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PERIODIC SOLUTIONS FOR LIÉNARD DIFFERENTIAL
EQUATIONS WITH SINGULARITIES

SHENGJUN LI, FANG-FANG LIAO, WENYA XING

Abstract. In this article, we study the second-order forced Liénard equation

x′′ + f(x)x′ + g(x) = e(t). By using the topological degree theory, we prove
that the equation has at least one positive periodic solution when g admits

a repulsive singularity near the origin and satisfies some semilinear growth
conditions near infinity. Recent results in the literature are generalized and

complemented.

1. Introduction

In this work, we are concerned with the existence of positive T -periodic solutions
for the Liénard equation

x′′ + f(x)x′ + g(x) = e(t), (1.1)

where f : R→ R is a continuous functions, g : (0,∞)→ R is continuous and admits
a repulsive singularity near the origin, e is continuous and T -periodic.

As we know, the Liénard equation appears in a number of physical models, for
example, it is used to describe fluid mechanical and nonlinear elastic mechanical
phenomena. During the last few decades, the Liénard equation has attracted many
researchers. One important related topic is to look for periodic solutions under
different conditions. We refer the reader to [20, 22, 23, 25, 29] and the references
therein. Here we mention the following results: Fonda et al [12] used the Poincare-
Birkhoff theorem to obtain the existence of positive periodic solutions, including
all subharmonics, for the following special case of (1.1)

x′′ + g(x) = e(t), (1.2)

where e ∈ C(R,R) is T -periodic and g ∈ C(R+,R) satisfies the following strong
force condition at x = 0:

lim
x→0+

g(x) = −∞, lim
x→0+

G(x) = +∞, (G(x) =
∫ x

1

g(s)ds) (1.3)

and g is superlinear at x = +∞:

lim
x→+∞

g(x) = +∞, (1.4)
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Later, Wang [30] used the phase-plane analysis methods proved the existence of at
least one positive T -periodic solution of (1.2) if g satisfies (1.3) near x = 0, and
g satisfies semilinear condition at x = +∞: there is an integer k ≥ 0 and a small
constant ε > 0 such that(kπ

T

)2 + ε ≤ g(x)
x
≤ (

(k + 1)π
T

)2 − ε (1.5)

for all t and all x� 1. We note that the conditions (1.5) are the standard uniform
nonresonance conditions with respect to the Dirichlet boundary condition, not the
periodic boundary condition.

When f 6= 0, equation (1.1) is a non-conservative system. Lefschetz [19] gave
the first existence theorem for equation (1.1) under some dissipativity conditions.
Many researchers tried to improve the results of [19]. We assume that there exists
a constant d > 0 such that

g(x) sgn(x) > 0, |x| ≥ d. (1.6)

Mawhin [22] studied the existence of periodic solutions under assumption that g
satisfies (1.6) and the sublinear condition

lim
|x|→+∞

g(x)
x

= 0. (1.7)

Later, Mawhin and Ward [23] improved such a condition, and used the following
condition

lim sup
x→+∞

g(x)
x

< (
π

T
)2.

instead of (1.7).
This article is mainly motivated by the work mentioned above and the recent

papers [30, 33, 35]. The result is obtained using topological degree theory, thanks
to a priori estimates on the solutions of a suitable family of problems. Our main
result reads as follows:

Theorem 1.1. Assume that f, e : R→ R, g : (0,∞)→ R are continuous functions
and e is T -periodic. Suppose further that

(H1) limx→0+ g(x) = −∞ and limx→0+

∫ x
1
g(r)dr = +∞;

(H2) There exist T -periodic continuous functions a, b such that

a(t) ≤ lim inf
x→+∞

g(x)
x
≤ lim sup

x→+∞

g(x)
x
≤ b(t). (1.8)

Also,
ā > 0 and λ1(b) > 0, (1.9)

here ā = 1
T

∫ T
0
a(t)dt and {λ1(q)} denotes the first anti-periodic eigenvalues

of
x′′ + (λ+ q(t))x = 0. (1.10)

Then (1.1) has at least one positive T -periodic solution.

The main novelty in the present paper is represented by the conditions at infinity,
which remind of a situation between the first and the second eigenvalue, but are
more general since the comparison involves the mean and the weighted eigenvalue
associated with the functions a, b controlling the g(x)/x.
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During the previous few decades, singular differential equations or singular dy-
namical systems have been attracted the attention of many researchers [2, 9, 11,
14, 15, 18, 26, 33, 34]. It is well-known that electrostatic or gravitational forces
are the most important applications of singular interactions. It was also found
recently that one special singular differential equation which is called “Ermakov-
Pinney equation” plays an important role in the studying of the stability of periodic
solutions of conservative systems with degree of lower freedom (see [7] and the ref-
erences therein). Usually, the proof is based on either variational approach [1, 2]
or topological methods. The proof of the main results in this paper is based on
topological methods, which started with the pioneering paper of Lazer and Solimini
[18]. From then on, some fixed point theorems in cones for completely continuous
operators[13, 28], the method of upper and lower solutions [15, 24], Schauder’s fixed
point theorem [27], degree theory [11, 31] and a nonlinear alternative principle of
Leray-Schauder type [6, 8, 16] have been widely applied.

The rest of this article is organized as follows. In Section 2, some preliminary
results will be given. In Section 3, by the use of topological degree theory, we will
state and prove the main results. To illustrate the new results, some applications
are also given.

2. Preliminaries

In this section, we present some results which will be applied in Sections 3.
Let us first introduce some known results on eigenvalues. Let q be a T -periodic
potential such that q ∈ L1(R). Consider the eigenvalue problems of (1.10) with the
T -periodic boundary condition :

x(0)− x(T ) = x′(0)− x′(T ) = 0, (2.1)

or, with the anti-T -periodic boundary condition :

x(0) + x(T ) = x′(0) + x′(T ) = 0. (2.2)

We use λD1 (q) < λD2 (q) < · · · < λDn (q) < . . . to denote all eigenvalues of (1.10) with
the Dirichlet boundary condition:

x(0) = x(T ) = 0. (2.3)

The following are the standard results for eigenvalues. See, e.g. Reference [21].
(E1) there exist two sequences {λn(q) : n ∈ N} and {λ̄n(q) : n ∈ Z+} such that

−∞ < λ0(q) < λ1(q) ≤ λ1(q) < λ2(q) ≤ λ2(q) < · · · < λn(q) ≤ λn(q) < . . .

where λn(q) → +∞, λn(q) → +∞ as n → +∞. Moreover, λ is an eigen-
value of (1.10)-(2.1) if and only if λ = λn(q) or λn(q) with n is even; and
λ is an eigenvalue of (1.10)− (2.2) if and only if λ = λn(q) or λn(q) with n
is odd.

(E2) If q1 ≤ q2 then

λn(q1) ≥ λn(q2), λn(q1) ≥ λn(q2), λDn (q1) ≥ λDn (q2)

for any n ≥ 1.
(E3) For any n ≥ 1,

λn(q) = min{λDn (qt0) : t0 ∈ R}, λn(q) = max{λDn (qt0) : t0 ∈ R}
where qt0 denotes the translation of q : qt0(t) ≡ q(t+ t0).

(E4) λ̄n(q), λn(q) and λDn (q) are continuous in q in the L1-topology of L1(0, T ).
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(E5) It follows from a variational principle that the first eigenvalue λD1 can be
found as

λD1 (q) = inf
x∈H1

0 (0,T ) x 6=0

∫ T
0

(
x′2(t)− q(t)x2(t)

)
dt∫ T

0
x2(t)dt

.

In particular,
λD1 (q) ≤ −q̄,

where q̄ is the mean value. Moreover, the equality holds if and only if
q(t) = q̄ for a.e. t.

To prove our results, we need the following preliminary results, recall some no-
tation and terminology from [5]. Define L : domL ⊂ X → Z, Lx = ẋ, a Fredholm
mapping of index zero, with domL = {x ∈ X : x(·) is absolutely continuous},
where the Banach spaces X,Z are

X = {x ∈ C([0, T ],Rm) : x(0) = x(T )}, Z = L1([0, T ],Rm)

with their usual norms. Then L is a Fredholm mapping of index zero [32]. Let M0

be the Nemitzky operator from X to Z induced by the map F : X → Rm; that is,
M0 : X → Z, x(·)→ F (x(·)). Consider the equation

Lx = M0x, x ∈ domL.

Lemma 2.1 ([5, Theorem 1]). Let Ω ⊂ X be a bounded open subset and assume
that there is no x(·) ∈ ∂XΩ such that ẋ = f0(x). Then

degL(L−M0,Ω) = (−1)m degB(f0,Ω ∩Rm, 0),

where degL, degB denote the Schauder degree and the Brouwer degree, respectively.

We refer the reader to [32] for more details about degree theory.

3. Proof of Theorem 1.1

We will apply Lemma 2.1 to the singular problem (1.1). To this end, we deform
(1.1) to a simpler singular autonomous equation

x′′ + c0x =
1
x
,

where c0 for some positive constant satisfy 0 < c0 < (π/T )2. The choice of such a
c0 implies that the constant functions a(t) = b(t) ≡ c0 satisfy (1.9). Consider the
homotopy equation

x′′ + τf(x)x′ + g(t, x; τ) = 0, τ ∈ [0, 1], (3.1)

where
g(t, x; τ) = τ(g(x)− e(t)) + (1− τ)(c0x−

1
x

).

We need to find a priori estimates for the possible positive T -periodic solutions of
(3.1).

Note that g(t, x; τ) satisfies the conditions (H1) uniformly with respect to τ ∈
[0, 1]. Moreover, for each τ ∈ [0, 1], g(t, x; τ) satisfies (1.8) with

a = aτ = τa(t) + (1− τ)c0,

b = bτ = τb(t) + (1− τ)c0.

We will prove that aτ and bτ satisfy (1.9) uniformly in τ ∈ [0, 1]. This fact follows
from the convexity of the first eigenvalues with respect to potentials.



EJDE-2015/151 PERIODIC SOLUTIONS 5

Lemma 3.1. Assume q0, q1 ∈ L1(0, T ). Then, for all τ ∈ [0, 1],

λ1(τq1 + (1− τ)q0) ≥ τλ1(q1) + (1− τ)λ1(q0). (3.2)

Note that
āτ = τ ā+ (1− τ)c0 ≥ min(ā, c0) > 0.

Applying Lemma 3.1 to q1 = b and q0 = c0, we have

λ1(bτ ) ≥ τλ1(b) + (1− τ)λ1(c0) ≥ min(λ1(b), λ1(c0)) > 0.

Thus aτ and bτ defined above satisfy (1.9) uniformly in τ ∈ [0, 1].
For obtaining a priori estimates for all possible positive solutions to (3.1)–(2.1),

we simply prove this for all possible positive solutions to (1.1)–(2.1), because aτ , bτ
satisfy (1.8) and also (1.9) uniformly in τ ∈ [0, 1].

Lemma 3.2. Assume that λ1(b) > 0 of the equation

y′′ + (λ+ b(t))y = 0 .

Then

‖y′‖22 ≥
∫ T

0

b(t+ t0)y2(t)dt+ λD1 (bt0)
∫ T

0

y2(t)dt.

Proof. By (E3), we have

λD1 (bt0) ≥ λ1(b) > 0.

for all t0 ∈ R. Then, by the theory of second order linear differential operators [10],
the eigenvalues of

y′′ + (λ+ b(t+ t0))y = 0

with Dirichlet boundary conditions form a sequence

λD1 (bt0) < λD2 (bt0) < . . . ,

which tends +∞, and the corresponding eigenfunctions ψ1, ψ2, . . . are an orthonor-
mal base of L2(0, T ). Hence, given ci ∈ R and y ∈ H1

0 (0, T ), we can write

y(t) =
∑
i≥1

ciψi(t),

and ∫ T

0

((y′(t))2 − b(t+ t0)y2(t))dt =
∑
i≥1

c2i

∫ T

0

((ψ′i(t))
2 − b(t+ t0)ψ2

i (t))dt

=
∑
i≥1

c2iλ
D
i (bt0)

∫ T

0

ψ2
i (t)dt

≥ λD1 (bt0)
∫ T

0

y2(t)dt.

This completes the proof. �

The usual Lp-norm is denoted by ‖ · ‖p, and the supremum norm of C[0, T ] is
denoted by ‖ · ‖∞.
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Lemma 3.3. Under the assumptions as in Theorem 1.1, there exist B1 > B0 > 0
such that any positive T -periodic solution x(t) of (1.1)-(2.1) satisfies

B0 < x(t0) < B1, (3.3)

for some t0 ∈ [0, T ].

Proof. Let x(t) be a positive T -periodic solution of (1.1)-(2.1). By (H1), there
exists B0 > 0 such that

g(s)− e(t) < 0 for all 0 < s < B0.

Integrate (1.1) from 0 to T , we obtain∫ T

0

(g(x(t))− e(t))dt = −
∫ T

0

x′′(t)dt−
∫ T

0

f(x)x′dt = 0.

Thus
∫ T

0
(g(x(t))− e(t))dt = 0, there exists t∗ ∈ [0, T ] such that x(t∗) > B0.

Next, noticing (1.9), we can take some constant ε0 ∈
(
0,min{a, λ1(b)}

)
. It

follows from (H2) that there exists a constants B1(> B0) large enough such that

a(t)− ε0 ≤
g(s)− e(t)

s
≤ b(t) + ε0. (3.4)

for all t and all s ≥ B1. We assert that x(t∗) < B1 for some t∗. Otherwise, assume
that x(t) ≥ B1 for all t. Define

p(t) :=
g(x(t))− e(t)

x(t)
.

By (3.4),
a(t)− ε0 ≤ p(t) ≤ b(t) + ε0

for all t. Moreover, x(t) satisfies the following differential equation

x′′ + f(x)x′ + p(t)x = 0.

Write x = x̃+ x̄, where x̄ = 1
T

∫ T
0
x(t)dt, then x̃ satisfies

− x̃′′ − f(x̃+ x̄)x̃′ = p(t)x̃+ p(t)x̄. (3.5)

Integrating (3.5) from 0 to T , we have∫ T

0

p(t)x̃(t)dt = −x̄
∫ T

0

p(t)dt. (3.6)

Multiplying (3.5) by x̃ and using integration by parts, we obtain

‖x̃′‖22 =
∫ T

0

p(t)x̃2(t)dt+ x̄

∫ T

0

p(t)x̃(t)dt

=
∫ T

0

p(t)x̃2(t)dt− x̄2(t)
∫ T

0

p(t)dt

≤
∫ T

0

p(t)x̃2(t)dt,

(3.7)

where the fact
∫ T

0
p(t)dt > T (ā− ε0) > 0 is used.
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Note that x̃(t0) = 0 for some t0, x̃(t0 + T ) = 0, so x̃(t) ∈ H1
0 (t0, t0 + T ). We

assert that x̃ ≡ 0. On the contrary, assume that x̃ 6≡ 0. Now by (3.7), the first
Dirichlet eigenvalue

λD1 (p|[t0,t0+T ]) = inf
ϕ∈H1

0 (t0,t0+T ), ϕ 6=0

∫ t0+T

t0

(
ϕ′2(t)− p(t)ϕ2(t)

)
dt∫ t0+T

t0
ϕ2(t)dt

≤ 0.

So,
λ1(p) = min{λD1 (p)} ≤ 0.

On the other hand, p(t) < b(t) + ε0,

λ1(p) ≥ λ1(b+ ε0) = λ1(b)− ε0 > 0.

This is a contradiction.
Now it follows from (3.6) that x̄ = 0 and x ≡ 0, a contradiction to the positiveness

of x(t). We have proved that x(t∗) > B0 for some t∗ ∈ [0, T ] and x(t∗) < B1 for
some t∗ ∈ [0, T ]. Thus the intermediate value theorem implies that (3.3) holds. �

Lemma 3.4. There exist B2 > B1 > 0, B3 > 0 such that any positive T -periodic
solution x(t) of (1.1)-(2.1) satisfies

‖x‖∞ < B2, ‖x′‖∞ < B3.

Proof. From (H2) and (3.4), we know that there exists h0 > 0 such that

g(s)− e(t) ≤ (b(t) + ε0)s+ h0 (3.8)

for all t and s > 0. Multiplying (1.1) by x and then integrating over [0, T ], using
the fact that ∫ T

0

f(x(t))x′(t)x(t)dt = 0,

we obtain

‖x′‖22 =
∫ T

0

−(xx′′ + xf(x)x′)dt

=
∫ T

0

(g(x(t))− e(t))x(t)dt

≤
∫ T

0

((b(t) + ε0)x(t) + h0)x(t)dt

=
∫ T

0

b(t)x2(t)dt+ ε0‖x‖22 + h0‖x‖1.

(3.9)

It follows from Lemma 3.3 that there exists t0 satisfying B0 < x(t0) < B1. Let
u(t) = x(t+ t0)− x(t0), then u ∈ H1

0 (0, T ). Thus∫ T

0

b(t)x2(t)dt =
∫ T

0

b(t+ t0)x2(t+ t0)dt

=
∫ T

0

b(t+ t0)
(
x2(t0) + 2x(t0)u(t) + u2(t)

)
dt

≤ B2
1‖b‖1 + 2B1‖b‖2‖u‖2 +

∫ T

0

b(t+ t0)u2(t)dt.

The other terms in (3.9) by the Hölder inequality can be estimated as follows:

ε0‖x‖22 ≤ ε0(TB2
1 + 2B1T

1/2‖u‖2 + ‖u‖22),
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h0‖x‖1 ≤ h0(TB1 + T 1/2‖u‖2).

Thus (3.9) reads

‖u′‖22 ≤ A0 +A1‖u‖2 + ε0‖u‖22 +
∫ T

0

b(t+ t0)u2(t)dt, (3.10)

where

A0 = ε0TB
2
1 + h0TB1 +B2

1‖b‖1,

A1 = 2ε0B1T
1/2 + h0T

1/2 + 2B1‖b‖2
are positive constants.

On the other hand, using Lemma 3.2,

λ1(b(t))‖u‖22 ≤ λD1 (bt0)‖u‖22 ≤
∫ T

0

(
u′2(t)− b(t+ t0)u2(t)

)
dt,

and we obtain from (3.10) that

(λ1(b(t))− ε0)‖u‖22 ≤ A1‖u‖2 +A0.

Consequently, ‖u‖2 < A2 for some A2 > 0. By (3.10), one has ‖x′‖2 = ‖u′‖2 < A3

for some A3 > 0. From these, for any t ∈ [t0, t0 + T ],

|x(t)| ≤ |x(t0)|+
∣∣ ∫ t

t0

x′(t)dt
∣∣

≤ B1 + T 1/2‖x′‖2
≤ B1 + T 1/2A3 := B2.

Thus ‖x‖∞ < B2 is obtained.
To prove ‖x′‖∞ < B3, we write (1.1) as

−x′′(t) = H(t) := f(x(t))x′(t) + g(x(t))− e(t).

As
∫ T

0
H(t)dt = 0, thus ‖H(t)‖1 = 2‖H+(t)‖1. From (3.8) we have

H+(t) = max(H(t), 0)

≤ |f(x(t))| · |x′(t)|+ |b(t) + ε0|x(t) + h0

≤ C1|x′(t)|+ C2,

where C1 = max0≤y≤B2 |f(y)|. Since x(0) = x(T ), there exists t1 ∈ [0, T ] such that
x′(t1) = 0. Therefore,

‖x′‖∞ = max
0≤t≤T

|x′(t)|

= max
0≤t≤T

∣∣ ∫ t

t1

x′′(s)ds
∣∣

≤
∫ T

0

|H(s)| ds

= 2
∫ T

0

∣∣H+(s)
∣∣ ds

≤ 2
(
C3T

1/2‖x′‖2 + TC4

)
≤ 2
(
A3C1T

1/2 + TC2

)
:= B3.
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We have proved is that the W 2,1 norms of x are bounded. �

Next, we obtain the positive lower estimates for x(t) based on the condition
(H1).

Lemma 3.5. There exists a constant B4 ∈ (0, B0) such that any positive solution
x(t) of (1.1)–(2.1) satisfies

x(t) > B4 for all t.

Proof. From (H1), we fix some A4 ∈ (0, B0) such that

g(s)− e(t) < −B3C1.

for all t and all 0 < s ≤ A4, where C1 is the same as above. Assume now that

m = min
t∈[0,T ]

x(t) = x(t2) < A4.

By Lemma 3.3, maxt x(t) > B0. Let t3 > t2 be the first time instant such that
x(t) = A4. Then for any t ∈ [t2, t3], we have x(t) ≤ A4 and |−f(x(t))x′(t)| ≤ B3C1.
Hence, for t ∈ [t2, t3],

x′′(t) = −f(x(t))x′(t)− g(x(t))− e(t) > B3C1 − f(x(t))x′(t) ≥ 0.

As x′(t2) = 0, x′(t) > 0 for t ∈ (t2, t3]. Therefore, the function x : [t2, t3] → R has
an inverse, denoted by ξ.

Now multiplying (1.1) by x′(t) and integrating over [t2, t3], we obtain∫ A4

m

−g(ξ(x))dx =
∫ t3

t2

−g(x(t))x′(t)dt

=
∫ t3

t2

(x′′(t)x′(t) + f(x(t)(x′(t))2 + e(t)x′(t))dt ≤ A5

for some A5 > 0, where Lemma 3.4 is used. By (H1),∫ A4

m

−g(ξ(x))dx→ +∞ (3.11)

if m→ 0+. Thus we know from (3.11) that m > B4 for some constant B4 > 0. �

Now we give the proof of Theorem 1.1. Consider the homotopy equation (3.1),
we can get a priori estimates as in Lemmas 3.3, 3.4 and 3.5. That is, any positive
T -periodic solution of (3.1) satisfies

B′4 < x(t) < B′2, ‖x′‖∞ < B′3

for some positive constants B′4, B
′
2, B

′
3.

Let C = max{B′4, B′2, B′3} and let the open bounded in X be

Ω = {x ∈ X :
1
C
< x(t) < C and |x′(t)| < C for all t ∈ [0, T ]}.

Obviously, Ω contains the constant function x(t) = r0, where r0 > 0 is the solution
of

c0x−
1
x

= 0.

Let X be a Banach space of functions such that C1([0, T ]) ⊆ X ⊆ C([0, T ]), with
continuous immersions. Set X∗ = {x ∈ X : mint x(t) > 0}.
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Define the space:

D(L) = {x ∈W 2,1(0, T ) : x(0) = x(T ), x′(0) = x′(T )},

and the following two operators:

L : D(L) ⊂ X → L1(0, T ), (Lx)(t) = −x′′(t),

and

Nτ : X∗ → L1(0, T ),

(Nτx)(t) = τf(x(t))x′(t) + τ(g(x(t))− e(t)) + (1− τ)(c0x−
1
x

).

Taking σ ∈ R not belonging to the spectrum of L, the T -periodic for equation (3.1)
is thus equivalent to the operator equation

Lx = Nτx,

which is also can be translated to

x− (L− σI)−1(Nτ − σI)x = 0,

since L− σI is invertible. By the homotopy invariance of degree and Lemma 2.1,

deg(I − (L− σI)−1(N1 − σI),Ω, 0) = deg(I − (L− σI)−1(N0 − σI),Ω, 0)

= deg(c0x−
1
x
,Ω ∩ R, 0) = +1.

Thus (3.1), with τ = 1, has at least one solution in Ω, which is a positive T -periodic
solution of (1.1). The proof of Theorem 1.1 is thus complete.

Remark 3.6. It is known (see (E3), (E5)) that

λ̄0(a) ≤ −1/T
∫ T

0

a(t)dt < 0,

Therefore (1.9) implies
λ̄0(a) < 0 < λ1(b).

Remark 3.7. Some classes of potentials q for λ1(q) > 0 to hold have been found
recently in [4]. To describe these, let K(α, T ) denote the best Sobolev constant in
the inequality

C‖u‖2α ≤ ‖u′‖22 for all u ∈ H1
0 (0, T ).

The explicit formula for K(α, T ) is

K(α, T ) =

{
2π

αT 1+2/α

(
2

α+2

)1−2/α( Γ(1/α)
Γ(1/2+1/α)

)2
, for 1 ≤ α <∞,

4/T, for α =∞,

and Γ(·) is the Euler’s Gamma function.

Now [4, Theorem 2.1] reads as follows: let q ∈ Lp(0, T ) for some 1 ≤ p ≤ ∞,
q+ = max{q, 0} is the positive part of q and p∗ = p

p−1 the conjugate of p. If

‖q+‖p < K(2p∗, T ),

then

λ1(q) ≥
( π
T

)2 (
1− ‖q+‖

K(2p∗, T )

)
> 0.



EJDE-2015/151 PERIODIC SOLUTIONS 11

Example 3.8. Let f, ϕ, h ∈ C(R,R), ϕ(t) ≥ 0, γ ≥ 1. For some 1 ≤ p ≤ ∞, if

‖ϕ+‖p < K(2p∗, T ),

then the singular equation

x′′ + f(x)x′ + ϕ(t)x− 1
xγ

= h(t)

has at least one positive T -periodic solution.
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