Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 134, pp. 1-15. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

EXISTENCE OF PERIODIC SOLUTIONS FOR SUB-LINEAR FIRST-ORDER HAMILTONIAN SYSTEMS

MOHSEN TIMOUMI

Abstract

We prove the existence solutions for the sub-linear first-order Hamiltonian system $J \dot{u}(t)+A u(t)+\nabla H(t, u(t))=h(t)$ by using the least action principle and a version of the Saddle Point Theorem.

1. Introduction

In this article, we consider the first-order Hamiltonian system

$$
\begin{equation*}
J \dot{u}(t)+A u(t)+\nabla H(t, u(t))=h(t) \tag{1.1}
\end{equation*}
$$

where A is a $(2 N \times 2 N)$ symmetric matrix, $H \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{2 N}, \mathbb{R}\right)$ is T-periodic in the first variable $(T>0)$ and $h \in C\left(\mathbb{R}, \mathbb{R}^{2 N}\right)$ is T-periodic.

When $A=0$ and $h=0$, it has been proved that system (1.1) has at least one T-periodic solution by the use of critical point theory and minimax methods [1, 2, (3, 4, 5, 6, 7, 13, 15, 16. Many solvability conditions are given, such as the convex condition (see $[3,5]$), the super-quadratic condition (see [1, 4, 6, 7, 9, 12, 13, 16]), the sub-linear condition (see [2, 15]). When A is not identically null, the existence of periodic solutions for (1.1) has been studied in [7, 14]. In all these last papers, the Hamiltonian is assumed to be super-quadratic. As far as the general case (A not identically null) is concerned, to our best knowledge, there is no research about the existence of periodic solutions for (1.1) when H is sub-linear. In [2], the authors considered the special case $A=0$ and $h=0$ and obtain the existence of subharmonic solutions for (1.1) under the following assumptions:
(A1) There exist constants $a, b, c>0, \alpha \in\left[0,1\left[\right.\right.$, functions $p \in L^{\frac{2}{1-\alpha}}\left(0, T ; \mathbb{R}^{+}\right)$, $q \in L^{2}\left(0, T ; \mathbb{R}^{+}\right)$and a nondecreasing function $\gamma \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$with the following properties:
(i) $\gamma(s+t) \leq c(\gamma(s)+\gamma(t))$ for all $s, t \in \mathbb{R}^{+}$,
(ii) $\gamma(t) \leq a t^{\alpha}+b$ for all $t \in \mathbb{R}^{+}$,
(iii) $\gamma(t) \rightarrow+\infty$ as $t \rightarrow+\infty$, such that

$$
|\nabla H(t, x)| \leq p(t) \gamma(|x|)+q(t), \quad \forall x \in \mathbb{R}^{2 N}, \text { a.e. } t \in[0, T]
$$

[^0]$$
\lim _{|x| \rightarrow \infty} \frac{1}{\gamma^{2}(|x|)} \int_{0}^{T} H(t, x) d t= \pm \infty
$$

Similarly, in 15 the author considered the case $A=0$ and $h=0$ and obtained the existence os subharmonic solutions for (1.1) under the following assumptions:
(A2) There exist a positive constant $a, g \in L^{2}(0, T ; \mathbb{R})$ and a non-increasing function $\omega \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$with the properties:

$$
\begin{gathered}
\liminf _{s \rightarrow \infty} \frac{\omega(s)}{\omega(\sqrt{s})}>0 \\
\omega(s) \rightarrow 0, \quad \omega(s) s \rightarrow \infty \quad \text { as } s \rightarrow \infty
\end{gathered}
$$

such that

$$
\begin{gathered}
|\nabla H(t, x)| \leq a \omega(|x|)|x|+g(t), \quad \forall x \in \mathbb{R}^{2 N} \text {, a.e. } t \in[0, T] ; \\
\frac{1}{[\omega(|x|)|x|]^{2}} \int_{0}^{T} H(t, x) d t \rightarrow+\infty \quad \text { as }|x| \rightarrow \infty
\end{gathered}
$$

In Sections 4,5, we will use the Least Action Principle and a version of the Saddle Point Theorem to study the existence of periodic solutions for 1.1), when A and h are not necessary null and H satisfies some more general variants conditions replacing conditions (A1), (A2).

2. Preliminaries

Let $T>0$ and A be a $(2 N \times 2 N)$ symmetric matrix. Consider the Hilbert space $H^{1 / 2}\left(S^{1}, \mathbb{R}^{2 N}\right)$ where $S^{1}=\mathbb{R} /(T \mathbb{Z})$ and the continuous quadratic form Q defined on E by

$$
Q(u)=\frac{1}{2} \int_{0}^{T}(J \dot{u}(t) \cdot u(t)+A u(t) \cdot u(t)) d t
$$

where $x \cdot y$ is the inner product of $x, y \in \mathbb{R}^{2 N}$. Let us denote by E^{0}, E^{-}, E^{+}respectively the subspaces of E on which Q is null, negative definite and positive definite. It is well known that these subspaces are mutually orthogonal in $L^{2}\left(S^{1}, \mathbb{R}^{2 N}\right)$ and in E with respect to the bilinear form

$$
B(u, v)=\frac{1}{2} \int_{0}^{T}(J \dot{u}(t) \cdot v(t)+A u(t) \cdot v(t)) d t, u, v \in E
$$

associated with Q. If $u \in E^{+}$and $v \in E^{-}$, then $B(u, v)=0$ and $Q(u+v)=$ $Q(u)+Q(v)$.

For $u=u^{-}+u^{0}+u^{+} \in E$, the expression $\|u\|=\left[Q\left(u^{+}\right)-Q\left(u^{-}\right)+\left|u^{0}\right|^{2}\right]^{1 / 2}$ is an equivalent norm in E. It is well known that the space E is compactly embedded in $L^{s}\left(S^{1}, \mathbb{R}^{2 N}\right)$ for all $s \in\left[1, \infty\left[\right.\right.$. In particular, for all $s \in\left[1, \infty\left[\right.\right.$, there exists $\lambda_{s}>0$ such that for all $u \in E$,

$$
\begin{equation*}
\|u\|_{L^{s}} \leq \lambda_{s}\|u\| \tag{2.1}
\end{equation*}
$$

Next, we have a version of the Saddle Point Theorem [11].
Lemma 2.1. Let $E=E^{1} \oplus E^{2}$ be a real Hilbert space with $E^{2}=\left(E^{1}\right)^{\perp}$. Suppose that $f \in C^{1}(E, \mathbb{R})$ satisfies
(a) $f(u)=\frac{1}{2}\langle L u, u\rangle+g(u)$ and $L u=L_{1} P_{1} u+L_{2} P_{2} u$ with $L_{i}: E^{i} \rightarrow E^{i}$ bounded and self-adjoint, $i=1,2$;
(b) g^{\prime} is compact;
(c) There exists $\beta \in \mathbb{R}$ such that $f(u) \leq \beta$ for all $u \in E^{1}$;
(d) There exists $\gamma \in \mathbb{R}$ such that $f(u) \geq \gamma$ for all $u \in E^{2}$.

Furthermore, if f satisfies the Palais-Smale condition $(P S)_{c}$ for all $c \geq \gamma$, then f possesses a critical value $c \in[\gamma, \beta]$.

3. Linear Hamiltonian systems

Let A be a $(2 N \times 2 N)$ symmetric matrix, we consider the linear Hamiltonian system

$$
\begin{equation*}
\dot{x}=J A x . \tag{3.1}
\end{equation*}
$$

Let $\lambda_{1}, \ldots, \lambda_{s}$ be all the distinct eigenvalues of $B=J A$ and F_{1}, \ldots, F_{s} be the corresponding root subspaces. The dimension of the root subspace F_{σ} is equal to the multiplicity m_{σ} of the corresponding root λ_{σ} of the characteristic equation $\operatorname{det}\left(B-\lambda I_{2 N}\right)=0\left(m_{1}+\cdots+m_{s}=2 N\right)$. The space $\mathbb{R}^{2 N}$ splits into a direct sum of the B-invariant subspaces F_{σ} :

$$
\begin{equation*}
\mathbb{R}^{2 N}=F_{1} \oplus \cdots \oplus F_{s} \tag{3.2}
\end{equation*}
$$

Each subspace F_{σ} possesses a basis $\left(a_{1}^{\sigma}, \ldots, a_{m_{\sigma}}^{\sigma}\right)$ satisfying

$$
B a_{1}^{\sigma}=\lambda_{\sigma} a_{1}^{\sigma}, B a_{2}^{\sigma}=\lambda_{\sigma} a_{2}^{\sigma}+a_{1}^{\sigma}, \ldots, B a_{m_{\sigma}}^{\sigma}=\lambda_{\sigma} a_{m_{\sigma}}^{\sigma}+a_{m_{\sigma}-1}^{\sigma}
$$

The ($m_{\sigma} \times m_{\sigma}$) matrix

$$
Q_{\sigma}\left(\lambda_{\sigma}\right)=\left(\begin{array}{cccccc}
\lambda_{\sigma} & 1 & 0 & 0 & \ldots & 0 \\
0 & \lambda_{\sigma} & 1 & 0 & \ldots & 0 \\
. & . & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & \lambda_{\sigma} & 1 \\
0 & 0 & 0 & \ldots & 0 & \lambda_{\sigma}
\end{array}\right)
$$

is called an elementary Jordan matrix. We have $B=S Q S^{-1}$ where Q is a direct sum of elementary Jordan matrices

$$
Q=\left(\begin{array}{ccccc}
Q_{1}\left(\lambda_{1}\right) & 0 & 0 & \ldots & 0 \\
0 & Q_{2}\left(\lambda_{2}\right) & 0 & \ldots & 0 \\
\cdot & \cdot & . & \ldots & . \\
\cdot & 0 & 0 & \ldots & Q_{s}\left(\lambda_{s}\right)
\end{array}\right)=Q_{1}\left(\lambda_{1}\right) \oplus \cdots \oplus Q_{s}\left(\lambda_{s}\right)
$$

the columns of the matrix S,

$$
a_{1}^{1}, \ldots, a_{m_{1}}^{1} ; a_{1}^{2}, \ldots, a_{m_{2}}^{2} ; \ldots ; a_{1}^{s}, \ldots, a_{m_{s}}^{s}
$$

form a basis for $\mathbb{R}^{2 N}$ and so $\operatorname{det}(S) \neq 0$.
The matrizant of equation (3.1) is given by

$$
R(t)=e^{t B}=S\left[\exp \left(t Q_{1}\left(\lambda_{1}\right)\right) \oplus \cdots \oplus \exp \left(t Q_{s}\left(\lambda_{s}\right)\right)\right] S^{-1}=S e^{t Q} S^{-1}
$$

then the solution of equation 3.1 with initial condition $x(0)$ is

$$
x(t)=e^{t B} x(0)
$$

Therefore to each eigenvalue λ_{σ} corresponds a group of m_{σ}-linearly independent solutions:

$$
\begin{gather*}
x_{1}^{\sigma}(t)=e^{\lambda_{\sigma} t} a_{1}^{\sigma} \\
x_{2}^{\sigma}(t)=e^{\lambda_{\sigma} t}\left(t a_{1}^{\sigma}+a_{2}^{\sigma}\right) \tag{3.3}\\
\cdots \\
x_{m_{\sigma}}^{\sigma}(t)=e^{\lambda_{\sigma} t}\left(\frac{1}{\left(m_{\sigma}-1\right)!} t^{m_{\sigma}-1} a_{1}^{\sigma}+\cdots+a_{m_{\sigma}}^{\sigma}\right)
\end{gather*}
$$

Moreover, combining the solutions of all the groups (3.3) (there are obviously 2 N in all, since $m_{1}+\cdots+m_{s}=2 N$), we obtain a complete system of linearly independent solutions of (3.1). Now, assume that $\lambda_{1}=0$ is an eigenvalue of $B=J A$ and let $1 \leq m \leq m_{1}$ be the dimension of the corresponding eigenspace E_{1}. We can replace the basis $\left(a_{1}^{1}, \ldots, a_{m_{1}}^{1}\right)$ of the root subspace F_{1} by the basis $\left(b_{1}^{1}, \ldots, b_{m_{1}}^{1}\right)$ where $\left(b_{1}^{1}, \ldots, b_{m}^{1}\right)$ is a basis of $E_{1}, b_{j}^{1}=a_{j}^{1}$ for $m+1 \leq j \leq m_{1}$ and such that $b_{m+1}^{1}=B b_{m}^{1}$. To this basis corresponds the group of $2 N$ linearly independent solutions:

$$
\begin{gather*}
u_{1}^{1}(t)=b_{1}^{1} \\
\ldots \\
u_{m}^{1}(t)=b_{m}^{1} \\
u_{m+1}^{1}(t)=b_{m}^{1} t+b_{m+1}^{1} \tag{3.4}\\
\cdots \\
u_{m_{1}}^{1}(t)=\frac{1}{\left(m_{1}-m\right)!} b_{m}^{1} t^{m_{1}-m}+\cdots+b_{m_{1}}^{1} \\
u_{k}^{\sigma}(t)=x_{k}^{\sigma}(t), \quad 2 \leq \sigma \leq s, 1 \leq k \leq m_{\sigma}
\end{gather*}
$$

A solution u of (3.1) may be written in the form

$$
u(t)=\sum_{\sigma=1}^{s} \sum_{j=1}^{m_{\sigma}} \alpha_{j}^{\sigma} u_{j}^{\sigma}(t) .
$$

Let $T>0$ be such that $\lambda_{\sigma} T \notin 2 i \pi \mathbb{Z}$ for all $1 \leq \sigma \leq s$. If u is T-periodic, then for any $1 \leq \sigma \leq s$, we have

$$
\sum_{j=1}^{m_{\sigma}} \alpha_{j}^{\sigma} u_{j}^{\sigma}(k T)=\sum_{j=1}^{m_{\sigma}} \alpha_{j}^{\sigma} u_{j}^{\sigma}(0), \quad \forall k \in \mathbb{Z}
$$

It is easy to see that $\alpha_{j}^{1}=0$ for $m+1 \leq j \leq m_{1}$ and $\alpha_{j}^{\sigma}=0$ for $2 \leq \sigma \leq s$ and $1 \leq j \leq m_{m_{\sigma}}$. Therefore, $u(t)=\sum_{j=1}^{m} \alpha_{j}^{1} b_{j}^{1}$. Hence the set of T-periodic solutions of (3.1) is equal to $N(A)$.

Example 3.1. Let

$$
A=\left(\begin{array}{cccc}
-12 & 6 & 5 & 1 \\
-2 & 1 & 0 & 1 \\
2 & -1 & 0 & -1 \\
2 & -1 & 0 & -1
\end{array}\right)
$$

The characteristic equation corresponding to $B=J A$ is $\operatorname{det}\left(J A-X I_{4}\right)=X^{3}(X-$ $5)=0$. To the eigenvalue $\lambda_{1}=0$ corresponds the eigenspace

$$
E_{1}=\operatorname{span}\left\{e_{1}, e_{2}\right\}
$$

and the root subspace

$$
F_{1}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}
$$

where $e_{1}=(1,2,0,0), e_{2}=(1,1,1,1), e_{3}=(0,0,0,1)$ with $B e_{3}=e_{2}$. To the eigenvalue $\lambda_{2}=5$ corresponds the root subspace

$$
E_{2}=F_{2}=\operatorname{span}\left\{e_{4}\right\}
$$

where $e_{4}=(0,0,1,0)$. Then we have $J A=S Q S^{-1}$ with

$$
S=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
2 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right), \quad Q=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 5
\end{array}\right)
$$

The matrizant of the corresponding equation (3.1) is then

$$
R(t)=S Q S^{-1}=S\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & t & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{5 t}
\end{array}\right) S^{-1}
$$

To the basis $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ corresponds the group of 4-linearly independent solutions

$$
\begin{gather*}
u_{1}(t)=e_{1} \\
u_{2}(t)=e_{2} \\
u_{3}(t)=t e_{2}+e_{3} \tag{3.5}\\
u_{4}(t)=e^{5 t} e_{4} .
\end{gather*}
$$

A solution of equation (3.1) takes the form

$$
u(t)=\alpha_{1} u_{1}(t)+\alpha_{2} u_{2}(t)+\alpha_{3} u_{3}(t)+\alpha_{4} u_{4}(t)
$$

and it is easy to verify that u is T-periodic for $T>0$ if and only if $\alpha_{3}=\alpha_{4}=0$, i.e. $u \in N(A)$.

4. First class of sub-Linear Hamiltonian systems

Consider the first-order Hamiltonian system

$$
\begin{equation*}
J \dot{u}(t)+A u(t)+\nabla H(t, u(t))=h(t) \tag{4.1}
\end{equation*}
$$

where A is a $(2 N \times 2 N)$ symmetric matrix, $H: \mathbb{R} \times \mathbb{R}^{2 N} \rightarrow \mathbb{R}$ is a continuous function, T-periodic in the first variable $(T>0)$ and differentiable with respect to the second variable with continuous derivative $\nabla H(t, x)=\frac{\partial H}{\partial x}(t, x), h \in C\left(\mathbb{R}, \mathbb{R}^{2 N}\right)$ is T-periodic and J is the standard symplectic matrix $J=\left(\begin{array}{cc}0 & -I \\ I & 0\end{array}\right)$. Let $\gamma: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ be a nondecreasing continuous function satisfying the properties:
(i) $\gamma(s+t) \leq c(\gamma(s)+\gamma(t))$ for all $s, t \in \mathbb{R}^{+}$,
(ii) $\gamma(t) \leq a t^{\alpha}+b$ for all $t \in \mathbb{R}^{+}$,
(iii) $\gamma(t) \rightarrow+\infty$ as $t \rightarrow+\infty$,
where a, b, c are positive constants and $\alpha \in[0,1[$. Consider the following assumptions
(C1) $\operatorname{dim}(N(A))=m \geq 1$ and A has no eigenvalue of the form $k i \frac{2 \pi}{T}\left(k \in \mathbb{N}^{*}\right)$;
(H1) There exist two functions $p \in L^{\frac{2}{1-\alpha}}\left(0, T ; \mathbb{R}^{+}\right)$and $q \in L^{2}\left(0, T ; \mathbb{R}^{+}\right)$such that

$$
|\nabla H(t, x)| \leq p(t) \gamma(|x|)+q(t), \quad \forall x \in \mathbb{R}^{2 N}, \text { a.e. } t \in[0, T] .
$$

Our main results in this section are the following theorems.
Theorem 4.1. Assume (C1) and (H1) hold and
(H2) H satisfies

$$
\limsup _{|x| \rightarrow \infty, x \in N(A)} \frac{|x|}{\gamma^{2}(|x|)}<+\infty, \quad \lim _{|x| \rightarrow \infty, x \in N(A)} \frac{1}{\gamma^{2}(|x|)} \int_{0}^{T} H(t, x) d t=+\infty
$$

Then (4.1) possesses at least one T-periodic solution.
Example 4.2. Let A be the matrix defined in Example 3.1 and let

$$
H(t, x)=\left(\frac{3}{4} T-t\right)|x|^{8 / 5}, \quad \forall x \in \mathbb{R}^{2 N}, \forall t \in[0, T]
$$

Then

$$
|\nabla H(t, x)|=\frac{8}{5}\left|\frac{3}{4} T-t\right||x|^{3 / 5}
$$

Let $\gamma(t)=t^{3 / 5}, t \geq 0$. It is clear that properties (i), (ii), (iii) are satisfied. Moreover, we have

$$
\begin{array}{r}
\limsup _{|x| \rightarrow \infty, x \in N(A)} \frac{|x|}{\gamma^{2}(|x|)}=\limsup _{|x| \rightarrow \infty, x \in N(A)} \frac{|x|}{|x|^{\frac{6}{5}}}=0<+\infty \\
\lim _{|x| \rightarrow \infty, x \in N(A)} \frac{1}{\gamma^{2}(|x|)} \int_{0}^{T} H(t, x) d t=\lim _{|x| \rightarrow \infty, x \in N(A)} \frac{\frac{1}{4} T^{2}|x|^{8 / 5}}{|x|^{\frac{6}{5}}}=+\infty
\end{array}
$$

Hence, by Theorem 4.1, the corresponding system 4.1 possesses at least one T periodic solution.

Theorem 4.3. Assume (C1) and (H1) hold and
(H3) H satisfies

$$
\limsup _{|x| \rightarrow \infty, x \in N(A)} \frac{\gamma^{2}(|x|)}{|x|}<\infty, \quad \lim _{|x| \rightarrow \infty} \frac{1}{|x|} \int_{0}^{T} H(t, x) d t=+\infty
$$

Then 4.1 possesses at least one T-periodic solution.
Theorem 4.4. Assume (C1) and (H1) hold and
(H4) H satisfies

$$
\limsup _{|x| \rightarrow \infty, x \in N(A)} \frac{\gamma^{2}(|x|)}{|x|}=0, \quad \lim _{|x| \rightarrow \infty} \frac{1}{|x|} \int_{0}^{T} H(t, x) d t>\int_{0}^{T}|h(t)| d t
$$

Then 4.1 possesses at least one T-periodic solution.
Example 4.5. Let A be the matrix defined in Example 3.1 and let

$$
H(t, x)=\left(\frac{1}{2} T-t\right) \ln ^{\frac{3}{2}}\left(1+|x|^{2}\right)+\frac{l(t)|x|^{3}}{1+|x|^{2}}, \quad \forall x \in \mathbb{R}^{2 N}, \forall t \in[0, T]
$$

where $l \in C\left([0, T], \mathbb{R}^{+}\right)$with $\int_{0}^{T} l(t) d t>\int_{0}^{T}|h(t)| d t$. Then

$$
\begin{aligned}
|\nabla H(t, x)| & \leq \frac{3}{2}\left|\frac{1}{2} T-t\right|\left(\ln \left(1+|x|^{2}\right)\right)^{1 / 2} \frac{|x|}{1+|x|^{2}}+\frac{\left.l(t)\left(5|x|^{4}\right)+3|x|^{2}\right)}{1+2|x|^{2}+|x|^{4}} \\
& \leq \frac{3}{2}\left|\frac{1}{2} T-t\right|\left(\ln \left(1+|x|^{2}\right)\right)^{1 / 2} \frac{|x|}{1+|x|^{2}}+c_{1}
\end{aligned}
$$

where c_{1} is a positive constant. Let $\gamma(t)=\left(\ln \left(1+|t|^{2}\right)\right)^{1 / 2}, t \geq 0$. It is clear that conditions (i), (ii), (iii) are satisfied. Moreover,

$$
\begin{aligned}
& \limsup _{|x| \rightarrow \infty, x \in N(A)} \frac{\gamma^{2}(|x|)}{|x|}=\limsup _{|x| \rightarrow \infty, x \in N(A)} \frac{\ln \left(1+|x|^{2}\right)}{|x|}=0<+\infty \\
& \lim _{|x| \rightarrow \infty, x \in N(A)} \frac{1}{|x|} \int_{0}^{T} H(t, x) d t=\int_{0}^{T} l(t) d t>\int_{0}^{T}|h(t)| d t
\end{aligned}
$$

Hence, by Theorem 4.4 the corresponding system 4.1 possesses at least one T periodic solution.

Theorem 4.6. Assume (C 1) and (H1) hold and
(H5) H satisfies

$$
\int_{0}^{T} h(t) d t \perp N(A), \quad \lim _{|x| \rightarrow \infty, x \in N(A)} \frac{1}{\gamma^{2}(|x|)} \int_{0}^{T} H(t, x) d t=+\infty
$$

Then 4.1 possesses at least one T-periodic solution.
Theorem 4.6 generalizes the result concerning the existence of periodic solutions for 4.1) in [2, Theorem 3.1].

Example 4.7. Let A be the matrix defined in Example 3.1 and let

$$
H(t, x)=\left(\frac{3}{4} T-t\right) \ln ^{\frac{3}{2}}\left(1+|x|^{2}\right)+l(t)\left(\ln \left(1+|x|^{2}\right)\right)^{1 / 2}, \quad x \in \mathbb{R}^{2 N}, t \in[0, T]
$$

where $l \in C\left([0, T], \mathbb{R}^{+}\right)$and $h(t)=c(t) v_{1}+d(t) v_{2}$, with $v_{1}=(2,-1,0,-1), v_{2}=$ $(0,0,1,-1) \in(N(A))^{\perp}, c, d \in C(\mathbb{R}, \mathbb{R})$. Then $\int_{0}^{T} h(t) d t \perp N(A)$ and

$$
|\nabla H(t, x)| \leq \frac{3}{2}\left|\frac{3}{4} T-t\right|\left(\ln \left(1+|x|^{2}\right)\right)^{1 / 2}+l(t)
$$

Let $\gamma(t)=\left(\ln \left(1+|x|^{2}\right)\right)^{1 / 2}, t \geq 0$. It is easy to verify that γ satisfies conditions (i), (ii), (iii). Moreover,

$$
\lim _{|x| \rightarrow \infty, x \in N(A)} \frac{1}{\gamma^{2}(|x|)} \int_{0}^{T} H(t, x) d t=\lim _{|x| \rightarrow \infty, x \in N(A)} \frac{T^{2}}{4}\left(\ln \left(1+|x|^{2}\right)\right)^{1 / 2}=+\infty
$$

Hence, by Theorem 4.6, the corresponding system 4.1 possesses at least one T periodic solution.

Remark 4.8. Let $u(t)$ be a periodic solution of 4.1), then by replacing t by $-t$ in 4.1), we obtain

$$
\dot{u}(-t)=J H^{\prime}(-t, u(-t))
$$

So it is clear that the function $v(t)=u(-t)$ is a periodic solution of the system

$$
\dot{v}(t)=-J H^{\prime}(-t, v(t))
$$

Moreover, $-H(-t, x)$ satisfies (H2)-(H5) whenever $H(t, x)$ satisfies the following assumptions
(H2')

$$
\limsup _{|x| \rightarrow \infty, x \in N(A)} \frac{|x|}{\gamma^{2}(|x|)}<+\infty, \quad \lim _{|x| \rightarrow \infty, x \in N(A} \frac{1}{\gamma^{2}(|x|)} \int_{0}^{T} H(t, x) d t=-\infty
$$

(H3')

$$
\limsup _{|x| \rightarrow \infty, x \in N(A)} \frac{\gamma^{2}(|x|)}{|x|}<\infty, \quad \lim _{|x| \rightarrow \infty} \frac{1}{|x|} \int_{0}^{T} H(t, x) d t=-\infty
$$

(H4')

$$
\limsup _{|x| \rightarrow \infty, x \in N(A)} \frac{\gamma^{2}(|x|)}{|x|}=0, \quad \lim _{|x| \rightarrow \infty} \frac{1}{|x|} \int_{0}^{T} H(t, x) d t<-\int_{0}^{T}|h(t)| d t
$$

(H5')

$$
\int_{0}^{T} h(t) d t \perp N(A), \quad \lim _{|x| \rightarrow \infty, x \in N(A)} \frac{1}{\gamma^{2}(|x|)} \int_{0}^{T} H(t, x) d t=-\infty
$$

Consequently, the previous Theorems remains true if we replace (H2)-(H5) by (H2')-(H5').
Proofs of Theorems. Consider the functional
$\left.\left.\varphi(u)=\frac{1}{2} \int_{0}^{T}(J \dot{u}(t) \cdot u(t)+A u(t) \cdot u(t)) d t+\int_{0}^{T} H(t, u(t))\right] d t-\int_{0}^{T} h(t) \cdot u(t)\right) d t$
Let E be the space introduced in Section 2. By assumption (H1) and the property (ii) of γ, [11, Proposition B37] implies that $\varphi \in C^{1}(E, \mathbb{R})$ and the critical points of φ on E correspond to the T-periodic solutions of (4.1), moreover

$$
\varphi^{\prime}(u) v=\int_{0}^{T}[J \dot{u}(t)+A u(t)+\nabla H(t, u(t))] \cdot v(t) d t-\int_{0}^{T} h(t) \cdot v(t) d t
$$

Lemma 4.9. Assume (H1) holds. Then for any $(P S)$ sequence $\left(u_{n}\right) \subset E$ of the functional φ, there exists a constant $c_{0}>0$ such that

$$
\begin{equation*}
\left\|\tilde{u}_{n}\right\| \leq c_{0}\left(\gamma\left(\left\|u_{n}^{0}\right\|\right)+1\right), \quad \forall n \in \mathbb{N} \tag{4.2}
\end{equation*}
$$

where $\tilde{u}_{n}=u_{n}^{+}+u_{n}^{-}=u_{n}-u_{n}^{0}$, with $u_{n}^{0} \in E^{0}$, $u_{n}^{-} \in E^{-}, u_{n}^{+} \in E^{+}$.
Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a $(P S)$ sequence, i.e. $\varphi\left(u_{n}\right)$ is bounded and $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. We have

$$
\varphi^{\prime}\left(u_{n}\right)\left(u_{n}^{+}-u_{n}^{-}\right)=2\left\|\tilde{u}_{n}\right\|^{2}+\int_{0}^{T} \nabla H\left(t, u_{n}\right) \cdot\left(u_{n}^{+}-u_{n}^{-}\right) d t-\int_{0}^{T} h(t) \cdot\left(u_{n}^{+}-u_{n}^{-}\right) d t
$$

Since $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, there exists a constant $c_{2}>0$ such that

$$
\left|\varphi^{\prime}\left(u_{n}\right)\left(u_{n}^{+}-u_{n}^{-}\right)\right| \leq c_{2}\left\|\tilde{u}_{n}\right\|, \forall n \in \mathbb{N}
$$

By Hölder's inequality and (H1), we have

$$
\begin{align*}
\left|\int_{0}^{T} \nabla H\left(t, u_{n}\right) \cdot\left(u_{n}^{+}-u_{n}^{-}\right) d t\right| & \leq\left\|\tilde{u}_{n}\right\|_{L^{2}}\left(\int_{0}^{T}\left|\nabla H\left(t, u_{n}\right)\right|^{2} d t\right)^{1 / 2} \\
& \leq\left\|\tilde{u}_{n}\right\|_{L^{2}}\left(\int_{0}^{T}\left[p(t) \gamma\left(\left|u_{n}\right|\right)+q(t)\right] d t\right)^{1 / 2} \tag{4.3}\\
& \leq\left\|\tilde{u}_{n}\right\|_{L^{2}}\left[\left(\int_{0}^{T} p^{2}(t) \gamma^{2}\left(\left|u_{n}\right|\right) d t\right)^{1 / 2}+\|q\|_{L^{2}}\right]
\end{align*}
$$

Now, by nondecreasing condition and the properties (i) and (ii) of γ, we have

$$
\left(\int_{0}^{T} p^{2}(t) \gamma^{2}\left(\left|u_{n}\right|\right) d t\right)^{1 / 2} \leq\left(\int_{0}^{T} p^{2}(t) \gamma^{2}\left(\left|\tilde{u}_{n}\right|+\left|u_{n}^{0}\right|\right) d t\right)^{1 / 2}
$$

$$
\begin{aligned}
& \leq c\left(\int_{0}^{T}\left[p^{2}(t)\left[\gamma\left(\left|\tilde{u}_{n}\right|\right)+\gamma\left(\left|u_{n}^{0}\right|\right)\right]^{2} d t\right)^{1 / 2}\right. \\
& \leq c\left[\left(\int_{0}^{T} p^{2}(t) \gamma^{2}\left(\left|\tilde{u}_{n}\right|\right) d t\right)^{1 / 2}+\|p\|_{L^{2}} \gamma\left(\left|u_{n}^{0}\right|\right)\right] \\
& \leq c\left[\left(\int_{0}^{T} p^{2}(t)\left(a\left|\tilde{u}_{n}\right|^{\alpha}+b\right)^{2} d t\right)^{1 / 2}+\|p\|_{L^{2}} \gamma\left(\left|u_{n}^{0}\right|\right)\right] \\
& \leq c\left[a\left(\int_{0}^{T} p^{2}(t)\left|\tilde{u}_{n}\right|^{2 \alpha} d t\right)^{1 / 2}+b\|p\|_{L^{2}}+\|p\|_{L^{2}} \gamma\left(\left|u_{n}^{0}\right|\right)\right] \\
& \leq c\left[a\|p\|_{L^{1}-\frac{2}{1-\alpha}}\left\|\tilde{u}_{n}\right\|_{L^{2}}^{\alpha}+b\|p\|_{L^{2}}+\|p\|_{L^{2}} \gamma\left(\left|u_{n}^{0}\right|\right)\right] .
\end{aligned}
$$

On the other hand, by (2.1] we have

$$
\begin{aligned}
2\left\|\tilde{u}_{n}\right\|^{2} \leq & \left|\varphi^{\prime}\left(u_{n}\right)\left(u_{n}^{+}-u_{n}^{-}\right)\right|+\left|\int_{0}^{T} \nabla H\left(t, u_{n}\right) \cdot\left(u_{n}^{+}-u_{n}^{-}\right) d t\right| \\
& +\left|\int_{0}^{T} h(t) \cdot\left(u_{n}^{+}-u_{n}^{-}\right)\right| \leq c_{2}\left\|\tilde{u}_{n}\right\|+\left\|\tilde{u}_{n}\right\|_{L^{2}} c\left[a\|p\|_{L^{\frac{2}{1-\alpha}}}\left\|\tilde{u}_{n}\right\|_{L^{2}}^{\alpha}\right. \\
& \left.+b\|p\|_{L^{2}}+\|q\|_{L^{2}}+\|p\|_{L^{2}} \gamma\left(\left|u_{n}^{0}\right|\right)\right]+\|h\|_{L^{2}}\left\|\tilde{u}_{n}\right\|_{L^{2}} \\
\leq & a c\|p\|_{L^{\frac{1}{1-\alpha}}} \lambda_{2}^{\alpha+1}\left\|\tilde{u}_{n}\right\|^{\alpha+1}+\left[c_{1}+c b\|p\|_{L^{2}}\right. \\
& \left.+\|q\|_{L^{2}}+\|h\|_{L^{2}}\right] \lambda_{2}\left\|\tilde{u}_{n}\right\|+c \lambda_{2}\|p\|_{L^{2}} \gamma\left(\left|u_{n}^{0}\right|\right)\left\|\tilde{u}_{n}\right\| .
\end{aligned}
$$

Since $0 \leq \alpha<1$, we deduce that there exists a constant $c_{0}>0$ satisfying 4.2).
We will apply Lemma 2.1 to the functional φ to obtain critical points.
Lemma 4.10. If (H1) holds and H satisfies one of the assumptions (H2)-(H5), then φ satisfies the $(P S)_{c}$ condition for all $c \in \mathbb{R}$.

Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a $(P S)_{c}$ sequence, that is $\varphi\left(u_{n}\right) \rightarrow c$ and $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Then there exists a positive constant c_{3} such that

$$
\left|\varphi\left(u_{n}\right)\right| \leq c_{3}, \quad\left\|\varphi^{\prime}\left(u_{n}\right)\right\| \leq c_{3}, \quad \forall n \in \mathbb{N} .
$$

By the Mean Value Theorem and Hölder's inequality, we have

$$
\begin{align*}
& \left|\int_{0}^{T}\left(H\left(t, u_{n}\right)-H\left(t, u_{n}^{0}\right)\right) d t\right| \\
& =\left|\int_{0}^{T} \int_{0}^{1} \nabla H\left(t, u_{n}^{0}+s \tilde{u}_{n}\right) \cdot \tilde{u}_{n} d s d t\right| \tag{4.4}\\
& \leq\left\|\tilde{u}_{n}\right\|_{L^{2}} \int_{0}^{1}\left(\int_{0}^{T}\left|\nabla H\left(t, u_{n}^{0}+s \tilde{u}_{n}\right)\right|^{2} d t\right)^{1 / 2} d s .
\end{align*}
$$

As in the proof of Lemma 4.9, we have

$$
\begin{align*}
& \left(\int_{0}^{T}\left|\nabla H\left(t, u_{n}^{0}+s \tilde{u}_{n}\right)\right|^{2} d t\right)^{1 / 2} \tag{4.5}\\
& \left.\leq a c\|p\|_{L^{2}-\alpha}\left\|\tilde{u}_{n}\right\|_{L^{2}}^{\alpha}+c b\|p\|_{L^{2}}+\|q\|_{L^{2}}+c\|p\|_{L^{2}} \gamma\left(\left|u_{n}^{0}\right|\right)\|q\|_{L^{2}}\right] .
\end{align*}
$$

Therefore, by properties (2.1), 4.2, 4.4, 4.5 and since $0 \leq \alpha<1$, there exists a positive constant c_{4} such that

$$
\begin{align*}
\left|\int_{0}^{T}\left(H\left(t, u_{n}\right)-H\left(t, u_{n}^{0}\right)\right) d t\right| \leq & c_{0}\left(\gamma\left(\left|u_{n}^{0}\right|\right)+1\right)\left[a c\|p\|_{L^{\frac{2}{1-\alpha}}} c_{0}^{\alpha}\left(\gamma\left(\left|u_{n}^{0}\right|\right)+1\right)^{\alpha}\right. \\
& \left.+c\|p\|_{L^{2}} \gamma\left(\left|u_{n}^{0}\right|\right)+c b\|p\|_{L^{2}}+\|q\|_{L^{2}}\right] \tag{4.6}\\
\leq & c_{4}\left(\gamma^{2}\left(\left|u_{n}^{0}\right|\right)+1\right)
\end{align*}
$$

Combining (2.1), (4.2), (4.3) and (4.6) yields

$$
\begin{align*}
c_{3} \geq & \varphi\left(u_{n}\right) \\
\geq & -\left\|\tilde{u}_{n}\right\|^{2}+\int_{0}^{T}\left(H\left(t, u_{n}\right)-H\left(t, u_{n}^{0}\right)\right) d t+\int_{0}^{T} H\left(t, u_{n}^{0}\right) d t \\
& -\int_{0}^{T} h(t)\left(\tilde{u}_{n}+u_{n}^{0}\right) d t \\
\geq & \left.-c_{0}^{2}\left(\gamma\left(\mid u_{n}^{0}\right) \mid+1\right)^{2}-c_{4}\left(\gamma^{2}\left(\mid u_{n}^{0}\right) \mid\right)+1\right)-c_{0}\|h\|_{L^{2}}\left(\gamma\left(\mid u_{n}^{0}\right) \mid+1\right) \tag{4.7}\\
& -\|h\|_{L^{1}}\left|u_{n}^{0}\right|+\int_{0}^{T} H\left(t, u_{n}^{0}\right) d t \\
\geq & \left.-c_{5}\left(\gamma^{2}\left(\mid u_{n}^{0}\right) \mid\right)+1\right)-\|h\|_{L^{1}}\left|u_{n}^{0}\right|+\int_{0}^{T} H\left(t, u_{n}^{0}\right) d t
\end{align*}
$$

where c_{5} is a positive constant.
Case 1: H satisfies (H2). By 4.7), we have

$$
\left.c_{3} \geq \gamma^{2}\left(\mid u_{n}^{0}\right) \mid\right)\left[-c_{5}-\|h\|_{L^{1}} \frac{\left|u_{n}^{0}\right|}{\left.\gamma^{2}\left(\mid u_{n}^{0}\right) \mid\right)}+\frac{1}{\left.\gamma^{2}\left(\mid u_{n}^{0}\right) \mid\right)} \int_{0}^{T} H\left(t, u_{n}^{0}\right) d t\right]-c_{5} .
$$

It follows from (H2) that $\left(u_{n}^{0}\right)$ is bounded.
Case 2: H satisfies (H3) or (H4). Note that by 4.7)

$$
c_{3} \geq\left|u_{n}^{0}\right|\left[-c_{5} \frac{\left.\gamma^{2}\left(\mid u_{n}^{0}\right) \mid\right)}{\left.\mid u_{n}^{0}\right) \mid}-\|h\|_{L^{1}}+\frac{1}{\left|u_{n}^{0}\right|} \int_{0}^{T} H\left(t, u_{n}^{0}\right) d t\right]-c_{5}
$$

Hence (H3) or (H4) implies that $\left(u_{n}^{0}\right)$ is bounded.
Case 2: H satisfies (H5). Since $\int_{0}^{T} h(t) d t \perp N(A)$, we get as in 4.7)

$$
\begin{align*}
c_{3} \geq & \varphi\left(u_{n}\right) \\
\geq & -\left\|\tilde{u}_{n}\right\|^{2}+\int_{0}^{T}\left(H\left(t, u_{n}\right)-H\left(t, u_{n}^{0}\right)\right) d t+\int_{0}^{T} H\left(t, u_{n}^{0}\right) d t \\
& -\int_{0}^{T} h(t) \cdot \tilde{u}_{n} d t \tag{4.8}\\
\geq & \left.-c_{5}\left(\gamma^{2}\left(\mid u_{n}^{0}\right) \mid\right)+1\right)+\int_{0}^{T} H\left(t, u_{n}^{0}\right) d t, \\
\geq & \left.\gamma^{2}\left(\mid u_{n}^{0}\right) \mid\right)\left[-c_{5}+\frac{1}{\left.\gamma^{2}\left(\mid u_{n}^{0}\right) \mid\right)} \int_{0}^{T} H\left(t, u_{n}^{0}\right) d t\right]-c_{5} .
\end{align*}
$$

Hence (H5) implies that $\left(u_{n}^{0}\right)$ is bounded.

In all the above cases, $\left(u_{n}^{0}\right)$ is bounded. We deduce from Lemma 4.9 that $\left(u_{n}\right)$ is also bounded in E. By a standard argument, we conclude that $\left(u_{n}\right)$ possesses a convergent subsequence. The proof of Lemma 4.10 is complete.

Now, decompose $E=E^{-} \oplus\left(E^{0} \oplus E^{+}\right)$and let $E^{1}=E^{-}$and $E^{2}=E^{0} \oplus E^{+}$. Remark that by Section 3, we have $E^{0}=N(A)$. We will verify that φ satisfies condition c) of Lemma 2.1. For $u \in E^{1}$, we have

$$
\varphi(u)=-\|u\|^{2}+\int_{0}^{T}(H(t, u)-H(t, 0)) d t+\int_{0}^{T} H(t, 0) d t-\int_{0}^{T} h(t) \cdot u d t
$$

As in the proof of Lemma 4.10

$$
\left|\int_{0}^{T}(H(t, u)-H(t, 0)) d t\right| \leq\left[a c\|p\|_{L^{\frac{2}{1-\alpha}}}\|u\|_{L^{2}}^{\alpha}+c b\|p\|_{L^{2}}+\|q\|_{L^{2}}\right]\|u\|_{L^{2}}
$$

Hence by 2.1), we deduce

$$
\begin{align*}
\varphi(u) \leq & -\|u\|^{2}+a c\|p\|_{L^{\frac{2}{1-\alpha}}} \lambda_{2}^{\alpha+1}\|u\|^{\alpha+1}+\left(c b\|p\|_{L^{2}}\right. \\
& +\|q\|_{L^{2}}+\|h\|_{L^{2}} \lambda_{2}\|u\|+\int_{0}^{T} H(t, 0) d t . \tag{4.9}
\end{align*}
$$

Since $0 \leq \alpha<1$, 4.9) implies that $\varphi(u) \rightarrow-\infty$ as $\|u\| \rightarrow \infty$. Hence there exists $\beta \in \mathbb{R}$ such that $f(u) \leq \beta$ for all $u \in E^{1}$. Condition (c) of Lemma 2.1 is then proved.

Let us verify that φ satisfies condition (d) of Lemma 2.1. In fact, for $u \in E^{2}=$ $E^{0} \oplus E^{+}$, as in the proof of Lemma 4.10, we have

$$
\begin{align*}
& \left|\int_{0}^{T}\left(H(t, u)-H\left(t, u^{0}\right)\right) d t\right| \tag{4.10}\\
& \leq\left[a c\|p\|_{L^{\frac{2}{1-\alpha}}}\left\|u^{+}\right\|_{L^{2}}^{\alpha}+c b\|p\|_{L^{2}}+c\|p\|_{L^{2}} \gamma\left(\left|u^{0}\right|\right)+\|q\|_{L^{2}}\right]\left\|u^{+}\right\|_{L^{2}}^{\alpha} .
\end{align*}
$$

From 2.1 and 4.10, we deduce that

$$
\begin{align*}
\varphi(u) \geq & \left\|u^{+}\right\|^{2}-a c\|p\|_{L^{\frac{2}{1-\alpha}}} \lambda_{2}^{\alpha+1}\left\|u^{+}\right\|^{\alpha+1}-c\|p\|_{L^{2}} \lambda_{2}\left\|u^{+}\right\| \gamma\left(\left|u^{0}\right|\right) \\
& -\left(c b\|p\|_{L^{2}}+\|q\|_{L^{2}}+\|h\|_{L^{2}}\right) \lambda_{2}\left\|u^{+}\right\|-\int_{0}^{T}|h| d t\left|u^{0}\right|+\int_{0}^{T} H\left(t, u^{0}\right) d t \tag{4.11}
\end{align*}
$$

For $\epsilon>0$, there exists a constant $C(\epsilon)$ such that

$$
c\|p\|_{L^{2}} \lambda_{2}\left\|u^{+}\right\| \gamma\left(\left|u^{0}\right|\right) \leq \epsilon\left\|u^{+}\right\|^{2}+C(\epsilon) \gamma^{2}\left(\left|u^{0}\right|\right) .
$$

Taking $\epsilon=1 / 2$, it follows from (4.11) that

$$
\begin{align*}
\varphi(u) \geq & \frac{1}{2}\left\|u^{+}\right\|^{2}-a c\|p\|_{L^{\frac{2}{1-\alpha}}} \lambda_{2}^{\alpha+1}\left\|u^{+}\right\|^{\alpha+1}-\lambda_{2}\left(c b\|p\|_{L^{2}}+\|q\|_{L^{2}}\right. \\
& \left.+\|h\|_{L^{2}}\right)\left\|u^{+}\right\|-C\left(\frac{1}{2}\right) \gamma^{2}\left(\left|u^{0}\right|\right)-\int_{0}^{T}|h| d t\left|u^{0}\right|+\int_{0}^{T} H\left(t, u^{0}\right) d t . \tag{4.12}
\end{align*}
$$

Since $0 \leq \alpha<1$, the term

$$
\frac{1}{2}\left\|u^{+}\right\|^{2}-a c\|p\|_{L^{\frac{2}{1-\alpha}}} \lambda_{2}^{\alpha+1}\left\|u^{+}\right\|^{\alpha+1}-\lambda_{2}\left(c b\|p\|_{L^{2}}+\|q\|_{L^{2}}+\|h\|_{L^{2}}\right)\left\|u^{+}\right\|
$$

approaches $+\infty$ as $\left\|u^{+}\right\| \rightarrow \infty$. It remains to study the following member of 4.12

$$
\psi\left(u^{0}\right)=-C\left(\frac{1}{2}\right) \gamma^{2}\left(\left|u^{0}\right|\right)-\int_{0}^{T}|h| d t\left|u^{0}\right|+\int_{0}^{T} H\left(t, u^{0}\right) d t
$$

Case 1: (H2) holds. We have

$$
\psi\left(u^{0}\right) \geq \gamma^{2}\left(\left|u^{0}\right|\right)\left(-C\left(\frac{1}{2}\right)-\int_{0}^{T}|h| d t \frac{\left|u^{0}\right|}{\gamma^{2}\left(\left|u^{0}\right|\right)}+\frac{1}{\gamma^{2}\left(\left|u^{0}\right|\right)} \int_{0}^{T} H\left(t, u^{0}\right) d t\right)
$$

It follows from (H2) that $\psi\left(u^{0}\right) \rightarrow+\infty$ as $\left|u^{0}\right| \rightarrow \infty$.
Case 2: (H3) or (H4) holds. We have

$$
\psi\left(u^{0}\right) \geq\left|u^{0}\right|\left(-C\left(\frac{1}{2}\right) \frac{\gamma^{2}\left(\left|u^{0}\right|\right)}{\left|u^{0}\right|}-\int_{0}^{T}|h| d t+\frac{1}{\left|u^{0}\right|} \int_{0}^{T} H\left(t, u^{0}\right) d t\right)
$$

It follows from (H3) or (H4) that $\psi\left(u^{0}\right) \rightarrow+\infty$ as $\left|u^{0}\right| \rightarrow \infty$.
Case 3: (H5) holds. Since $\int_{0}^{T} h(t) d t \perp N(A)$, we have

$$
\psi\left(u^{0}\right) \geq \gamma^{2}\left(\left|u^{0}\right|\right)\left(-C\left(\frac{1}{2}\right)+\frac{1}{\gamma^{2}\left(\left|u^{0}\right|\right)} \int_{0}^{T} H\left(t, u^{0}\right) d t\right)
$$

It follows from (H5) that $\psi\left(u^{0}\right) \rightarrow+\infty$ as $\left|u^{0}\right| \rightarrow \infty$.
Therefore, if one of assumptions (H2)-(H5) is satisfied, then $\varphi(u) \rightarrow+\infty$ as $\|u\| \rightarrow \infty$. So there exists a constant ρ such that $\varphi(u) \geq \rho$ for all $u \in E^{2}$. Condition d) of Lemma 2.1 is satisfied. Moreover, it is well known that the derivative of the functional $d(u)=\int_{0}^{T} H(t, u) d t-\int_{0}^{T} h u d t$ is compact. All the conditions of Lemma 2.1 are satisfied, so φ possesses a critical point u which is a T-periodic solution of system 4.1)

5. Second class of Hamiltonian systems

For A, H and h be defined as in Section 4, we have the following result.
Theorem 5.1. Let $\omega \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$be a non-increasing function with the following properties:
(a) $\liminf _{s \rightarrow \infty} \frac{\omega(s)}{\omega(\sqrt{s})}>0$,
(b) $\omega(s) \rightarrow 0$ and $\omega(s) s \rightarrow+\infty$ as $s \rightarrow \infty$.

Assume that A satisfies (C1), and H satisfies
(H6) There exist a positive constant a and a function $g \in L^{2}(0, T ; \mathbb{R})$ such that

$$
|\nabla H(t, x)| \leq a \omega(|x|)+g(t), \quad \forall x \in \mathbb{R}^{2 N}, \text { a.e. } t \in[0, T]
$$

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty, x \in N(A)} \frac{1}{(\omega(|x|)|x|)^{2}} \int_{0}^{T} H(t, x) d t=+\infty \tag{H7}
\end{equation*}
$$

(H8) There exists $f \in L^{1}(0, T ; \mathbb{R})$ such that

$$
H(t, x) \geq f(t), \quad \forall x \in \mathbb{R}^{2 N}, \text { a.e. } t \in[0, T] .
$$

Then system 4.1 possesses at least one T-periodic solution.
The above theorem generalizes [15, Theorem 1.1].
Example 5.2. Take $\omega(s)=\frac{1}{\ln \left(2+s^{2}\right)}, s \geq 0$,

$$
H(t, x)=\left(\frac{1}{2}+\cos \left(\frac{2 \pi}{T} t\right)\right) \frac{|x|^{2}}{\ln \left(2+|x|^{2}\right)}, \quad \forall t \in[0, T], \forall x \in \mathbb{R}^{2 N}
$$

and let A be the matrix defined in Section $3, h \in C([0, T], \mathbb{R})$. Then A, H, h satisfy assumptions of Theorem 5.1.

Proof of Theorem5.1. As in Section 4, we will apply Lemma 2.1 to the functional φ defined on the space E introduced in section 2.

Lemma 5.3 ($\boxed{15]})$. Assume (H6) and (H7) hold, then there exists a non-increasing function $\theta \in C(] 0,+\infty\left[, \mathbb{R}^{+}\right)$and a positive constant c_{0} such that
(i) $\theta(s) \rightarrow 0$ and $\theta(s) s \rightarrow \infty$ as $s \rightarrow \infty$,
(ii) $\|\nabla H(t, u)\|_{L^{2}} \leq c_{0}(\theta(\|u\|)\|u\|+1)$ for all $u \in E$

$$
\begin{equation*}
\frac{1}{\left(\theta\left(\left\|u^{0}\right\|\right)\left\|u^{0}\right\|\right)^{2}} \int_{0}^{T} H\left(t, u^{0}\right) d t \rightarrow+\infty \quad \text { as }\left\|u^{0}\right\| \rightarrow \infty \tag{iii}
\end{equation*}
$$

Lemma 5.4. Assume (H6) holds. Then for any ($P S$) sequence of the functional φ, there exists a constant $c_{1}>0$ such that

$$
\begin{equation*}
\left\|\tilde{u}_{n}\right\| \leq c_{1}\left(\theta\left(\left\|u_{n}^{0}\right\|\right)\left\|u_{n}^{0}\right\|+1\right) \tag{5.1}
\end{equation*}
$$

Proof. Let $\left(u_{n}\right)$ be a Palais-Smale sequence, that is $\left(\varphi\left(u_{n}\right)\right)$ is bonded and $\varphi^{\prime}\left(u_{n}\right) \rightarrow$ 0 , as $n \rightarrow \infty$. We have
$\varphi^{\prime}\left(u_{n}\right)\left(u_{n}^{+}-u_{n}^{-}\right)=2\left\|\tilde{u}_{n}\right\|^{2}+\int_{0}^{T} \nabla H\left(t, u_{n}(t)\right) \cdot\left(u_{n}^{+}-u_{n}^{-}\right) d t-\int_{0}^{T} h(t) \cdot\left(u_{n}^{+}-u_{n}^{-}\right) d t$.
Since θ is non-increasing and $\|u\| \geq \max \left(\|\tilde{u}\|,\left\|u^{0}\right\|\right)$, we have

$$
\begin{equation*}
\theta(\|u\|) \leq \min \left(\theta(\|\tilde{u}\|), \theta\left(\left\|u^{0}\right\|\right)\right) \tag{5.2}
\end{equation*}
$$

By Hölder's inequality, inequalities 2.1, 5.1, 5.2 and Lemma 5.3, we have

$$
\begin{aligned}
& \left|\int_{0}^{T} \nabla H\left(t, u_{n}(t)\right) \cdot\left(u_{n}^{+}-u_{n}^{-}\right) d t\right| \\
& \leq\left\|u_{n}^{+}-u_{n}^{-}\right\|_{L^{2}}\left(\int_{0}^{T}\left|\nabla H\left(t, u_{n}\right)\right|^{2} d t\right)^{1 / 2} \\
& \leq c_{2}\left\|\tilde{u}_{n}\right\|\left(\theta\left(\left\|u_{n}\right\|\right)\left\|u_{n}\right\|+1\right) \\
& \leq c_{2}\left\|\tilde{u}_{n}\right\|\left(\theta\left(\left\|\tilde{u}_{n}\right\|\right)\left\|\tilde{u}_{n}\right\|+\theta\left(\left\|u_{n}^{0}\right\|\right)\left\|u_{n}^{0}\right\|+1\right)
\end{aligned}
$$

Thus there exists positive constants c_{3}, c_{4} such that

$$
\begin{aligned}
c_{3}\left\|\tilde{u}_{n}\right\| & \geq \varphi^{\prime}\left(u_{n}\right)\left(u_{n}^{+}-u_{n}^{-}\right) \\
& \geq 2\left\|\tilde{u}_{n}\right\|^{2}-c_{2}\left\|\tilde{u}_{n}\right\|\left(\theta\left(\left\|\tilde{u}_{n}\right\|\right)\left\|\tilde{u}_{n}\right\|+\theta\left(\left\|u_{n}^{0}\right\|\right)\left\|u_{n}^{0}\right\|+1\right)-c_{4}\left\|\tilde{u}_{n}\right\| .
\end{aligned}
$$

Hence

$$
c_{2} \theta\left(\left\|u_{n}^{0}\right\|\right)\left\|u_{n}^{0}\right\| \geq\left\|\tilde{u}_{n}\right\|\left[2-c_{2}\left\|\tilde{u}_{n}\right\|\right]-c_{3}-c_{4}
$$

Since $\theta(s) \rightarrow 0$ as $s \rightarrow \infty$, this implies the existence of a constant c_{1} satisfying 5.1).

Lemma 5.5. φ satisfies the $(P S)_{c}$ condition for all real c.
Proof. Let $\left(u_{n}\right)$ be a $(P S)_{c}$-sequence. Assume that $\left(u_{n}^{0}\right)$ is unbounded. Going to a subsequence if necessary, we can assume that $\left\|u_{n}^{0}\right\| \rightarrow \infty$ as $n \rightarrow \infty$. By the

Mean Value Theorem, Hölder's inequality, inequality (2.1) and Lemma 5.3 (ii), there exists a positive constant c_{5} such that

$$
\begin{align*}
& \left|\int_{0}^{T}\left(H\left(t, u_{n}\right)-H\left(t, u_{n}^{0}\right)\right) d t\right| \\
& =\left|\int_{0}^{T} \int_{0}^{1} \nabla H\left(t, u_{n}^{0}+s \tilde{u}_{n}\right) \cdot \tilde{u}_{n} d s d t\right| \tag{5.3}\\
& \leq\left\|\tilde{u}_{n}\right\|_{L^{2}} \int_{0}^{1}\left(\int_{0}^{T}\left|\nabla H\left(t, u_{n}^{0}+s \tilde{u}_{n}\right) d t\right|\right)^{1 / 2} d s \\
& \leq c_{5}\left\|\tilde{u}_{n}\right\|\left[\theta\left(\left\|u_{n}^{0}\right\|\right)\left\|u_{n}^{0}\right\|+\theta\left(\left\|u_{n}^{0}\right\|\right)\left\|\tilde{u}_{n}\right\|+1\right]
\end{align*}
$$

Hence by Lemma5.4. there exists a positive constant c_{6} such that

$$
\begin{equation*}
\left|\int_{0}^{T}\left(H\left(t, u_{n}\right)-H\left(t, u_{n}^{0}\right)\right) d t\right| \leq c_{6}\left(\left[\theta\left(\left\|u_{n}^{0}\right\|\right)\left\|\tilde{u}_{n}^{0}\right\|\right]^{2}+1\right) \tag{5.4}
\end{equation*}
$$

Combining (2.1), 5.1) and (5.4) yields

$$
\varphi\left(u_{n}\right) \geq-c_{7}\left(\left[\theta\left(\left\|u_{n}^{0}\right\|\right)\left\|\tilde{u}_{n}^{0}\right\|\right]^{2}+1\right)-\frac{1}{T} \int_{0}^{T}|h(t)| d t\left\|u_{n}^{0}\right\|+\int_{0}^{T} H\left(t, u_{n}^{0}\right) d t
$$

where c_{7} is a positive constant.
On the other hand, it is easy to see that $\lim \operatorname{in} f_{s \rightarrow \infty} \frac{\theta(s)}{\theta(\sqrt{s})}>0$. So there exists a positive constant c_{8} such that for s large enough $\theta(s) \geq c_{8} \theta(\sqrt{s})$. Hence for n large enough

$$
\frac{\left\|u_{n}^{0}\right\|}{\left[\theta\left(\left\|u_{n}^{0}\right\|\right)\left\|u_{n}^{0}\right\|\right]^{2}} \geq \frac{1}{c_{8}^{2}\left[\theta\left(\left\|u_{n}^{0}\right\|^{1 / 2}\right)\left\|u_{n}^{0}\right\|^{1 / 2}\right]^{2}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Therefore,

$$
\begin{aligned}
\varphi\left(u_{n}\right) \geq & {\left[\theta\left(\left\|u_{n}^{0}\right\|\right)\left\|u_{n}^{0}\right\|\right]^{2}\left[-c_{7}-\frac{1}{T} \int_{0}^{T}|h(t)| d t \frac{\left\|u_{n}^{0}\right\|}{\left[\theta\left(\left\|u_{n}^{0}\right\|\right)\left\|u_{n}^{0}\right\|\right]^{2}}\right.} \\
& \left.+\frac{1}{\left[\theta\left(\left\|u_{n}^{0}\right\|\right)\left\|u_{n}^{0}\right\|\right]^{2}} \int_{0}^{T} H\left(t, u_{n}^{0}\right) d t\right]-c_{7} \rightarrow+\infty
\end{aligned}
$$

as $n \rightarrow \infty$, which contradicts the boundedness of $\left(\varphi\left(u_{n}\right)\right)$. Hence $\left(\left\|u_{n}^{0}\right\|\right)$ is bounded, and by Lemma 5.4. $\left(u_{n}\right)$ is also bounded. By a standard argument, we conclude that $\left(u_{n}\right)$ possesses a convergent subsequence. The proof is complete.

Now, for $u=u^{0}+u^{+} \in E^{2}=E^{0} \oplus E^{+}$, we have as in (5.3),

$$
\left|\int_{0}^{T}\left(H(t, u)-H\left(t, u^{0}\right)\right) d t\right| \leq c_{5}\left\|u^{+}\right\|\left[\theta\left(\left\|u^{0}\right\|\right)\left\|u^{0}\right\|+\theta\left(\left\|u^{0}\right\|\right)\left\|u^{+}\right\|+1\right] .
$$

Since $c_{5} \theta\left(\left\|u^{0}\right\|\right)\left\|u^{0}\right\|\left\|u^{+}\right\| \leq \frac{1}{2}\left\|u^{+}\right\|^{2}+2 c_{5}^{2}\left[\theta\left(\left\|u^{0}\right\|\right)\left\|u^{0}\right\|\right]^{2}$, we obtain

$$
\begin{aligned}
\varphi(u) \geq & \left(\frac{1}{2}-c_{5} \theta\left(\left\|u^{0}\right\|\right)\right)\left\|u^{+}\right\|^{2}-c_{5}\left\|u^{+}\right\| \\
& +\left[\theta\left(\left\|u^{0}\right\|\right)\left\|u^{0}\right\|\right]^{2}\left(-2 c_{5}^{2}-\frac{1}{T} \int_{0}^{T}|h(t)| d t \frac{\left\|u^{0}\right\|}{\left[\theta\left(\left\|u^{0}\right\|\right)\left\|u^{0}\right\|\right]^{2}}\right. \\
& \left.+\frac{1}{\left[\theta\left(\left\|u^{0}\right\|\right)\left\|u^{0}\right\|\right]^{2}} \int_{0}^{T} H\left(t, u^{0}\right) d t\right)
\end{aligned}
$$

Since $\theta(s) \rightarrow 0$ as $s \rightarrow \infty$, there exists $r>0$ such that $c_{5} \theta(s) \leq \frac{1}{4}$ for $s \geq r$. Then, if $\left\|u^{0}\right\| \geq r$, we have

$$
\begin{aligned}
\varphi(u) \geq & \frac{1}{4}\left\|u^{+}\right\|^{2}-c_{5}\left\|u^{+}\right\|+\left[\theta\left(\left\|u^{0}\right\|\right)\left\|u^{0}\right\|\right]^{2}\left(-2 c_{5}^{2}\right. \\
& \left.-\frac{1}{T} \int_{0}^{T}|h(t)| d t \frac{\left\|u^{0}\right\|}{\left[\theta\left(\left\|u^{0}\right\|\right)\left\|u^{0}\right\|\right]^{2}}+\frac{1}{\left[\theta\left(\left\|u^{0}\right\|\right)\left\|u^{0}\right\|\right]^{2}} \int_{0}^{T} H\left(t, u^{0}\right) d t\right) .
\end{aligned}
$$

then $\varphi(u) \rightarrow+\infty$ as $\left\|u^{0}+u^{+}\right\| \rightarrow \infty,\left\|u^{0}\right\| \geq r$.
If $\left\|u^{0}\right\| \leq r$, we have by (H8) and 2.1)

$$
\varphi(u) \geq\left\|u^{+}\right\|^{2}+\int_{0}^{T} f(t) d t-\frac{r}{T} \int_{0}^{T}|h(t)| d t-\lambda_{2}\|h\|_{L^{2}}\left\|u^{+}\right\|
$$

then $\varphi(u) \rightarrow+\infty$ as $\left\|u^{0}+u^{+}\right\| \rightarrow \infty,\left\|u^{0}\right\| \leq r$. Therefore $\varphi(u) \rightarrow+\infty$ as $\|u\| \rightarrow \infty, u \in E^{2}$.

In E^{1}, as in [15, we obtain $\varphi(u) \rightarrow-\infty$ as $\|u\| \rightarrow \infty$. Hence, by Lemma 2.1. φ possesses at least a critical point u which is a T-periodic solution of 4.1.

References

[1] T. An; Periodic solutions of superlinear autonomous Hamiltonian systems with prescribed period, J. Math. Anal. Appl. 323 (2006), pp. 854-863.
[2] A. R. Chouikha, M. Timoumi; Subharmonic solutions for nonautonomous sublinear first order Hamiltonian systems, Arxiv, 1302-4309 V1 (math.DS) 18, Feb 2013.
[3] I. Ekeland; Periodic solutions of Hamiltonian equations and a theorem of P. Rabinowitz, J. Diff. Eq. (1979), pp. 523-534.
[4] P-L. Felmer; Periodic solutions of superquadratic Hamiltonian systems, J. Diff. Eq. 102 (1993), pp. 188-307.
[5] M. Gilardi, M. Matzeu; Periodic solutions of convex autonomous Hamiltonian systems with a quadratic growth at the origin and superquadratic at infinity, Annali di Matematica Pura and Applicata-(IV), vol. CXL VII, pp 21-72.
[6] C. Li, Z-Q. Ou, C-L. Tang; Periodic and subharmonic solutions for a class of nonautonomous Hamiltonian systems, Nonlinear Analysis 75 (2012), pp 2262-2272.
[7] S. Li, A. Szulkin; Periodic solutions for a class of non-autonomous Hamiltonian systems, J. Diff. Eq., (1994), pp. 226-238.
[8] S. Li, M. Willem; Applications of local linking to critical point theory, J. Math. Anal. Appl. 189, (1995), pp. 6-32.
[9] S. Luan, A. Mao; Periodic solutions for a class of non-autonomous Hamiltonian systems, Nonlinear Analysis 61, (2005), pp. 1413-1426.
[10] J. Mawhin, M. Willem; Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, 74, Springer, New York, 1989.
[11] P. H. Rabinowitz; Minimax methods in critical point theory with applications to differential equations, CBMS. Reg. Conf. Ser. Math., vol 65, Amer. Math. Soc., Providence, RI (1986).
[12] P. Rabinowitz; Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), pp. 157-184.
[13] M. Timoumi; Periodic and subharmonic solutions for a class of non coercive superqadratic Hamiltonian systems, Nonl. Dyn. and Syst. Theory, 11(3) (2011), pp. 319-336.
[14] M. Timoumi; Periodic solutions for non coercive super-quadratic Hamiltonian systems, Dem. Mathematica, Vol. XI, No 2, (2007), pp. 331-346.
[15] M. Timoumi; Subharmonic solutions for first-order Hamiltonian systems, Elect. J. Diff. Eq., Vol. 2013 (2013), No. 197, pp. 1-14.
[16] X. Xu; Periodic solutions for non-autonomous Hamiltonian systems possessing superquadratic potentials, Nonlinear Analysis 51, (2002), pp. 941-955.

Mohsen Timoumi
Department of Mathematics, Faculty of Sciences, 5000 Monastir, Tunisia
E-mail address: m_timoumi@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 34C25.
 Key words and phrases. Hamiltonian systems; periodic solutions; saddle point theorem; least action principle; sub-linear conditions.
 (C)2015 Texas State University - San Marcos.

 Submitted March 13, 2014. Published May 15, 2015.

