EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR SUBLINEAR ORDINARY DIFFERENTIAL EQUATIONS AT RESONANCE

CHENGYUE LI, FENFEN CHEN

Abstract. Using a \mathbb{Z}_2 type index theorem, we show the existence and multiplicity of solutions for the sublinear ordinary differential equation

$$L u(t) = \mu u(t) + W_u(t, u(t)), \quad 0 \leq t \leq L$$

with suitable periodic or boundary conditions. Here L is a linear positive selfadjoint operator, μ is a parameter between two eigenvalues of this operator, and W_u is the gradient of a potential function.

1. Introduction

In the study of physical, chemical and biological systems, many ordinary differential equation models can be set in the form

$$L u(t) = \mu u(t) + W_u(t, u(t)), \quad 0 \leq t \leq L, \quad (1.1)$$

(cf. [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14] and their references) where L is a linear positive selfadjoint operator on $L^2([0, L], \mathbb{R}^n)$, μ is a real parameter, the potential $W(t, u) : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ is a C^1-function, and $W_u(t, u) = \partial W/\partial u$ denotes the gradient of $W(t, u)$ with respect to the variable u. We say that (1.1) is sublinear if $\lim_{|u| \to \infty} W(t, u)/|u|^2 = 0$.

Throughout this article, $\| \cdot \|_{L^q}$ denotes the norm of the usual space $L^q([0, L], \mathbb{R}^n)$ with $1 \leq q \leq \infty$, and we always assume that, for an appropriate Hilbert space $(X, \| \cdot \|) \subset L^2$ with the corresponding inner product $\langle \cdot, \cdot \rangle$, solutions of (1.1) are exactly the critical points of the corresponding functional

$$\Phi(u) = I(u) - J(u), \quad u \in X \quad (1.2)$$

where

$$I(u) = \frac{1}{2}(\|u\|^2 - \mu \|u\|_{L^2}^2), \quad J(u) = \int_0^L W(t, u(t))dt, \quad (1.3)$$

the problem

$$L u(t) = \lambda u(t), \quad (1.4)$$
has eigenvalues $0 < \lambda_1 < \lambda_2 < \lambda_3 < \cdots \to \infty$, the corresponding eigenspaces $N_j = \{v_j\}$ ($j \geq 1$) have finite dimensions. For simplicity, we first consider the case of $\dim N_j = 1$ for all $j \geq 1$, and more general case shall be discussed later. Further, we assume that there exists some $k \in N$ such that $\mu \in [\lambda_k, \lambda_{k+1})$. One says (1.1) is at resonance if $\mu = \lambda_k$, and (1.1) is sublinear.

Now we can state our main result as follows.

Theorem 1.1. Suppose that $(X, \| \cdot \|) \subset L^2$ is a Hilbert space, continuously embedded into L^q for all $q \in [1, \infty]$, and $\{v_j(t)\}$ is an orthogonal basis in X and L^2 such that

$$
\|v_j(t)\|^2 = 1 = \lambda_j \|v_j(t)\|_{L^2}, \quad \forall j \geq 1.
$$

Furthermore, assume that the functional $J(u) \in C^1(X, R)$ satisfies $J(0) = 0$, $J'(u)$ is a compact operator, and

1. $J(u) = J(-u)$ for all $u \in X$,
2. there exists $K > 0$ such that $|J'(u)w| \leq K\|w\|_{L^1}$ for all $u, w \in X$,
3. there exist $p \in N, M > 0, \rho > 0$ such that $M > \lambda_{k+p} - \lambda_k$ and
4. $J(u) \geq \frac{1}{2}M\|u\|_{L^2}^2$ for $\|u\|_{L^\infty} \leq \rho$.

Then, there exist at least p distinct pairs $(u, -u)$ of critical points of $\Phi(u)$. If $\mu \in (\lambda_k, \lambda_{k+1})$, then (J4) can be omitted.

The above theorem will be proved using the following Z_2 type index theorem.

Theorem 1.2. Let Y be a Banach space, and $f \in C^1(Y, R)$ be even satisfying the Palais-Smale condition. Suppose that: (i) there exist a subspace V of Y with $\dim V = r$ and $\delta > 0$ such that $\sup_{u \in V, \|u\| = \delta} J(u) = f(0)$; (ii) there exists a closed subspace W of Y with $\text{Codim} W = s < r$ such that $\inf_{w \in W} f(w) > -\infty$. Then f possesses at least $r - s$ distinct pairs $(u, -u)$ of critical points.

For the convenience of the reader, let us recall that the functional f is said to satisfy the Palais-Smale condition: if any sequence $\{u_j\}$ in Y be such that $f(u_j)$ is bounded and $f'(u_j) \to 0$, possesses a convergent subsequence.

This article is organized as follows. In Section 2, we prove some lemmas for the functional $\Phi(u)$ defined by (1.2). In section 3, the proof of Theorem 1.1 and its some extensions shall be given. Section 4 is devoted to apply Theorem 1.1 to sublinear Hamiltonian systems as well as Extended Fisher-Kolmogorov type equations, and the existence and multiplicity results of their solutions shall be obtained.

2. Preliminaries

In this section, we shall study the properties of the functionals $\Phi(u), I(u), J(u)$ defined in (1.2) and (1.3).

With the hypotheses of Theorem 1.1, for all $u \in X$, we can write $u = \sum_{j=1}^{\infty} \alpha_j v_j$, thus $\|u\|^2 = \sum_{j=1}^{\infty} \alpha_j^2$, and

$$
I(u) = \frac{1}{2} \sum_{j=1}^{\infty} \alpha_j^2 [1 - \mu \int_0^L |v_j|^2 dt] = \frac{1}{2} \sum_{j=1}^{\infty} (1 - \frac{\mu}{\lambda_j}) \alpha_j^2.
$$

(2.1)
Case (i). If $\mu = \lambda_k$, then we set

$$u^+ = \sum_{j=k+1}^{\infty} \alpha_j v_j, \quad u^0 = \alpha_k v_k, \quad u^- = \sum_{j=1}^{k-1} \alpha_j v_j,$$

(2.2)

$$X^+ = \text{span}\{v_j : j \geq k + 1\}, \quad X^- = \text{span}\{v_j : 1 \leq j \leq k - 1\},$$

$$X^0 = N_k = \text{span}\{v_k\}.$$ (2.3)

Thus, we have $u = u^+ + u^0 + u^-$, $X^- = X^0 \oplus X^-.$

Case (ii). If $\lambda_k < \mu < \lambda_{k+1}$, then we let

$$u^+ = \sum_{j=k+1}^{\infty} \alpha_j v_j, \quad u^- = \sum_{j=1}^{k} \alpha_j v_j,$$

(2.4)

$$X^+ = \text{span}\{v_j : j \geq k + 1\}, \quad X^- = \text{span}\{v_j : 1 \leq j \leq k\},$$

(2.5)

so we have $u = u^+ + u^-$, $X = X^+ \oplus X^-.$

Lemma 2.1. Under the assumptions of Theorem 1.1, there exists a norm $\|\cdot\|$ of X, equivalent with $\|\cdot\|$, such that

$$I(u) = \frac{1}{2}(\|u^+\|^2 - \|u^-\|^2).$$

Proof. Without loss of generality, we only consider the case $\mu = \lambda_k$ in the following. Thus

$$\left(1 - \frac{\lambda_k}{\lambda_{k+1}}\right)\|u^+\|^2 = \left(1 - \frac{\lambda_k}{\lambda_{k+1}}\right) \sum_{j=k+1}^{\infty} \alpha_j^2$$

$$\leq \sum_{j=k+1}^{\infty} \left(1 - \frac{\lambda_k}{\lambda_j}\right) \alpha_j^2$$

$$\leq \sum_{j=k+1}^{\infty} \alpha_j^2 = \|u^+\|^2,$$ (2.6)

$$\left(\frac{\lambda_k}{\lambda_{k-1}} - 1\right)\|u^-\|^2 = \left(\frac{\lambda_k}{\lambda_{k-1}} - 1\right) \sum_{j=1}^{k-1} \alpha_j^2$$

$$\leq \sum_{j=1}^{k-1} \left(\frac{\lambda_k}{\lambda_j} - 1\right) \alpha_j^2$$

$$\leq \frac{\lambda_k}{\lambda_1} \sum_{j=1}^{k-1} \alpha_j^2 = \frac{\lambda_k}{\lambda_1} \|u^-\|^2.$$ (2.7)

Let

$$\|u\|_*^2 = \sum_{j=1}^{k-1} \left(\frac{\lambda_k}{\lambda_j} - 1\right) \alpha_j^2 + \sum_{j=k+1}^{\infty} \left(1 - \frac{\lambda_k}{\lambda_j}\right) \alpha_j^2 + \alpha_k^2.$$ (2.8)

Clearly, $\|\cdot\|$ is a norm on X, and is equivalent with the norm $\|\cdot\|$. The corresponding inner product is

$$\langle u, w \rangle_* = \sum_{j=1}^{k-1} \left(\frac{\lambda_k}{\lambda_j} - 1\right) \alpha_j \beta_j + \sum_{j=k+1}^{\infty} \left(1 - \frac{\lambda_k}{\lambda_j}\right) \alpha_j \beta_j + \alpha_k \beta_k,$$ (2.9)
where \(u = \sum_{j=1}^{\infty} \alpha_j v_j, \) \(w = \sum_{j=1}^{\infty} \beta_j v_j \in X. \) Consequently, according to (2.1) and (2.8), one obtains

\[
I(u) = \frac{1}{2}(\|u^+\|^2_\star - \|u^-\|^2_\star).
\]

Then

\[
\Phi'(u)w = \langle u^+, w \rangle_\star - \langle u^-, w \rangle_\star - \int_0^L W_u(t, u) w \, dt, \quad \forall u, w \in X.
\]

Finally, we point out that, in the nonresonant case of \(\lambda_k < \mu < \lambda_{k+1}, \) (2.8) and (2.9) should be replaced by

\[
\|u\|^2_\star = \sum_{j=1}^{K} \left(\frac{\mu}{\lambda_j} - 1 \right) \alpha_j^2 + \sum_{j=k+1}^{\infty} \left(1 - \frac{\mu}{\lambda_j} \right) \alpha_j^2;
\]

\[
\langle u, w \rangle_\star = \sum_{j=1}^{K} \left(\frac{\mu}{\lambda_j} - 1 \right) \alpha_j \beta_j + \sum_{j=k+1}^{\infty} \left(1 - \frac{\mu}{\lambda_j} \right) \alpha_j \beta_j,
\]

respectively. The proof is complete.

Lemma 2.2. Under the assumptions of Theorem 1.1, the functional \(\Phi(u) \) satisfies the Palais-Smale condition on \(X. \)

Proof. We shall use the idea given by Rabinowitz [11, Theorem 4.12] and Costa [2, Proposition 3.2] for a PDE existence problem. Let \(\{u_j\} \subset X \) be such that \(\Phi(u_j) \) is bounded, and \(\Phi'(u_j) \to 0. \) We shall prove \(\{u_j\} \) has a convergent subsequence.

Setting \(u_j = u_j^+ + u_j^0 + u_j^- \) with \(u_j^+ \in X^+, \) \(u_j^0 \in X^0, \) \(u_j^- \in X^- \) for all \(j \geq 1. \) For \(j \) sufficiently large, we have

\[
\|u_j^\pm\|_\star \geq \Phi'(u_j)u_j^\pm = \langle u_j^+, u_j^\pm \rangle_\star - \langle u_j^-, u_j^\pm \rangle_\star - J'(u_j)u_j^\pm.
\]

From (J2), it follows that

\[
|J'(u_j)u_j^\pm| \leq K\|u_j^\pm\|_{L^1} \leq K_1\|u_j^\pm\|_\star,
\]

with \(K_1 > 0 \) coming from the continuous embedding \(L^1 \to (X, \|\cdot\|) \to (X, \|\cdot\|_\star). \) Combining (2.14) with \(+ \) in the exponents, and (2.15) with \(+ \) in the exponents, we obtain

\[
\|u_j^\pm\|_\star \geq \|u_j^\pm\|^2_\star - K_1\|u_j^\pm\|_\star,
\]

thus, \(\{u_j^\pm\} \) is bounded on \(X. \) Similarly, we also deduce that \(\{u_j^-\} \) is bounded. Therefore, there exists \(d > 0 \) such that

\[
\|u_j - u_j^0\|_\star = \|u_j^+ + u_j^-\|_\star \leq d.
\]

\[
\left| J(u_j) - J(u_j^0) \right| = \left| \int_0^1 \frac{d}{dt} J((1-t)u_j^0 + tu_j)dt \right|
\]

\[
= \left| \int_0^1 J'((1-t)u_j^0 + tu_j)(u_j - u_j^0)dt \right|
\]

\[
\leq K\|u_j - u_j^0\|_{L^1} \leq K_1\|u_j - u_j^0\|_\star
\]

\[
\leq K_1 d,
\]

which together with

\[
J(u_j^0) = \frac{1}{2}(\|u_j^+\|^2_\star - \|u_j^-\|^2_\star) - \Phi(u_j) - [J(u_j) - J(u_0)]
\]
yields $J(u_j^0)$ is bounded. By (J4), we get $\{u_j^0\}$ is bounded. Thus $\{u_j\}$ is bounded on X.

It should be noted that the gradient of $\Phi(u)$, $\nabla \Phi(u) : X \to X$ satisfies
\[
\nabla \Phi(u) = u - G(u)
\] (2.19)
with $G(u) : X \to X$ being a compact operator defined by
\[
\langle G(u), z \rangle = \mu \int_0^L u(t)z(t)dt + J'(u)z, \quad u, z \in X.
\]
From the boundedness of $\{u_j\}$ and (2.19), we infer that $\{u_j\}$ has at least one convergent subsequence on X. So the Palais-Smale condition holds. \qed

Lemma 2.3. Under the hypotheses of Theorem 1.1, the functional $\Phi(u)$ is bounded from below on X^+. \hfill \Box

Proof. From (J2), we have the estimate
\[
J(u) = \int_0^1 \frac{d}{dt}J(tu)dt = \int_0^1 J'(tu)u dt \leq K\|u\|_{L^1} \leq K_1\|u\|_*, \quad \forall u \in X. \tag{2.20}
\]
Then for $u \in X^+$, we infer that
\[
\Phi(u) = \frac{1}{2}\|u\|^2 - J(u) \geq \frac{1}{2}\|u\|^2 - K_1\|u\|_* \to \infty \quad (\|u\|_* \to \infty).
\] (2.21)
Namely, $\Phi(u)$ is coercive and bounded from below on X^+. \qed

Lemma 2.4. Under the assumptions of Theorem 1.1, there exists a subspace V of X with $\dim V = k + p$ and $\tilde{\rho} > 0$ such that $\sup_{u \in V, \|u\| = \tilde{\rho}} \Phi(u) < 0$.

Proof. Put
\[
V = \left\{ u = \sum_{j=1}^{k+p} \alpha_j v_j : \alpha_j \in \mathbb{R} \ (1 \leq j \leq k+p) \right\}, \tag{2.22}
\]
\[
Z = \left\{ u \in V : \sum_{j=1}^{k+p} \alpha_j^2 = \tilde{\rho}^2 \right\}, \tag{2.23}
\]
where $\tilde{\rho} = \rho/(c_\infty \sqrt{k+p})$, c_∞ satisfies $\|z\|_{L^\infty} \leq c_\infty \|z\|$ for all $z \in X$.

For each $u(t) = \sum_{j=1}^{k+p} \alpha_j v_j(t) \in Z$, we have by Cauchy-Schwarz inequality
\[
|u(t)|^2 \leq \left(\sum_{j=1}^{k+p} |v_j(t)|^2 \right) \left(\sum_{j=1}^{k+p} \alpha_j^2 \right) \leq (k+p)c_\infty^2 \tilde{\rho}^2 = \rho^2, \tag{2.24}
\]
using $\|v_j\|_{L^\infty} \leq c_\infty \|v_j\| = c_\infty$ for all $j \geq 1$. Hence
\[
\Phi(u) = \frac{1}{2}\|u\|^2 - \frac{\mu}{2}\|u\|_{L^2}^2 - J(u)
\leq \frac{1}{2}\|u\|^2 - \frac{\mu + M}{2}\|u\|_{L^2}^2
\geq \frac{1}{2} \sum_{j=1}^{k+p} \alpha_j^2 - \frac{\mu + M}{2} \sum_{j=1}^{k+p} \frac{1}{\lambda_j} \alpha_j^2
\]
\[\frac{1}{2} \sum_{j=1}^{k+p} \frac{\lambda_j - \mu - M}{\lambda_j} \alpha_j^2 \leq \frac{1}{2} (\lambda_{k+p} - \lambda_k - M) \sum_{j=1}^{k+p} \frac{\alpha_j^2}{\lambda_j} < 0, \]

which implies \(\sup \{ \Phi(u) : u \in Z \} < 0. \)

\[\square \]

3. PROOF AND EXTENSION OF THEOREM 1.1

Proof of Theorem 1.1. With the aid of Lemmas 2.2-2.4, by Theorem 1.2, we conclude that \(\Phi(u) \) (1.2) possesses at least \(p \) distinct pairs \((u_i, -u_i)\) of critical points.

Corollary 3.1. Under the assumptions of Theorem 1.1, if condition (J3) is replaced by

\((J3') \lim_{|u| \to 0} \frac{W(t,u)}{|u|^2} = \infty \) uniformly in \(t \in [0, L] \),

then the functional \(\Phi(u) \) defined in (1.2) has infinitely many distinct pairs \((u, -u)\) of critical points.

Proof. For any fixed \(p \in \mathbb{N} \), we may take \(M \) large enough such that \(M > \lambda_{k+p} - \lambda_k \).

By (J3'), there exists \(\rho \) sufficiently small satisfying

\[W(t,w) \geq \frac{1}{2} M |w|^2, \quad \forall w \in \mathbb{R}^n, |w| \leq \rho \]

(3.1)

uniformly in \(t \in [0, L] \). Thus, if \(u = u(t) \in X \) with \(\|u\|_{L^\infty} \leq \rho \), then

\[W(t,u(t)) \geq \frac{1}{2} M |u(t)|^2 \]

(3.2)

uniformly in \(t \in [0, L] \), and one obtains

\[J(u) \geq \frac{1}{2} M \|u\|_{L^2}^2. \]

(3.3)

Therefore, in view of Theorem 1.1, the functional \(\Phi(u) \) has at least \(p \) distinct pairs \((u_i, -u_i)\) of critical points \((1 \leq i \leq p)\). Since \(p \) is arbitrary, there exist infinitely many distinct pairs \((u_i, -u_i)\) of critical points of \(\Phi(u) \) \((i = 1, 2, 3, \ldots)\). \(\square \)

Remark 3.2. For all \(\beta \in (0, 1/2), \gamma \in (0, 1) \), we can take a function \(H(s) \in C^1([0, \infty), R) \) such that

\[s^{1+2\beta} \leq H(s) \leq s^{1+\beta}, \quad \forall s \in [0, 1], \]

(3.4)

\[-\frac{1}{8} s^{7-1} \leq H'(s) \leq \frac{1}{8} s^{7-1} \quad \text{quad} s \in [2, \infty), \]

(3.5)

\[H(s) \to \pm \infty \quad \text{as} \ s \to \infty. \]

(3.6)

Define \(W(t,u) = H(|u|)(\sin t)^{2m} + 2, m \geq 1 \). A straightforward computation shows that (3.4) and (3.5) imply (J1)-(J3). In addition, (J4) can be easily deduced by (3.6), see [11, Lemma 4.21].

From a carefully analyzing the constructions of \(V \) and \(Z \) in (2.22)-(2.23), we have the following result which is more general than Theorem 1.1.
Theorem 4.1. Assume that $(X, \| \cdot \|) \subset L^2$ is a Hilbert space, continuously embedded in $L^q, \forall q \in [1, \infty]$. Let $n_j = \dim N_j$ and $\{v_{j1}, v_{j2}, \ldots, v_{j_{nj}}\}$ be an orthogonal basis of $N_j (\forall j \geq 1)$ such that $\{v_{j1}(t): j \geq 1, 1 \leq i \leq n_j\}$ is an orthogonal basis in X and L^2 with
\[
\|v_{ji}(x)\|^2 = 1 = \lambda_j \|v_{ji}(x)\|_{L^2}^2, \quad \forall j \geq 1, 1 \leq i \leq n_j.
\]
Furthermore, assume that the functional $J(u) \in C^1(X, R)$ satisfies $J(0) = 0$, $J'(u)$ is a compact operator, and (J1)-(J4) hold. Then, there exist at least $\sum_{j=k+1}^{K} n_j$ distinct pairs $(u, -u)$ of critical points of $\Phi(u)$ (if $\mu < \lambda_k, \lambda_{k+1}$, then (J4) can be omitted).

To prove this theorem, we need only changes in Lemmas 2.1 and 2.4. Especially, V, Z in (2.22)-(2.23) shall be replaced by
\[
\tilde{V} = \{ u = \sum_{j=1}^{k+p} \sum_{i=1}^{n_j} \alpha_{ji} v_{ji} : \alpha_{ji} \in \mathbb{R} (1 \leq j \leq k + p, 1 \leq i \leq n_j) \}, \quad (3.7)
\]
\[
\tilde{Z} = \{ u \in \tilde{V} : \sum_{j=1}^{k+p} \sum_{i=1}^{n_j} \alpha_{ji}^2 = \rho^2 \}, \quad (3.8)
\]
respectively.

4. Applications

Application i. Given $T > 0$, we discuss the existence of T-periodic solutions to the second-order Hamiltonian system

\[
\ddot{u}(t) + \mu u(t) + W_u(t, u(t)) = 0, \quad t \in \mathbb{R}, \quad (4.1)
\]
where $W(t, u) \in C^1(R \times \mathbb{R}^n, R)$ is a T-periodic function in the variable t and $W(t, 0) = 0$.

Since 1973, many authors studied periodic solutions for Hamiltonian systems via critical point theory. Clarke and Ekeland [3] studied a family of convex sublinear Hamiltonian systems where $W(t, u) = W(u)$ satisfies $\lim_{|u| \rightarrow 0} \frac{W(t, u)}{|u|^a} = \infty$, and they used the dual variational method to obtain the first variational result on periodic solutions having a prescribed minimal period. Later, Mawhin and Willem [8] made a good improvement. Rabinowitz [9, 10], Tang [13] and others proved the existence under the sublinear condition $uW(t, u) \leq aW(t, u)(0 < a < 2)$, which plays an important role. Schechter [12] assumed that $W(t, u)$ is sublinear, and $2W(t, u) - uW_u(t, u) \rightarrow -\infty (|u| \rightarrow \infty)$ or $2W(t, u) - uW_u(t, u) \leq W_0(t)$, then he proved that (4.1) has one non-constant periodic solution. Long [7] also studied this problem for bi-even sublinear potentials, and got the existence of one odd periodic solution. Li-Wang-Xiao [6] considered the existence and multiplicity of odd periodic solution for bi-even sublinear (4.1) in the case of $\mu < \lambda_1$.

Motivated by the above papers, using Theorem 3.3, we shall give a multiplicity result for (4.1) with sublinear potentials in the case of $\lambda_k \leq \mu < \lambda_{k+1}$.

Theorem 4.1. Assume that $L = T/2$, and there exists some $k \in N$ such that $(\frac{k}{L})^2 \leq \mu < (\frac{k+1}{L})^2$. Let $W(t, u) \in C^1(R \times \mathbb{R}^n, R)$ be T-periodic in t, and bi-even, namely
\[
W_u(t, u) = -W_u(-t, -u), \quad \forall t \in \mathbb{R}, \quad u \in \mathbb{R}^n.
\]
Suppose that

(W11) \(W(t, u) = W(t, -u) \) for all \(t \in \mathbb{R}, u \in \mathbb{R}^n \);
(W12) there exists \(K > 0 \) such that \(|W_u(t, u)| \leq K \) for all \(t \in \mathbb{R}, u \in \mathbb{R}^n \);
(W13) there exist \(p \in \mathbb{N}, M > 0, \rho > 0 \) such that if \(M > \frac{p(p+2k)}{L^2} \pi^2 \) then

\[
W(t, u) \geq \frac{1}{2} M |u|^2 \quad \forall t \in \mathbb{R}, |u| \leq \rho;
\]
(W14) for \(u = c \sin \frac{i \pi t}{L} \) with \(\theta_i = (0, 0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{R}^n \) (the \(i \)-th element is 1, \(1 \leq i \leq n \)), for all \(j \geq 1 \), \(\int_0^L W(t, u(t)) dt \to \pm \infty \) as \(|c| \to \infty \).

Then, (4.1) has \(np \)-distinct pairs \((u(t), -u(t)) \) of odd \(T \)-periodic solutions. If \((\frac{k \pi}{L})^2 < \mu < (\frac{(k+1) \pi}{L})^2 \), then (W14) can be omitted.

Remark 4.2. If \(W(t, u) \) satisfies

\[
W(t, u) = W(t, -u) = W(-t, -u),
\]
then \(W(t, u) \) is bi-even, and (W11) holds. For this, a typical example is, \(W(t, u) = b(t)\tilde{W}(u) \), where \(b(t) \) and \(\tilde{W}(u) \) are even in the variable \(t \), respectively.

Proof of Theorem 4.1. Firstly, consider the boundary value problem

\[
\begin{align*}
-\ddot{u}(t) &= \mu u(t) + W_u(t, u(t)), \quad 0 < t < L, \\
u(0) &= u(L) = 0.
\end{align*}
\]

(4.2)

If \(u = u(t) \) is a solution of (4.2), then we define

\[
\overline{u} = \overline{u}(t) = \begin{cases} u(t), & 0 \leq t \leq L, \\
u(-t), & -L \leq t \leq 0. \end{cases}
\]

(4.3)

By the bi-even condition, \(\overline{u} = \overline{u}(t) \) is a solution of (4.1) restricted on \([-L, L]\), so its odd extension in \((-\infty, \infty)\) is an odd \(T \)-periodic solution of (4.1).

Secondly, let \(X = H_0^1([0, L], \mathbb{R}^n) \) be the usual Hilbert space with the inner product \(\langle x, y \rangle = \int_0^L x(t) \cdot y(t) dt \) and the norm \(||x|| = (\int_0^L |\dot{x}(t)|^2 dt)^{1/2} \). Set

\[
\Phi(u) = \frac{1}{2} \int_0^L ||\dot{u}(t)||^2 - \mu |u(t)|^2 dt - \int_0^L W(t, u(t)) dt,
\]

(4.4)

then \(\Phi(u) \in C^1(X, \mathbb{R}) \), and its critical points are the classical solutions of (4.2).

By direct computations, we know that the problem

\[
-\ddot{u}(t) = \lambda u(t), \quad u(0) = u(L) = 0
\]
possesses eigenvalues \(\lambda_j = (\frac{j \pi}{L})^2, j \geq 1 \), and the corresponding eigenfunctions are \(u_{ji} = c \theta_i \sin \frac{j \pi t}{L}, 1 \leq i \leq n, c \in \mathbb{R} \). Furthermore,

\[
\{ \theta_i \sin \frac{\pi t}{L}, \theta_i \sin \frac{2 \pi t}{L}, \theta_i \sin \frac{3 \pi t}{L}, \ldots, 1 \leq i \leq n \}
\]

(4.5)
is an orthogonal basis on both \(X \) and \(L^2 \). Since

\[
\int_0^L |\dot{u}_{ji}(t)|^2 dt = \lambda_j \frac{L}{2} = \lambda_j \int_0^L |u_{ji}(t)|^2 dt,
\]

(4.6)
writing \(v_{ji} = \sqrt{\frac{2}{L \lambda_j}} u_{ji} \), we have \(||v_{ji}||^2 = \int_0^L |\dot{v}_{ji}|^2 dt = 1 = \lambda_j \int_0^L |v_{ji}|^2 dt \).

Noticing that

\[
\frac{p(p+2k)}{L^2} \pi^2 = \lambda_{k+p} - \lambda_k,
\]
the functional (4.4) satisfies all hypotheses of Theorem 3.3, hence it has at least np distinct pairs $(u_i, -u_i)$ of critical points $(1 \leq i \leq np)$. Consequently, in the way of (4.3), the extensions of $\pm u_i(t)(1 \leq i \leq np)$ are np distinct pairs of odd T-periodic solutions of (4.1). \hfill \Box

Application ii. We are concerned with a class of Extended Fisher-Kolmogorov type equations (see [4,5,14] and their references)

$$u^{(4)}(t) = \mu u(t) + W_u(t, u(t)) \quad 0 \leq t \leq L$$

with the boundary condition

$$u(0) = u(L) = u''(0) = u''(L) = 0,$$

which appears in the formation of spatial patterns in bistable systems.

Theorem 4.3. Assume that there exists some $k \in N$ such that $(\frac{k\pi}{L})^4 < \mu < (\frac{(k+1)\pi}{L})^4$. Let $W(t, u) \in C^1([0, L] \times R, R)$ satisfy the following conditions:

(W21) $W(t, u) = W(t, -u)$ for all $t \in [0, L], u \in R$;

(W22) there exists $K > 0$ such that $|W_u(t, u)| \leq K$ for all $t \in [0, L], u \in R$;

(W23) there exist $p \in N, M > 0, \rho > 0$ such that if $M > \frac{[p + k]^4 - [k]^4}{4\rho}$ then

$$W(t, u) \geq \frac{1}{2}M|u|^2 \quad \forall t \in [0, L], |u| \leq \rho;$$

(W24) for $u = c\sin \frac{j\pi t}{L}$, for all $j \geq 1$, $c \in R$, $\int_0^L W(t, u(t))dt \to \pm \infty$ as $|c| \to \infty$.

Then, (4.7) has p distinct pairs $(u(t), -u(t))$ of classical solutions. If $(\frac{k\pi}{L})^4 < \mu < (\frac{(k+1)\pi}{L})^4$, then (W24) can be omitted.

Proof. Similarly to the proof of Theorem 4.1, we sketch it. Set

$$X = H^2(0, L) \cap H^1_0(0, L),$$

by [5] Lemma 2.1, $\|u\| = \left(\int_0^L |\ddot{u}(t)|^2 dt\right)^{1/2}$ is a norm of X, and

$$v_j(t) = \sin \frac{j\pi t}{L} \left(\sqrt{\frac{L}{2}} \left(\frac{j\pi}{L}\right)^2\right)^{-1}$$

is an orthogonal basis on X and L^2 such that

$$\|v_j(t)\|^2 = 1 = \left(\frac{j\pi}{L}\right)^4 \|v_j(t)\|_{L^2}^2, \quad j \geq 1.$$ \hfill (4.10)

In addition, the problem

$$u^{(4)}(t) = \lambda u(t)$$

has eigenvalues $\lambda_j = (\frac{j\pi}{L})^4, \quad j \geq 1,$ and the corresponding eigenfunctions are exactly $v_j(t)$ in (4.9). Define the functional

$$\Phi(u) = \frac{1}{2} \int_0^L |\ddot{u}(t)|^2 dt - \frac{1}{2}\mu \int_0^L |u(t)|^2 dt - \int_0^L W(t, u(t)) dt, \quad u \in X;$$

then the critical points of $\Phi(u)$ in (4.11) are the classical solutions of the problem (4.7). Therefore, by Theorem 1.1, we have the statement in Theorem 4.3 \hfill \Box

Acknowledgments. The authors would like to thank the anonymous referees for their valuable suggestions.
References

CHENGYUE LI
DEPARTMENT OF MATHEMATICS, MINZU UNIVERSITY OF CHINA, BEIJING 100081, CHINA
E-mail address: cunlcy@163.com

FENFEN CHEN
DEPARTMENT OF MATHEMATICS, MINZU UNIVERSITY OF CHINA, BEIJING 100081, CHINA
E-mail address: chenfenfen359@163.com