∫

Ω

fnT2k(un − Th(un) + Tk(un)− Tk(u)) dx

−
∫

Ω

w(x)|∇Tk(u)|p(x)−2∇Tk(u) · ∇(Tk(un)− Tk(u)) dx

:= I1 + I2 + I3.

(3.8)

Using the properties of Lp(x)(Ω, w) and the similar estimates as in [6], we can show
the limits of I1, I2 and I3 are zeros when n, and then h tend to infinity, respectively.

Therefore, passing to the limits in (3.8) as n, and then h tend to infinity, we
deduce that

lim
n→+∞

E(n) = 0,

where

E(n) =
∫

Ω

w(x)(|∇Tk(un)|p(x)−2∇Tk(un)

− |∇Tk(u)|p(x)−2∇Tk(u))∇(Tk(un)− Tk(u)) dx.

Applying [6, Lemma 3.1], we conclude that

Tk(un)→ Tk(u) strongly in W
1,p(x)
0 (Ω, w)

for every k > 0, which also implies that

|∇Tk(un)|p(x)−2∇Tk(un)→ |∇Tk(u)|p(x)−2∇Tk(u) strongly in (Lp
′(·)(Ω, w))N .

Step 3. We shall prove that u is an entropy solution. Set L = k + ‖φ‖L∞(Ω).
Observe that ∫

Ω

w(x)|∇un|p(x)−2∇un · ∇Tk(un − φ) dx

=
∫

Ω

|∇TL(un)|p(x)−2∇TL(un) · ∇Tk(un − φ) dx.

Then we have∫
Ω

w(x)|∇TL(un)|p(x)−2∇TL(un) · ∇Tk(un − φ) dx =
∫

Ω

fnTk(un − φ) dx.

Using (3.6) and (3.7), we can pass to the limits as n tends to infinity to conclude
that ∫

Ω

w(x)|∇u|p(x)−2∇u · ∇Tk(u− φ) dx =
∫

Ω

fTk(u− φ) dx,

for every k > 0 and every φ ∈W 1,p(x)
0 (Ω, w) ∩ L∞(Ω). This finishes the proof. �
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