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EXISTENCE OF PERIODIC SOLUTIONS FOR SUB-LINEAR
FIRST-ORDER HAMILTONIAN SYSTEMS

MOHSEN TIMOUMI

Abstract. We prove the existence solutions for the sub-linear first-order
Hamiltonian system Ju̇(t) + Au(t) + ∇H(t, u(t)) = h(t) by using the least

action principle and a version of the Saddle Point Theorem.

1. Introduction

In this article, we consider the first-order Hamiltonian system

Ju̇(t) +Au(t) +∇H(t, u(t)) = h(t) (1.1)

where A is a (2N × 2N) symmetric matrix, H ∈ C1(R × R2N ,R) is T -periodic in
the first variable (T > 0) and h ∈ C(R,R2N ) is T -periodic.

When A = 0 and h = 0, it has been proved that system (1.1) has at least one
T -periodic solution by the use of critical point theory and minimax methods [1, 2,
3, 4, 5, 6, 7, 13, 15, 16]. Many solvability conditions are given, such as the convex
condition (see [3,5]), the super-quadratic condition (see [1, 4, 6, 7, 9, 12, 13, 16]),
the sub-linear condition (see [2, 15]). When A is not identically null, the existence
of periodic solutions for (1.1) has been studied in [7, 14]. In all these last papers,
the Hamiltonian is assumed to be super-quadratic. As far as the general case
(A not identically null) is concerned, to our best knowledge, there is no research
about the existence of periodic solutions for (1.1) when H is sub-linear. In [2], the
authors considered the special case A = 0 and h = 0 and obtain the existence of
subharmonic solutions for (1.1) under the following assumptions:

(A1) There exist constants a, b, c > 0, α ∈ [0, 1[, functions p ∈ L
2

1−α (0, T ; R+),
q ∈ L2(0, T ; R+) and a nondecreasing function γ ∈ C(R+,R+) with the following
properties:

(i) γ(s+ t) ≤ c(γ(s) + γ(t)) for all s, t ∈ R+,
(ii) γ(t) ≤ atα + b for all t ∈ R+,
(iii) γ(t)→ +∞ as t→ +∞, such that

|∇H(t, x)| ≤ p(t)γ(|x|) + q(t), ∀x ∈ R2N , a.e. t ∈ [0, T ];
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lim
|x|→∞

1
γ2(|x|)

∫ T

0

H(t, x)dt = ±∞.

Similarly, in [15] the author considered the case A = 0 and h = 0 and obtained the
existence os subharmonic solutions for (1.1) under the following assumptions:
(A2) There exist a positive constant a, g ∈ L2(0, T ; R) and a non-increasing function
ω ∈ C(R+,R+) with the properties:

lim inf
s→∞

ω(s)
ω(
√
s)
> 0,

ω(s)→ 0, ω(s)s→∞ as s→∞,
such that

|∇H(t, x)| ≤ aω(|x|)|x|+ g(t), ∀x ∈ R2N , a.e. t ∈ [0, T ];

1
[ω(|x|)|x|]2

∫ T

0

H(t, x)dt→ +∞ as |x| → ∞.

In Sections 4,5, we will use the Least Action Principle and a version of the Saddle
Point Theorem to study the existence of periodic solutions for (1.1), when A and
h are not necessary null and H satisfies some more general variants conditions
replacing conditions (A1), (A2).

2. Preliminaries

Let T > 0 and A be a (2N × 2N) symmetric matrix. Consider the Hilbert space
H1/2(S1,R2N ) where S1 = R/(TZ) and the continuous quadratic form Q defined
on E by

Q(u) =
1
2

∫ T

0

(Ju̇(t) · u(t) +Au(t) · u(t))dt

where x ·y is the inner product of x, y ∈ R2N . Let us denote by E0, E−, E+ respec-
tively the subspaces of E on which Q is null, negative definite and positive definite.
It is well known that these subspaces are mutually orthogonal in L2(S1,R2N ) and
in E with respect to the bilinear form

B(u, v) =
1
2

∫ T

0

(Ju̇(t) · v(t) +Au(t) · v(t))dt, u, v ∈ E

associated with Q. If u ∈ E+ and v ∈ E−, then B(u, v) = 0 and Q(u + v) =
Q(u) +Q(v).

For u = u−+u0 +u+ ∈ E, the expression ‖u‖ = [Q(u+)−Q(u−)+ |u0|2]1/2 is an
equivalent norm in E. It is well known that the space E is compactly embedded in
Ls(S1,R2N ) for all s ∈ [1,∞[. In particular, for all s ∈ [1,∞[, there exists λs > 0
such that for all u ∈ E,

‖u‖Ls ≤ λs‖u‖. (2.1)
Next, we have a version of the Saddle Point Theorem [11].

Lemma 2.1. Let E = E1 ⊕ E2 be a real Hilbert space with E2 = (E1)⊥. Suppose
that f ∈ C1(E,R) satisfies

(a) f(u) = 1
2 〈Lu, u〉 + g(u) and Lu = L1P1u + L2P2u with Li : Ei → Ei

bounded and self-adjoint, i = 1, 2;
(b) g′ is compact;
(c) There exists β ∈ R such that f(u) ≤ β for all u ∈ E1;
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(d) There exists γ ∈ R such that f(u) ≥ γ for all u ∈ E2.
Furthermore, if f satisfies the Palais-Smale condition (PS)c for all c ≥ γ, then f
possesses a critical value c ∈ [γ, β].

3. Linear Hamiltonian systems

Let A be a (2N × 2N) symmetric matrix, we consider the linear Hamiltonian
system

ẋ = JAx. (3.1)
Let λ1, . . . , λs be all the distinct eigenvalues of B = JA and F1, . . . , Fs be the
corresponding root subspaces. The dimension of the root subspace Fσ is equal
to the multiplicity mσ of the corresponding root λσ of the characteristic equation
det(B − λI2N ) = 0 (m1 + · · ·+ms = 2N). The space R2N splits into a direct sum
of the B-invariant subspaces Fσ:

R2N = F1 ⊕ · · · ⊕ Fs. (3.2)

Each subspace Fσ possesses a basis (aσ1 , . . . , a
σ
mσ ) satisfying

Baσ1 = λσa
σ
1 , Ba

σ
2 = λσa

σ
2 + aσ1 , . . . , Ba

σ
mσ = λσa

σ
mσ + aσmσ−1.

The (mσ ×mσ) matrix

Qσ(λσ) =


λσ 1 0 0 . . . 0
0 λσ 1 0 . . . 0
. . . . . . . .
0 0 0 . . . λσ 1
0 0 0 . . . 0 λσ


is called an elementary Jordan matrix. We have B = SQS−1 where Q is a direct
sum of elementary Jordan matrices

Q =


Q1(λ1) 0 0 . . . 0

0 Q2(λ2) 0 . . . 0
. . . . . . .
. 0 0 . . . Qs(λs)

 = Q1(λ1)⊕ · · · ⊕Qs(λs)

the columns of the matrix S,

a1
1, . . . , a

1
m1

; a2
1, . . . , a

2
m2

; . . . ; as1, . . . , a
s
ms

form a basis for R2N and so det(S) 6= 0.
The matrizant of equation (3.1) is given by

R(t) = etB = S[exp(tQ1(λ1))⊕ · · · ⊕ exp(tQs(λs))]S−1 = SetQS−1.

then the solution of equation (3.1) with initial condition x(0) is

x(t) = etBx(0).

Therefore to each eigenvalue λσ corresponds a group of mσ-linearly independent
solutions:

xσ1 (t) = eλσtaσ1

xσ2 (t) = eλσt(taσ1 + aσ2 )
. . .

xσmσ (t) = eλσt(
1

(mσ − 1)!
tmσ−1aσ1 + · · ·+ aσmσ ).

(3.3)
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Moreover, combining the solutions of all the groups (3.3) (there are obviously 2N in
all, since m1 + · · ·+ms = 2N), we obtain a complete system of linearly independent
solutions of (3.1). Now, assume that λ1 = 0 is an eigenvalue of B = JA and let
1 ≤ m ≤ m1 be the dimension of the corresponding eigenspace E1. We can replace
the basis (a1

1, . . . , a
1
m1

) of the root subspace F1 by the basis (b11, . . . , b
1
m1

) where
(b11, . . . , b

1
m) is a basis of E1, b1j = a1

j for m+1 ≤ j ≤ m1 and such that b1m+1 = Bb1m.
To this basis corresponds the group of 2N linearly independent solutions:

u1
1(t) = b11

. . .

u1
m(t) = b1m

u1
m+1(t) = b1mt+ b1m+1

. . .

u1
m1

(t) =
1

(m1 −m)!
b1mt

m1−m + · · ·+ b1m1

uσk(t) = xσk(t), 2 ≤ σ ≤ s, 1 ≤ k ≤ mσ.

(3.4)

A solution u of (3.1) may be written in the form

u(t) =
s∑

σ=1

mσ∑
j=1

ασj u
σ
j (t).

Let T > 0 be such that λσT /∈ 2iπZ for all 1 ≤ σ ≤ s. If u is T -periodic, then for
any 1 ≤ σ ≤ s, we have

mσ∑
j=1

ασj u
σ
j (kT ) =

mσ∑
j=1

ασj u
σ
j (0), ∀k ∈ Z.

It is easy to see that α1
j = 0 for m + 1 ≤ j ≤ m1 and ασj = 0 for 2 ≤ σ ≤ s and

1 ≤ j ≤ mmσ . Therefore, u(t) =
∑m
j=1 α

1
jb

1
j . Hence the set of T -periodic solutions

of (3.1) is equal to N(A).

Example 3.1. Let

A =


−12 6 5 1
−2 1 0 1
2 −1 0 −1
2 −1 0 −1


The characteristic equation corresponding to B = JA is det(JA−XI4) = X3(X −
5) = 0. To the eigenvalue λ1 = 0 corresponds the eigenspace

E1 = span{e1, e2}

and the root subspace
F1 = span{e1, e2, e3}

where e1 = (1, 2, 0, 0), e2 = (1, 1, 1, 1), e3 = (0, 0, 0, 1) with Be3 = e2. To the
eigenvalue λ2 = 5 corresponds the root subspace

E2 = F2 = span{e4},
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where e4 = (0, 0, 1, 0). Then we have JA = SQS−1 with

S =


1 1 0 0
2 1 0 1
0 1 0 1
0 1 1 0

 , Q =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 5


The matrizant of the corresponding equation (3.1) is then

R(t) = SQS−1 = S


1 0 0 0
0 1 t 0
0 0 1 0
0 0 0 e5t

S−1.

To the basis (e1, e2, e3, e4) corresponds the group of 4-linearly independent solutions

u1(t) = e1

u2(t) = e2

u3(t) = te2 + e3

u4(t) = e5te4.

(3.5)

A solution of equation (3.1) takes the form

u(t) = α1u1(t) + α2u2(t) + α3u3(t) + α4u4(t)

and it is easy to verify that u is T -periodic for T > 0 if and only if α3 = α4 = 0,
i.e. u ∈ N(A).

4. First class of sub-linear Hamiltonian systems

Consider the first-order Hamiltonian system

Ju̇(t) +Au(t) +∇H(t, u(t)) = h(t) (4.1)

where A is a (2N × 2N) symmetric matrix, H : R × R2N → R is a continuous
function, T -periodic in the first variable (T > 0) and differentiable with respect to
the second variable with continuous derivative ∇H(t, x) = ∂H

∂x (t, x), h ∈ C(R,R2N )
is T -periodic and J is the standard symplectic matrix J =

(
0 −I
I 0

)
. Let γ : R+ → R+

be a nondecreasing continuous function satisfying the properties:
(i) γ(s+ t) ≤ c(γ(s) + γ(t)) for all s, t ∈ R+,
(ii) γ(t) ≤ atα + b for all t ∈ R+,

(iii) γ(t)→ +∞ as t→ +∞,
where a, b, c are positive constants and α ∈ [0, 1[. Consider the following assump-
tions

(C1) dim(N(A)) = m ≥ 1 and A has no eigenvalue of the form ki2πT (k ∈ N∗);
(H1) There exist two functions p ∈ L

2
1−α (0, T ; R+) and q ∈ L2(0, T ; R+) such

that

|∇H(t, x)| ≤ p(t)γ(|x|) + q(t), ∀x ∈ R2N , a.e. t ∈ [0, T ].

Our main results in this section are the following theorems.

Theorem 4.1. Assume (C1) and (H1) hold and
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(H2) H satisfies

lim sup
|x|→∞,x∈N(A)

|x|
γ2(|x|)

< +∞, lim
|x|→∞,x∈N(A)

1
γ2(|x|)

∫ T

0

H(t, x)dt = +∞.

Then (4.1) possesses at least one T -periodic solution.

Example 4.2. Let A be the matrix defined in Example 3.1 and let

H(t, x) = (
3
4
T − t)|x|8/5, ∀x ∈ R2N , ∀t ∈ [0, T ].

Then

|∇H(t, x)| = 8
5
|3
4
T − t||x|3/5.

Let γ(t) = t3/5, t ≥ 0. It is clear that properties (i), (ii), (iii) are satisfied. Moreover,
we have

lim sup
|x|→∞,x∈N(A)

|x|
γ2(|x|)

= lim sup
|x|→∞,x∈N(A)

|x|
|x| 65

= 0 < +∞,

lim
|x|→∞,x∈N(A)

1
γ2(|x|)

∫ T

0

H(t, x)dt = lim
|x|→∞,x∈N(A)

1
4T

2|x|8/5

|x| 65
= +∞

Hence, by Theorem 4.1, the corresponding system (4.1) possesses at least one T -
periodic solution.

Theorem 4.3. Assume (C1) and (H1) hold and

(H3) H satisfies

lim sup
|x|→∞,x∈N(A)

γ2(|x|)
|x|

<∞, lim
|x|→∞

1
|x|

∫ T

0

H(t, x)dt = +∞.

Then (4.1) possesses at least one T -periodic solution.

Theorem 4.4. Assume (C1) and (H1) hold and

(H4) H satisfies

lim sup
|x|→∞,x∈N(A)

γ2(|x|)
|x|

= 0, lim
|x|→∞

1
|x|

∫ T

0

H(t, x)dt >
∫ T

0

|h(t)|dt.

Then (4.1) possesses at least one T -periodic solution.

Example 4.5. Let A be the matrix defined in Example 3.1 and let

H(t, x) = (
1
2
T − t)ln 3

2 (1 + |x|2) +
l(t)|x|3

1 + |x|2
, ∀x ∈ R2N , ∀t ∈ [0, T ],

where l ∈ C([0, T ],R+) with
∫ T
0
l(t)dt >

∫ T
0
|h(t)|dt. Then

|∇H(t, x)| ≤ 3
2
|1
2
T − t|

(
ln(1 + |x|2)

)1/2 |x|
1 + |x|2

+
l(t)(5|x|4) + 3|x|2)

1 + 2|x|2 + |x|4

≤ 3
2
|1
2
T − t|

(
ln(1 + |x|2)

)1/2 |x|
1 + |x|2

+ c1
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where c1 is a positive constant. Let γ(t) =
(

ln(1 + |t|2)
)1/2, t ≥ 0. It is clear that

conditions (i), (ii), (iii) are satisfied. Moreover,

lim sup
|x|→∞,x∈N(A)

γ2(|x|)
|x|

= lim sup
|x|→∞,x∈N(A)

ln(1 + |x|2)
|x|

= 0 < +∞,

lim
|x|→∞,x∈N(A)

1
|x|

∫ T

0

H(t, x)dt =
∫ T

0

l(t)dt >
∫ T

0

|h(t)|dt.

Hence, by Theorem 4.4, the corresponding system (4.1) possesses at least one T -
periodic solution.

Theorem 4.6. Assume (C1) and (H1) hold and
(H5) H satisfies∫ T

0

h(t)dt⊥N(A), lim
|x|→∞,x∈N(A)

1
γ2(|x|)

∫ T

0

H(t, x)dt = +∞.

Then (4.1) possesses at least one T -periodic solution.

Theorem 4.6 generalizes the result concerning the existence of periodic solutions
for (4.1) in [2, Theorem 3.1].

Example 4.7. Let A be the matrix defined in Example 3.1 and let

H(t, x) = (
3
4
T − t)ln 3

2 (1 + |x|2) + l(t)
(

ln(1 + |x|2)
)1/2

, x ∈ R2N , t ∈ [0, T ],

where l ∈ C([0, T ],R+) and h(t) = c(t)v1 + d(t)v2, with v1 = (2,−1, 0,−1), v2 =
(0, 0, 1,−1) ∈ (N(A))⊥, c, d ∈ C(R,R). Then

∫ T
0
h(t)dt⊥N(A) and

|∇H(t, x)| ≤ 3
2
|3
4
T − t|

(
ln(1 + |x|2)

)1/2 + l(t).

Let γ(t) =
(

ln(1 + |x|2)
)1/2, t ≥ 0. It is easy to verify that γ satisfies conditions

(i), (ii), (iii). Moreover,

lim
|x|→∞,x∈N(A)

1
γ2(|x|)

∫ T

0

H(t, x)dt = lim
|x|→∞,x∈N(A)

T 2

4
(

ln(1 + |x|2)
)1/2 = +∞

Hence, by Theorem 4.6, the corresponding system (4.1) possesses at least one T -
periodic solution.

Remark 4.8. Let u(t) be a periodic solution of (4.1), then by replacing t by −t
in (4.1), we obtain

u̇(−t) = JH ′(−t, u(−t)).
So it is clear that the function v(t) = u(−t) is a periodic solution of the system

v̇(t) = −JH ′(−t, v(t)).

Moreover, −H(−t, x) satisfies (H2)–(H5) whenever H(t, x) satisfies the following
assumptions

(H2’)

lim sup
|x|→∞,x∈N(A)

|x|
γ2(|x|)

< +∞, lim
|x|→∞,x∈N(A

1
γ2(|x|)

∫ T

0

H(t, x)dt = −∞;
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(H3’)

lim sup
|x|→∞,x∈N(A)

γ2(|x|)
|x|

<∞, lim
|x|→∞

1
|x|

∫ T

0

H(t, x)dt = −∞;

(H4’)

lim sup
|x|→∞,x∈N(A)

γ2(|x|)
|x|

= 0, lim
|x|→∞

1
|x|

∫ T

0

H(t, x)dt < −
∫ T

0

|h(t)|dt;

(H5’) ∫ T

0

h(t)dt⊥N(A), lim
|x|→∞,x∈N(A)

1
γ2(|x|)

∫ T

0

H(t, x)dt = −∞.

Consequently, the previous Theorems remains true if we replace (H2)–(H5) by
(H2’)–(H5’).

Proofs of Theorems. Consider the functional

ϕ(u) =
1
2

∫ T

0

(Ju̇(t) · u(t) +Au(t) · u(t))dt+
∫ T

0

H(t, u(t))] dt−
∫ T

0

h(t) · u(t)) dt

Let E be the space introduced in Section 2. By assumption (H1) and the property
(ii) of γ, [11, Proposition B37] implies that ϕ ∈ C1(E,R) and the critical points of
ϕ on E correspond to the T -periodic solutions of (4.1), moreover

ϕ′(u)v =
∫ T

0

[Ju̇(t) +Au(t) +∇H(t, u(t))] · v(t) dt−
∫ T

0

h(t) · v(t) dt.

Lemma 4.9. Assume (H1) holds. Then for any (PS) sequence (un) ⊂ E of the
functional ϕ, there exists a constant c0 > 0 such that

‖ũn‖ ≤ c0(γ(‖u0
n‖) + 1), ∀n ∈ N (4.2)

where ũn = u+
n + u−n = un − u0

n, with u0
n ∈ E0, u−n ∈ E−, u+

n ∈ E+.

Proof. Let (un)n∈N be a (PS) sequence, i.e. ϕ(un) is bounded and ϕ′(un) → 0 as
n→∞. We have

ϕ′(un)(u+
n − u−n ) = 2‖ũn‖2 +

∫ T

0

∇H(t, un) · (u+
n − u−n )dt−

∫ T

0

h(t) · (u+
n − u−n )dt.

Since ϕ′(un)→ 0 as n→∞, there exists a constant c2 > 0 such that∣∣ϕ′(un)(u+
n − u−n )

∣∣ ≤ c2‖ũn‖, ∀n ∈ N.
By Hölder’s inequality and (H1), we have∣∣ ∫ T

0

∇H(t, un) · (u+
n − u−n )dt

∣∣ ≤ ‖ũn‖L2(
∫ T

0

|∇H(t, un)|2dt)1/2

≤ ‖ũn‖L2(
∫ T

0

[p(t)γ(|un|) + q(t)]dt)1/2

≤ ‖ũn‖L2

[
(
∫ T

0

p2(t)γ2(|un|)dt)1/2 + ‖q‖L2

]
.

(4.3)

Now, by nondecreasing condition and the properties (i) and (ii) of γ, we have(∫ T

0

p2(t)γ2(|un|)dt
)1/2

≤
(∫ T

0

p2(t)γ2(|ũn|+ |u0
n|)dt

)1/2
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≤ c
(∫ T

0

[p2(t)[γ(|ũn|) + γ(|u0
n|)]2dt

)1/2

≤ c
[( ∫ T

0

p2(t)γ2(|ũn|)dt
)1/2

+ ‖p‖L2γ(|u0
n|
)]

≤ c
[( ∫ T

0

p2(t)(a|ũn|α + b)2dt
)1/2

+ ‖p‖L2γ(|u0
n|)
]

≤ c
[
a
(∫ T

0

p2(t)|ũn|2αdt
)1/2

+ b‖p‖L2 + ‖p‖L2γ(|u0
n|)
]

≤ c
[
a‖p‖

L
2

1−α
‖ũn‖αL2 + b‖p‖L2 + ‖p‖L2γ(|u0

n|)
]
.

On the other hand, by (2.1) we have

2‖ũn‖2 ≤ |ϕ′(un)(u+
n − u−n )|+ |

∫ T

0

∇H(t, un) · (u+
n − u−n )dt|

+ |
∫ T

0

h(t) · (u+
n − u−n )| ≤ c2‖ũn‖+ ‖ũn‖L2c

[
a‖p‖

L
2

1−α
‖ũn‖αL2

+ b‖p‖L2 + ‖q‖L2 + ‖p‖L2γ(|u0
n|)
]

+ ‖h‖L2‖ũn‖L2

≤ ac‖p‖
L

2
1−α

λα+1
2 ‖ũn‖α+1 + [c1 + cb‖p‖L2

+ ‖q‖L2 + ‖h‖L2 ]λ2‖ũn‖+ cλ2‖p‖L2γ(|u0
n|)‖ũn‖.

Since 0 ≤ α < 1, we deduce that there exists a constant c0 > 0 satisfying (4.2). �

We will apply Lemma 2.1 to the functional ϕ to obtain critical points.

Lemma 4.10. If (H1) holds and H satisfies one of the assumptions (H2)–(H5),
then ϕ satisfies the (PS)c condition for all c ∈ R.

Proof. Let (un)n∈N be a (PS)c sequence, that is ϕ(un) → c and ϕ′(un) → 0 as
n→∞. Then there exists a positive constant c3 such that

|ϕ(un)| ≤ c3, ‖ϕ′(un)‖ ≤ c3, ∀n ∈ N.

By the Mean Value Theorem and Hölder’s inequality, we have

∣∣ ∫ T

0

(H(t, un)−H(t, u0
n))dt

∣∣
=
∣∣ ∫ T

0

∫ 1

0

∇H(t, u0
n + sũn) · ũn ds dt

∣∣
≤ ‖ũn‖L2

∫ 1

0

(∫ T

0

|∇H(t, u0
n + sũn)|2dt

)1/2

ds.

(4.4)

As in the proof of Lemma 4.9, we have(∫ T

0

|∇H(t, u0
n + sũn)|2dt

)1/2

≤ ac‖p‖
L

2
1−α
‖ũn‖αL2 + cb‖p‖L2 + ‖q‖L2 + c‖p‖L2γ(|u0

n|)‖q‖L2

]
.

(4.5)
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Therefore, by properties (2.1), (4.2), (4.4), (4.5) and since 0 ≤ α < 1, there exists
a positive constant c4 such that∣∣ ∫ T

0

(H(t, un)−H(t, u0
n))dt

∣∣ ≤ c0(γ(|u0
n|) + 1)[ac‖p‖

L
2

1−α
cα0 (γ(|u0

n|) + 1)α

+ c‖p‖L2γ(|u0
n|) + cb‖p‖L2 + ‖q‖L2 ]

≤ c4(γ2(|u0
n|) + 1).

(4.6)

Combining (2.1), (4.2), (4.3) and (4.6) yields

c3 ≥ ϕ(un)

≥ −‖ũn‖2 +
∫ T

0

(H(t, un)−H(t, u0
n))dt+

∫ T

0

H(t, u0
n)dt

−
∫ T

0

h(t)(ũn + u0
n)dt

≥ −c20(γ(|u0
n)|+ 1)2 − c4(γ2(|u0

n)|) + 1)− c0‖h‖L2(γ(|u0
n)|+ 1)

− ‖h‖L1 |u0
n|+

∫ T

0

H(t, u0
n)dt

≥ −c5(γ2(|u0
n)|) + 1)− ‖h‖L1 |u0

n|+
∫ T

0

H(t, u0
n)dt,

(4.7)

where c5 is a positive constant.

Case 1: H satisfies (H2). By (4.7), we have

c3 ≥ γ2(|u0
n)|)[−c5 − ‖h‖L1

|u0
n|

γ2(|u0
n)|)

+
1

γ2(|u0
n)|)

∫ T

0

H(t, u0
n)dt]− c5.

It follows from (H2) that (u0
n) is bounded.

Case 2: H satisfies (H3) or (H4). Note that by (4.7)

c3 ≥ |u0
n|[−c5

γ2(|u0
n)|)

|u0
n)|

− ‖h‖L1 +
1
|u0
n|

∫ T

0

H(t, u0
n)dt]− c5.

Hence (H3) or (H4) implies that (u0
n) is bounded.

Case 2: H satisfies (H5). Since
∫ T
0
h(t)dt⊥N(A), we get as in (4.7)

c3 ≥ ϕ(un)

≥ −‖ũn‖2 +
∫ T

0

(H(t, un)−H(t, u0
n))dt+

∫ T

0

H(t, u0
n)dt

−
∫ T

0

h(t) · ũndt

≥ −c5(γ2(|u0
n)|) + 1) +

∫ T

0

H(t, u0
n)dt,

≥ γ2(|u0
n)|)[−c5 +

1
γ2(|u0

n)|)

∫ T

0

H(t, u0
n)dt]− c5.

(4.8)

Hence (H5) implies that (u0
n) is bounded.
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In all the above cases, (u0
n) is bounded. We deduce from Lemma 4.9 that (un)

is also bounded in E. By a standard argument, we conclude that (un) possesses a
convergent subsequence. The proof of Lemma 4.10 is complete. �

Now, decompose E = E− ⊕ (E0 ⊕ E+) and let E1 = E− and E2 = E0 ⊕ E+.
Remark that by Section 3, we have E0 = N(A). We will verify that ϕ satisfies
condition c) of Lemma 2.1. For u ∈ E1, we have

ϕ(u) = −‖u‖2 +
∫ T

0

(H(t, u)−H(t, 0))dt+
∫ T

0

H(t, 0)dt−
∫ T

0

h(t) · udt.

As in the proof of Lemma 4.10,∣∣ ∫ T

0

(H(t, u)−H(t, 0))dt
∣∣ ≤ [ac‖p‖

L
2

1−α
‖u‖αL2 + cb‖p‖L2 + ‖q‖L2 ]‖u‖L2 .

Hence by (2.1), we deduce

ϕ(u) ≤ −‖u‖2 + ac‖p‖
L

2
1−α

λα+1
2 ‖u‖α+1 + (cb‖p‖L2

+ ‖q‖L2 + ‖h‖L2)λ2‖u‖+
∫ T

0

H(t, 0)dt.
(4.9)

Since 0 ≤ α < 1, (4.9) implies that ϕ(u) → −∞ as ‖u‖ → ∞. Hence there exists
β ∈ R such that f(u) ≤ β for all u ∈ E1. Condition (c) of Lemma 2.1 is then
proved.

Let us verify that ϕ satisfies condition (d) of Lemma 2.1. In fact, for u ∈ E2 =
E0 ⊕ E+, as in the proof of Lemma 4.10, we have∣∣ ∫ T

0

(H(t, u)−H(t, u0))dt
∣∣

≤
[
ac‖p‖

L
2

1−α
‖u+‖αL2 + cb‖p‖L2 + c‖p‖L2γ(|u0|) + ‖q‖L2

]
‖u+‖αL2 .

(4.10)

From (2.1) and (4.10), we deduce that

ϕ(u) ≥ ‖u+‖2 − ac‖p‖
L

2
1−α

λα+1
2 ‖u+‖α+1 − c‖p‖L2λ2‖u+‖γ(|u0|)

− (cb‖p‖L2 + ‖q‖L2 + ‖h‖L2)λ2‖u+‖ −
∫ T

0

|h|dt|u0|+
∫ T

0

H(t, u0)dt.

(4.11)
For ε > 0, there exists a constant C(ε) such that

c‖p‖L2λ2‖u+‖γ(|u0|) ≤ ε‖u+‖2 + C(ε)γ2(|u0|).
Taking ε = 1/2, it follows from (4.11) that

ϕ(u) ≥ 1
2
‖u+‖2 − ac‖p‖

L
2

1−α
λα+1

2 ‖u+‖α+1 − λ2(cb‖p‖L2 + ‖q‖L2

+ ‖h‖L2)‖u+‖ − C(
1
2

)γ2(|u0|)−
∫ T

0

|h|dt|u0|+
∫ T

0

H(t, u0)dt.
(4.12)

Since 0 ≤ α < 1, the term
1
2
‖u+‖2 − ac‖p‖

L
2

1−α
λα+1

2 ‖u+‖α+1 − λ2(cb‖p‖L2 + ‖q‖L2 + ‖h‖L2)‖u+‖

approaches +∞ as ‖u+‖ → ∞. It remains to study the following member of (4.12)

ψ(u0) = −C(
1
2

)γ2(|u0|)−
∫ T

0

|h|dt|u0|+
∫ T

0

H(t, u0)dt.
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Case 1: (H2) holds. We have

ψ(u0) ≥ γ2(|u0|)
(
− C(

1
2

)−
∫ T

0

|h|dt |u
0|

γ2(|u0|)
+

1
γ2(|u0|)

∫ T

0

H(t, u0)dt
)
.

It follows from (H2) that ψ(u0)→ +∞ as |u0| → ∞.
Case 2: (H3) or (H4) holds. We have

ψ(u0) ≥ |u0|
(
− C(

1
2

)
γ2(|u0|)
|u0|

−
∫ T

0

|h|dt+
1
|u0|

∫ T

0

H(t, u0)dt
)
.

It follows from (H3) or (H4) that ψ(u0)→ +∞ as |u0| → ∞.

Case 3: (H5) holds. Since
∫ T
0
h(t)dt⊥N(A), we have

ψ(u0) ≥ γ2(|u0|)
(
− C(

1
2

) +
1

γ2(|u0|)

∫ T

0

H(t, u0)dt
)
.

It follows from (H5) that ψ(u0)→ +∞ as |u0| → ∞.
Therefore, if one of assumptions (H2)–(H5) is satisfied, then ϕ(u) → +∞ as

‖u‖ → ∞. So there exists a constant ρ such that ϕ(u) ≥ ρ for all u ∈ E2. Condition
d) of Lemma 2.1 is satisfied. Moreover, it is well known that the derivative of the
functional d(u) =

∫ T
0
H(t, u)dt−

∫ T
0
hudt is compact. All the conditions of Lemma

2.1 are satisfied, so ϕ possesses a critical point u which is a T -periodic solution of
system (4.1)

5. Second class of Hamiltonian systems

For A,H and h be defined as in Section 4, we have the following result.

Theorem 5.1. Let ω ∈ C(R+,R+) be a non-increasing function with the following
properties:

(a) lim infs→∞
ω(s)
ω(
√
s)
> 0,

(b) ω(s)→ 0 and ω(s)s→ +∞ as s→∞.
Assume that A satisfies (C1), and H satisfies

(H6) There exist a positive constant a and a function g ∈ L2(0, T ; R) such that

|∇H(t, x)| ≤ aω(|x|) + g(t), ∀x ∈ R2N , a.e. t ∈ [0, T ];

(H7)

lim
|x|→∞,x∈N(A)

1
(ω(|x|)|x|)2

∫ T

0

H(t, x)dt = +∞;

(H8) There exists f ∈ L1(0, T ; R) such that

H(t, x) ≥ f(t), ∀x ∈ R2N , a.e. t ∈ [0, T ].

Then system (4.1) possesses at least one T -periodic solution.

The above theorem generalizes [15, Theorem 1.1].

Example 5.2. Take ω(s) = 1
ln(2+s2) , s ≥ 0,

H(t, x) = (
1
2

+ cos(
2π
T
t))

|x|2

ln(2 + |x|2)
, ∀t ∈ [0, T ], ∀x ∈ R2N
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and let A be the matrix defined in Section 3, h ∈ C([0, T ],R). Then A,H, h satisfy
assumptions of Theorem 5.1.

Proof of Theorem 5.1. As in Section 4, we will apply Lemma 2.1 to the functional
ϕ defined on the space E introduced in section 2.

Lemma 5.3 ([15]). Assume (H6) and (H7) hold, then there exists a non-increasing
function θ ∈ C(]0,+∞[,R+) and a positive constant c0 such that

(i) θ(s)→ 0 and θ(s)s→∞ as s→∞,
(ii) ‖∇H(t, u)‖L2 ≤ c0(θ(‖u‖)‖u‖+ 1) for all u ∈ E

(iii)
1

(θ(‖u0‖)‖u0‖)2

∫ T

0

H(t, u0)dt→ +∞ as ‖u0‖ → ∞.

Lemma 5.4. Assume (H6) holds. Then for any (PS) sequence of the functional
ϕ, there exists a constant c1 > 0 such that

‖ũn‖ ≤ c1
(
θ(‖u0

n‖)‖u0
n‖+ 1

)
. (5.1)

Proof. Let (un) be a Palais-Smale sequence, that is (ϕ(un)) is bonded and ϕ′(un)→
0, as n→∞. We have

ϕ′(un)(u+
n −u−n ) = 2‖ũn‖2 +

∫ T

0

∇H(t, un(t)) ·(u+
n −u−n )dt−

∫ T

0

h(t) ·(u+
n −u−n )dt.

Since θ is non-increasing and ‖u‖ ≥ max(‖ũ‖, ‖u0‖), we have

θ(‖u‖) ≤ min(θ(‖ũ‖), θ(‖u0‖)). (5.2)

By Hölder’s inequality, inequalities (2.1), (5.1), (5.2) and Lemma 5.3, we have∣∣ ∫ T

0

∇H(t, un(t)) · (u+
n − u−n )dt

∣∣
≤ ‖u+

n − u−n ‖L2(
∫ T

0

|∇H(t, un)|2dt)1/2

≤ c2‖ũn‖(θ(‖un‖)‖un‖+ 1)

≤ c2‖ũn‖
(
θ(‖ũn‖)‖ũn‖+ θ(‖u0

n‖)‖u0
n‖+ 1

)
.

Thus there exists positive constants c3, c4 such that

c3‖ũn‖ ≥ ϕ′(un)(u+
n − u−n )

≥ 2‖ũn‖2 − c2‖ũn‖
(
θ(‖ũn‖)‖ũn‖+ θ(‖u0

n‖)‖u0
n‖+ 1

)
− c4‖ũn‖.

Hence
c2θ(‖u0

n‖)‖u0
n‖ ≥ ‖ũn‖[2− c2‖ũn‖]− c3 − c4.

Since θ(s) → 0 as s → ∞, this implies the existence of a constant c1 satisfying
(5.1). �

Lemma 5.5. ϕ satisfies the (PS)c condition for all real c.

Proof. Let (un) be a (PS)c-sequence. Assume that (u0
n) is unbounded. Going to

a subsequence if necessary, we can assume that ‖u0
n‖ → ∞ as n → ∞. By the
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Mean Value Theorem, Hölder’s inequality, inequality (2.1) and Lemma 5.3 (ii),
there exists a positive constant c5 such that∣∣ ∫ T

0

(H(t, un)−H(t, u0
n))dt

∣∣
=
∣∣ ∫ T

0

∫ 1

0

∇H(t, u0
n + sũn) · ũn ds dt

∣∣
≤ ‖ũn‖L2

∫ 1

0

(∫ T

0

|∇H(t, u0
n + sũn)dt|

)1/2

ds

≤ c5‖ũn‖
[
θ(‖u0

n‖)‖u0
n‖+ θ(‖u0

n‖)‖ũn‖+ 1
]
.

(5.3)

Hence by Lemma 5.4, there exists a positive constant c6 such that∣∣ ∫ T

0

(H(t, un)−H(t, u0
n))dt

∣∣ ≤ c6([θ(‖u0
n‖)‖ũ0

n‖]2 + 1
)
. (5.4)

Combining (2.1), (5.1) and (5.4) yields

ϕ(un) ≥ −c7
(
[θ(‖u0

n‖)‖ũ0
n‖]2 + 1

)
− 1
T

∫ T

0

|h(t)|dt‖u0
n‖+

∫ T

0

H(t, u0
n)dt

where c7 is a positive constant.
On the other hand, it is easy to see that lim infs→∞

θ(s)
θ(
√
s)
> 0. So there exists a

positive constant c8 such that for s large enough θ(s) ≥ c8θ(
√
s). Hence for n large

enough

‖u0
n‖

[θ(‖u0
n‖)‖u0

n‖]2
≥ 1
c28[θ(‖u0

n‖1/2)‖u0
n‖1/2]2

→ 0 as n→∞ .

Therefore,

ϕ(un) ≥ [θ(‖u0
n‖)‖u0

n‖]2[−c7 −
1
T

∫ T

0

|h(t)|dt ‖u0
n‖

[θ(‖u0
n‖)‖u0

n‖]2

+
1

[θ(‖u0
n‖)‖u0

n‖]2

∫ T

0

H(t, u0
n)dt]− c7 → +∞

as n→∞, which contradicts the boundedness of (ϕ(un)). Hence (‖u0
n‖) is bounded,

and by Lemma 5.4, (un) is also bounded. By a standard argument, we conclude
that (un) possesses a convergent subsequence. The proof is complete. �

Now, for u = u0 + u+ ∈ E2 = E0 ⊕ E+, we have as in (5.3),

|
∫ T

0

(H(t, u)−H(t, u0))dt| ≤ c5‖u+‖
[
θ(‖u0‖)‖u0‖+ θ(‖u0‖)‖u+‖+ 1

]
.

Since c5θ(‖u0‖)‖u0‖‖u+‖ ≤ 1
2‖u

+‖2 + 2c25[θ(‖u0‖)‖u0‖]2, we obtain

ϕ(u) ≥ (
1
2
− c5θ(‖u0‖))‖u+‖2 − c5‖u+‖

+
[
θ(‖u0‖)‖u0‖

]2(− 2c25 −
1
T

∫ T

0

|h(t)|dt ‖u0‖
[θ(‖u0‖)‖u0‖]2

+
1

[θ(‖u0‖)‖u0‖]2

∫ T

0

H(t, u0)dt
)
.
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Since θ(s)→ 0 as s→∞, there exists r > 0 such that c5θ(s) ≤ 1
4 for s ≥ r. Then,

if ‖u0‖ ≥ r, we have

ϕ(u) ≥ 1
4
‖u+‖2 − c5‖u+‖+ [θ(‖u0‖)‖u0‖]2(−2c25

− 1
T

∫ T

0

|h(t)|dt ‖u0‖
[θ(‖u0‖)‖u0‖]2

+
1

[θ(‖u0‖)‖u0‖]2

∫ T

0

H(t, u0)dt).

then ϕ(u)→ +∞ as ‖u0 + u+‖ → ∞, ‖u0‖ ≥ r.
If ‖u0‖ ≤ r, we have by (H8) and (2.1)

ϕ(u) ≥ ‖u+‖2 +
∫ T

0

f(t)dt− r

T

∫ T

0

|h(t)|dt− λ2‖h‖L2‖u+‖

then ϕ(u) → +∞ as ‖u0 + u+‖ → ∞, ‖u0‖ ≤ r. Therefore ϕ(u) → +∞ as
‖u‖ → ∞, u ∈ E2.

In E1, as in [15], we obtain ϕ(u)→ −∞ as ‖u‖ → ∞. Hence, by Lemma 2.1, ϕ
possesses at least a critical point u which is a T -periodic solution of (4.1).
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