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APPROXIMATION OF THE SINGULARITY COEFFICIENTS OF
AN ELLIPTIC EQUATION BY MORTAR SPECTRAL ELEMENT

METHOD

NEJMEDDINE CHORFI, MOHAMED JLELI

Abstract. In a polygonal domain, the solution of a linear elliptic problem
is written as a sum of a regular part and a linear combination of singular

functions multiplied by appropriate coefficients. For computing the leading

singularity coefficient we use the dual method which based on the first singular
dual function. Our aim in this paper is the approximation of this leading

singularity coefficient by spectral element method which relies on the mortar

decomposition domain technics. We prove an optimal error estimate between
the continuous and the discrete singularity coefficient. We present numerical

experiments which are in perfect coherence with the analysis.

1. Introduction

If the data are smooth, the solution of an elliptic partial differential equation is
not regular when the domain is polygonal. For a Dirichlet problem of the Laplace
operator, we define some singular functions depending only on the geometry of the
domain. The solution is written as the sum of a regular part and singular functions
multiplied by appropriate coefficients [6, 5]. For approximating the leading singu-
larity coefficients we use two algorithms. The first one is Strang and Fix algorithm
[9], which consists to add the leading singularity function to the discrete space see
[4]. For the second algorithm we apply the dual method. The numerical compu-
tation of the leading singularity coefficient has been performed by finite elements,
see Amara and Moussaoui [1, 2]. This coefficient is physically meaningful in solid
mechanics (crack propagation). We use the mortar spectral element method: the
domain is decomposed in a union of finite number of disjoint rectangles, the dis-
crete functions are polynomials of high degree on each rectangle and are enforced
to satisfy a matching condition on the interfaces. This technique is nonconforming
because the discrete functions are not continuous. We refer to Bernardi, Maday
and Patera [3] for the introduction of the mortar spectral element method.

An outline of this article is as follows. In the second section, we give the dual
singular function and the formula for finding the leading coefficient of the singular-
ity. This coefficient does not depend on the data function or the geometry of the
domain but it just depends on the solution. In section 3, we present the discrete
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problem and the discrete leading singularity coefficient. The section 4 is devoted
to the estimation of the error and we prove the optimality. Finally, a results of a
numerical test are given in Section 5.

2. Dual singular function and the coefficient of the singularity

In the rest of the paper, we assume that our domain Ω is a polygon of R2 such
that there exists a finite number of open rectangles Ωk, 1 ≤ k ≤ K, for which

Ω̄ = ∪Kk=1Ω̄k and Ωk ∩ Ωl = ∅ for k 6= l. (2.1)

We suppose also that the intersection of each Ω̄k (for 1 ≤ k ≤ K) with the boundary
∂Ω is either empty or a corner or one or several entire edges of Ωk. We choose the
coordinate axis parallel to the edge of the Ωk.

Handling the singularity is a local process. Therefore, it is not restricted to
suppose that Ω has a unique non-convex corner a with an angle ω equal either to
3π/2 or to 2π (case of the crack). We choose the origin of the coordinate axis at
the point a, we introduce a system of polar coordinates (r, θ) where r stands for the
distance from a and θ is such that the line θ = 0 contains an edge of ∂Ω. For more
technical proof that will appear later we need to make the following conformity
assumption: if the intersection of Ω̄k and Ω̄l, k 6= l contains a, then it contains
either a or both an edge of Ωk and Ωl. Let Σ be the open domain in Ω such that
Σ̄ is the union of the Ω̄k which contain a.

The model equation under consideration is the following Dirichlet problem for
the Laplace operator:

−∆u = f in Ω
u = 0 on ∂Ω.

(2.2)

If the data f belongs to Hs−2(Ω), then the above problem admits a unique solution
u belongs to Hs(Ω). This solution is decomposed as:

u = ur + λS1, (2.3)

where the function ur belongs to Hs(Ω) for s < 1 + 2π
ω such that

‖ur‖Hs(Ω)+ | λ |< C‖f‖Hs−2(Ω).

Here λ is the leading singularity coefficient and S1 is the first singular function
given by

S1(r, θ) = χ(r)r
π
ω sin(πθ/ω),

with χ is a smooth cut-off function with supported on Σ̄ and is equal to 1 in a
neighborhood of a [7].

Since the Laplace operator with the homogeneous Dirichlet boundary conditions
is self-adjoint operator, we define the dual singular function associated with S1 by:

S∗1 (r, θ) = χ(r)r−π/omega sin(πθ/ω).

We remark that this function does not belong to H1(Ω), however ∆S∗1 belongs to
the space L2(Ω). This allows us to define the function ϕ∗ in H1(Ω) solution of the
following problem∫

Ω

∇ϕ∗∇ψ dx dy =
∫

Ω

∆S∗1ψdx for all ψ ∈ H1
0 (Ω). (2.4)

More details are given in [8] and [7].
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Proposition 2.1. Let u, respectively ϕ∗ be the solution of the problem (2.2), re-
spectively (2.4), then the coefficient of the singularity λ satisfies

λπ =
∫

Ω

fS∗1 dx+
∫

Ω

u∆S∗1 dx =
∫

Ω

f(S∗1 − ϕ∗) dx. (2.5)

Proof. Let C1 = Ω ∩ B(a, R) where B(a, R) is the ball of center a and the radius
R. Since the cut off function χ is equal to 1 in a neighborhood of a, we can choose
R such that: ∆S1 = ∆S∗1 = 0 in C1. Then, using (2.2) and (2.3) we have∫

Ω

fS∗1 dx =
∫
C1

−∆urS∗1 dx+
∫

Ω\C1

−∆uS∗1 dx.

Integrating by parts, this yields∫
Ω

fS∗1 dx+
∫
C1

u∆S∗1 dx =
∫ ω

0

(
∂r(u− ur)S∗1 − (u− ur)∂r(S∗1 )

)
(R, θ)r dθ.

Replacing u− ur with λS1, we obtain∫
Ω

fS∗1 dx+
∫

Ω

u∆S∗1 dx = λ

∫ ω

0

(
∂r(S1)S∗1 − S1∂r(S∗1 )

)
(R, θ) = πλ.

To get the second equality, we replace ψ by u in the problem (2.4) and we integrate
by parts. �

3. Approximation of the singularity coefficient

In this section we recall some basic notion concerning the spectral element
method and the mortar matching condition. Since the discretization is essentially
a Galerkin method relying on the variational formulation (2.4), we need to define
the discrete space and give the quadrature formula which is used to compute the
integrals of polynomials [10].

The discretization parameter is a K-tuple of integers (N1, . . . , NK) larger than
or equal to 2 denoted by δ. For any nonnegative integer n and for 1 ≤ k ≤ K,
we denote by Pn(Ωk) the space of polynomials on Ωk such that their degree with
respect to each variable x and y is less than or equal to n. The restriction of discrete
functions to Ωk will belong to PNk(Ωk).

Let us recall the Gauss-Lobatto quadrature formula: for any positive integer n,
there exists a unique set of (n+1) nodes ξj in [−1, 1] and of (n+1) positive weights
ρj ( for 0 ≤ j ≤ n ) such that the following equality holds for any polynomial φ
with degree less than or equal to 2n− 1:∫ 1

−1

φ(z)dz =
n∑
j=0

φ(ξj)ρj .

If T k denotes an affine mapping from (−1, 1)2 onto Ωk, we define a bilinear form
on continuous functions u and v on Ω̄k as follow:

(u, v)Nk =
| Ωk |

4

Nk∑
i=0

Nk∑
j=0

(uoT k)(ξi, ξj)(voT k)(ξi, ξj)ρiρj ,

where | Ωk | is the area of Ωk.
We need some more notations to enforce the matching condition. Let ν be the

set of all the corners of the Ωk for 1 ≤ k ≤ K. We denote by Γk,j for 1 ≤ j ≤ 4 the
edges of Ωk and γkl = Ω̄k ∩ Ω̄l for k 6= l. We make the further assumption that the
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boundary ∂Ω consists of entire edges of the Ωk. Next we introduce the skeleton of
the decomposition:

S = (∪Kk=1∂Ωk) \ ∂Ω,

and we assume that it is a disjoint union of mortars (γm) , 1 ≤ m ≤ M (M is
positive integer)

S = ∪Mm=1γm and γm ∩ γm′ = ∅ for m 6= m′,

where each mortar γm is an entire edge of one rectangle Ωk, denoted by Ωk(m).
For any nonnegative integer n and for any segment γ, we denote by Pn(γ) the

space of polynomials with degree less or equal to n on γ. The mortar space Wδ is
then defined by

Wδ = {φ ∈ L2(S), such that for all m, 1 ≤ m ≤M, φ/γm ∈ PNk(m)(γm)}.

The space Xδ is then defined as in the standard mortar method [3]. It is the space
of function vδ in L2(Ω) such that

• The restriction of vδ to Ωk, for 1 ≤ k ≤ K, belongs to PNk(Ωk).
• The function vδ vanishes on ∂Ω.
• The mortar function ϕ defined on S by

ϕ/γm = vδ/Ωk(m)/γm, for 1 ≤ m ≤M,

satisfies that for 1 ≤ k ≤ K and for any edge Γ of Ωk contained in S,

∀ψ ∈ PNk−2(Γ),
∫

Γ

(vδ/Ωk − ϕ)(τ)ψ(τ)dτ = 0.

Later we will need to define the space

X−δ = {vδ ∈ Xδ such that vδ/Ωk ∈ PNk−1(Ωk) for 1 ≤ k ≤ K}.

Remark 3.1. In the general case of nonconforming decomposition, the space Xδ

is not embedded in H1(Ω) since the functions in Xδ are not necessarily continuous
through the interfaces. To ensure the continuity in a neighbourhood of a, we assume
the following conformity assumption:

Conformity assumption: If a is the extremity of an edge Γk(m),j(m),
this edge necessarily coincides with the edge of an another rectangle
Ωl.

Then we suppose that Nk(m) ≤ Nl.

Now, we define the scalar product on Ω as follows:

(ϕ,ψ)δ =
K∑
k=1

(ϕ,ψ)Nk for all ϕ,ψ ∈ C0(Ω̄k).

Our goal now is to give a more accurate approximation than the Strang and Fix
algorithm for calculating the singularity coefficient λ. In fact, let X∗δ = Xδ + RS1

be the augmented discrete space. We consider the following two discrete problems:
• Find a function u∗δ = uδ + λS1 in X∗δ such that

a∗δ(u
∗
δ , v
∗
δ ) =

K∑
k=0

∫
Ωk

f/Ωkv
∗
δ/Ωk dx dy for all v∗δ = vδ + µS1 ∈ X∗δ . (3.1)
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• Find ϕ∗δ in X∗δ such that

a∗δ(ϕ
∗
δ , ψ
∗
δ ) = (∆S∗1 ;ψ∗δ )δ for all ψ∗δ ∈ X∗δ , (3.2)

where

a∗δ(u
∗
δ , v
∗
δ ) =

K∑
k=1

(
(∇uk,∇vk)Nk + λ

∫
Ωk

∇S1∇vk dx dy

+ µ

∫
Ωk

∇uk∇S1 dx dy + λµ

∫
Ωk

(∇S1)2 dx dy
)
.

We refer to [4] for the numerical analysis and the implementation by the mortar
spectral element method of this problems.

Proposition 3.2. Let u, ϕ∗, u∗δ and ϕ∗δ be the respective solutions of the problems
(2.2),(2.4), (3.1) and (3.2), then

πλ∗δ =
∫

Ω

fS∗1 dx+
∫

Ω

u∗δ∆S
∗
1 dx) =

∫
Ω

f(S∗1 − ϕ∗δ) dx (3.3)

and

π(λ− λ∗δ) =
K∑
k=1

∫
Ωk

∇(u− u∗δ)|Ωk∇(ϕ∗ − ϕ∗δ)/Ωk dx

+
∑

1≤k<l≤K

∫
γkl

(
∂u

∂nk
)(ϕ∗δ/Ωk − ϕ∗δ/Ωl)− (

∂ϕ∗

∂nk
)(u∗δ/Ωk − u∗δ/Ωl) dτ.

(3.4)

Proof. To obtain (3.3), we proceed in the same way as in Proposition 2.1. Now,
using (2.5) and (3.3), we obtain

π(λ− λ∗δ) =
∫

Ω

f(ϕ∗δ − ϕ∗) dx =
K∑
k=1

∫
Ωk

∆u/Ωk(ϕ∗ − ϕ∗δ)/Ωk dx.

Integrating by part yields

π(λ−λ∗δ) =
K∑
k=1

∫
Ωk

∇u∇(ϕ∗−ϕ∗δ) dx+
∑

1≤k<l≤K

∫
γkl

(
∂u

∂nk
)(ϕ∗δ/Ωk

−ϕ∗δ/Ωl ) dτ. (3.5)

Let ϕ∗δ = ϕδ + µS1 and u∗δ = uδ + λS1 be in X∗δ . Since

a∗δ(ϕ
∗
δ , u
∗
δ) =

K∑
k=1

(∇ϕδ/Ωk
,∇uδ/Ωk

)Nk + λ

∫
Ωk

∇S1∇uδ dx

+ µ

∫
Ωk

∇ϕδ∇S1 dx+ λµ

∫
Ωk

(∇S1)2 dx.

If uδ is in X−δ then
K∑
k=1

(∇ϕδ/Ωk ,∇uδ/Ωk)Nk =
K∑
k=1

∫
Ωk

∇ϕδ/Ωk
∇uδ/Ωk

dx.

Using (3.2), we deduce that

a∗δ(ϕ
∗
δ , u
∗
δ) =

K∑
k=1

∫
Ωk

∇ϕ∗δ∇u∗δ dx =
K∑
k=1

∫
Ωk

∆S∗1u
∗
δ dx. (3.6)
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From (3.6), ∆ϕ∗ = ∆S∗1 in the distributions sense and since ϕ∗ = 0 on ∂Ω, this
yields

a∗δ(ϕ
∗
δ , u
∗
δ) =

K∑
k=1

∫
Ωk

∆ϕ∗/Ωku
∗
δ/Ωk

dx,

hence, integration by part yields

a∗δ(ϕ
∗
δ , u
∗
δ) =

K∑
k=1

∫
Ωk

∇ϕ∗/Ωk∇u
∗
δ/Ωk

dx−
∑

1≤k<l≤K

∫
γkl

(
∂ϕ∗

∂nk
)(u∗δ/Ωk − u∗δ/Ωl) dτ.

(3.7)
Thanks to (3.6) and (3.7), we conclude that

K∑
k=1

∫
Ωk

∇(ϕ∗ − ϕ∗δ)/Ωk∇u
∗
δ/Ωk

dx =
∑

1≤k<l≤K

∫
γkl

(
∂ϕ∗

∂nk
)(u∗δ/Ωk − u∗δ/Ωl) dτ.

Adding this equality to (3.6), we obtain de desired result. �

4. Error estimation

In the following theorem, we give our result concerning the error on the approx-
imation of the singularity coefficient.

Theorem 4.1. Let s ≥ 0 and f ∈ Hs−2(Ω). The error between λ and λ∗δ satisfies
the following estimation: For ε > 0

|λ− λ∗δ | ≤ CN−1
( K∑
k=1

N−σkk

)
‖f‖Hs−2(Ω),

where N = inf1≤k≤K Nk and

σk =


s− 1 if Ω̄k contains no corners of Ω̄,
inf{s− 1, 8− ε} if Ω̄k contains corners different from a,
inf{s− 1, 4π

ω − ε} if Ω̄k contains a.

Proof. To estimate |λ− λ∗δ |, we have to estimate each term of the inequality (3.4).
For the first term, using Cauchy-Schwarz and Poincaré-Friedrichs inequalities we
deduce that∣∣ K∑

k=1

∫
Ωk

∇(u− u∗δ)∇(ϕ∗ − ϕ∗δ) dx
∣∣ ≤ C‖u− u∗δ‖∗‖ϕ∗ − ϕ∗δ‖∗. (4.1)

Since u (respectively u∗δ) is the solution of the continuous problem (2.2) (respectively
the discrete problem (3.1)). As the same for ϕ and ϕ∗δ , are respectively the solutions
of the problems (2.4) and (3.2) with second member equal to ∆S∗1 in L2(Ω), we
conclude by [4, result (5.16)].

From the continuity of S1, we deduce that for any function ϕ∗δ in X∗δ the jump
ϕ∗δ/Ωk

− ϕ∗δ/Ωl
is equal to ϕδ/Ωk − ϕδ/Ωl

which vanishes on Σ due to the conformity
assumption.

We note also that u = ur on Ω \ Σ̄. Hence∫
γkl

(
∂u

∂nk
)(ϕ∗δ/Ωk

−ϕ∗δ/Ωl
) dτ =

∫
γkl

(
∂ur
∂nk

)(ϕ∗δ/Ωk
− φ) dτ −

∫
γkl

(
∂ur
∂nk

)(ϕ∗δ/Ωl
− φ) dτ,
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where φ is the mortar function associated to ϕδ. So, the estimation of this quantity
can be evaluated as in [4, result (5.24)]. If Γk is not a mortar then∣∣ ∑

1≤k<l≤K

∫
γkl

(
∂u

∂nk
)(ϕ∗δ/Ωk

− ϕ∗δ/Ωl
) dτ

∣∣
≤ C

K∑
k=1

4∑
j=1

inf
ψk,j∈PN

k−2 (Γkj)
‖∂ur
∂nk

− ψkj‖(H1/2(Γkj))′‖ϕ− ϕ∗‖∗,
(4.2)

by taking ψk,j = ΠNk−2( ∂ur∂nk
), where ΠNk−2 is the orthogonal projection operator

from L2(Γk) in PNk−2 (Γk). Now, let us consider

ur = ũr + λ̃S2,

where S2 is the second singular function [4], its proved in the same way that∣∣ ∑
1≤k<l≤K

∫
γkl

(
∂u

∂nk
)(ϕ∗δ/Ωk

− ϕ∗δ/Ωl
) dτ

∣∣
≤ C

K∑
k=1

4∑
j=1

inf
ψk,j∈PN

k−2 (Γkj)
‖∂ũr
∂nk

− ψkj‖(H1/2(Γkj))′‖ϕ− ϕ∗‖∗.

Using the fact that ũr belongs to Hs(Ω) for s between 3/2 and 1 + 3π
ω , we take

ψkj = ΠNk−2( ∂eur
∂nk

) in PNk−2(Γkj) to deduce the desired estimation.
Now, to get the estimation of the third term, we note that ∆S∗1 belongs to L2(Ω).

Since the function ϕ∗ is the sum of ϕ̃∗r in H2(Ω) and a linear combination of S1

and S2 then, for the same reasons as above we have∣∣ ∑
1≤k<l≤K

∫
γkl

(
∂ϕ∗

∂n
)(u∗δ/Ωk

− u∗δ/Ωl
) dτ

∣∣
≤ C( inf

vδ∈Xδ
‖ur − vδ‖∗)

K∑
k=1

4∑
j=1

inf
Xk,j∈PN

k−2 (Γkj)
‖∂ϕ̃r
∂nk

−Xkj‖(H1/2(Γkj))′ .

(4.3)

Since ∂ eϕr
∂nk

belongs to H1/2(Γkj), we can choose Xk,j = ΠNk−2(∂ eϕr
∂nk

) in PNk−2(Γkj)
and consider the fact that

inf
vδ∈Xδ

‖ur − vδ‖∗ ≤ inf
vδ∈Xδ

‖ũr − vδ‖∗+ | λ̃ | inf
vδ∈Xδ

‖S2 − vδ‖∗.

We complete the proof by combining (4.1), (4.2) and (4.3). �

Remark 4.2. Note that the convergence order is as N ε−3 in the case of the crack.
However, in the case ω = 3π

2 , the convergence order is as N ε− 11
3 . This proves the

high accuracy of the method.

5. Implementation and numerical results

To write the algebraic system of the problem (3.1), it is necessary to choose a
basis of the discrete space X∗δ . This basis is naturally defined by the local basis (on
each sub-domain). Let hNj be the Lagrange polynomials

hNj ∈ P([−1, 1]), hNj (ξ) = δij for 0 ≤ i, j ≤ N.
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Here ξi are the (N + 1) Gauss-Lobatto nodes. Then for all vδ in Xδ

vδ(x, y)/Ωk =
Nk∑
i=0

Nk∑
j=0

vi,jNkh
Nk
i (x)hNkj (y),

where vi,jNk = vδ(ξki , ξ
k
j )/Ωk , the ξki , respectively hNki deduced from ξi, respectively

from hNi by translation and dilatation.
Now, for v∗δ in X∗δ there exists a function (vδ, λ) belongs to Xδ × R such that

v∗δ = vδ + λS1 and

v∗δ (x, y)/Ωk =
Nk∑
i=0

Nk∑
j=0

vi,jNkh
Nk
i (x)hNkj (y) + λS1/Ωk .

Note that the internal degrees of freedom vi,jNk for 1 ≤ i, j ≤ (Nk − 1) are free.
However, the boundary degrees of freedom found by the transformation of the
mortar functions, they are linked by the following integral matching condition∫

Γk,l
(vδ/Ωk − φ)(τ)ψ(τ)dτ = 0 for all ψ ∈ P(Γk,l). (5.1)

Let Q be the matrix reflecting the transmission condition on the interfaces of
the sub-domains. QT its transpose purges the vector of unknowns from the false
degrees of freedom. The calculation of this matrix is local for each pair edge-mortar.

Now, let φ be a mortar function such that

φ/γm =
Nk(m)∑
i=0

φmi h
Nk(m)
i (s), 1 ≤ m ≤M,

here s is a local coordinate defined on the interval [−1, 1].
At this stage, we need to determine a basis of the space of test functions

PNk−2(Γk,l) identified with PNk−2(]− 1, 1[). Then

ψ/Γk,l =
Nk−1∑
q=1

βqη
Nk−2
q (s̃)

where

ηNk−2
q (z) =

(−1)Nk−qLNk(z)
(ξq − z)

, z ∈]− 1, 1[, q ∈ {1, . . . , Nk − 1},

with s̃ is a local variable in (−1, 1) and LN is a Legendre polynomial of order N
( more details are given in [10]). Hence, the integral matching condition (5.1) is
given as vδ = Qφ.

The matrix Q is not built and the computation of the vector vδ on the spectral
nodes of the edge Γk,l, 1 ≤ k ≤ K, 1 ≤ l ≤ 4 depends only on the value of φ/γm.
Then, we introduce the matching global matrix vkij/internal

vkij/boundary
λ


︸ ︷︷ ︸

v∗δ

=

 I 0 0
0 Q̃ 0
0 0 1


︸ ︷︷ ︸

Q

vkij/internal
φmj
λ


︸ ︷︷ ︸

ṽ∗δ

,

for 1 ≤ k ≤ K, and 1 ≤ m ≤M .
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After giving the basis of the space X∗δ and the matrix Q, we can write the discrete
problem (3.1) in matrix form

Ãu∗δ = F (5.2)

where Ã takes the form

(∇(hihj);∇(hphq))N1 0 . . 0
R
Ω1
∇S1∇(hphq)

0 .
. .
.

R
ΩN∆

∇S1∇(hphq)

. 0
. .
. .
0 . . 0 (∇(hihj);∇(hphq))Nk 0R

Ω1
∇S1∇(hihj) .

R
ΩN∆

∇S1∇(hihj) 0 .
R
Ω(∇S1)2


The k-th block (∇(hihj);∇(hphq))Nk for 1 ≤ i, j ≤ Nk − 1 and 1 ≤ p, q ≤ Nk − 1,
represents the Neumann Laplace operator on the sub-domain Ωk, and F is the
second member given by

F =


(hphq, f)N1

...
(hphq, f)Nk∫

Ω
fS1dx

 .

Finally, u∗δ is the vector of admissible unknown. It is constitute by the values of
the solution at a collocation nodes in sub-domains and their respective boundary.

Note that we do not solve the system (5.2) because it has false degrees of freedom.
However, the global system that we solve is the following

QT ÃQũ∗δ = QTF, (5.3)

where ũ∗δ is the vector composed from the unknown on the internal nodes and
the value of the mortar function φ on the skeleton S. The matrix A = QT ÃQ is
symmetric and positive defined. Then, we will use the gradient conjugate method
to solve the problem (5.3).

For this, let u0 arbitrary, r0 = QTF −Au0, q0 = r0 and

αn =
(rn, rn)

(qn, Aqn)
, un+1 = un + αnqn ,

rn+1 = rn − αnAqn , βn =
(rn+1, rn+1)

(rn, rn)
,

qn+1 = rn+1 + βnqn .

Although the resolution by the gradient algorithm is global, the calculation is made
locally. Indeed, the product matrix-vector which is the most expensive induces the
following elementary products

Ãkijmnu
k
m + Ckijλ = δjnρqρnDqju

k
mn + δimρmρqDqiDqnu

k
mn + Ckijλ, (5.4)

where

Ãkijmn = (∇(hihj),∇(hmhn))Nk ,

Ckij =
∫

Ωk

∇S1∇(hihj)dx, Dij =
dhj
dz

(ξi)

is the monodimensional derivative operator and δij is the Kronecker symbol.
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The local matrices Ãkijmn are full, thus the coast is as O(N4) operations and
O(N4) memory space. The tensorisation which consists to write the product
matrix-vector as:

Ãkijmnu
k
m = [δjnDqj [ρqρn[Dqmu

k
mn]]] + [δinDqi[ρqρm[Dqnu

k
mn]]]

reduces the cost of operations to O(N3) and the memory space to O(N2) by sub-
domain.

We present now some numerical results on the approximation of the solution of
the problem (3.1) and the singularity coefficient by applying the dual method. It
consists of varying the parameter of discretization N and the problem data.

The test cases are done in a neighborhood of the singular corner a, i.e. four
sub-domains in the case of the crack and three ones in the case of ω = 3π/2 (see
Figure 1).

Figure 1. The domain when ω = 2π and ω = 3π/2.

We present below some numerical results related to the calculation of the discrete
solution of the problem (3.1) and the leading singularity coefficient by the dual
method. In the following examples, λ∗δ denotes the discrete singularity coefficient.
Example 1: u(x, y) = sin(πx2) sin(πy2) and ω = 3π/2.

N 5 10 15 20 30
λ∗δ 8.0 10−4 8.127 10−7 −2.731 10−13 −5.021 10−14 7.481 10−14

Example 2: u(r, θ) = r1/2 cos(θ/2) and ω = 2π.
N 5 15 20 30
λ∗δ 0.9995. 0.9999. 1. 1.

Example 3: u(r, θ) = r2/3 cos(2θ/3) and ω = 3π/2.
N 5 10 15 20 30
λ∗δ 0.9987. 0.9996. 0.9999. 1. 1.

Figure 2 presents the error curves on the solution of the problem (3.1) (curves
in blue) and the curves of error on the singularity coefficient (curves in red) in
both ω = 2π and ω = 3π/2. The continuous solutions are equal to the first
singular function which corresponds to a singularity coefficient equal to 1 (Example
2 and Example 3). Error curves are made in logarithmic scale which permits the
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Figure 2. The error on the solution and the singularity coefficient.

computing of the convergence order corresponding to the slope of the curve. We
remark that the convergence order on the singularity coefficient is better than the
one of the solution. This order is equal to 2.8976 for the crack and to 1.9779 for
the L-domain. However in the case of the solution, this order is equal to 1.9997 for
the crack and to 0.9994 for the L-domain.

Figure 3. The discrete solution ω = 2π and ω = 3π/2.

Let Γ0 = {(r, θ) such that θ = 0 and θ = ω}. Figure 3 presents the iso-values of
the discrete solution in the case when ω = 3π

2 for the following Dirichlet problem

−∆u = 0 in Ω

u = x on ∂Ω/Γ̄0

u = 0 on Γ0

and in the case when ω = 2π the discrete solution corresponding to the problem:

−∆u = 1 in Ω

u = x2 on ∂Ω

We consider in the Example 4 the calculation of the leading singularity coefficient
in the case of the crack for the following Neumann problem:

−∆u = f in Ω
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∂u

∂n
= g on ∂Ω/Γ̄0

∂u

∂n
= 0 on Γ0.

Under the following condition assuring the existence of the solution∫
Ω

f dx+
∫
∂Ω

g dτ = 0.

Example 4: f = 0, g = x on ∂Ω/Γ0, g = 0 on Γ0 and ω = 2π.
N 10 15 20 30 40
λ∗δ 0.2680. 0.2701. 0.2752. 0.2787. 0.2787.

For Example 4, if we compare these results with those found in the case of a
discretization with finite element method (see [2]), we obtain a better precision.
This is due to the accuracy of the spectral method.

Conclusion. In this work we dealt with the approximation of the leading singular-
ity coefficient by mortar spectral element method. The results obtained using the
dual method are better than those obtained by Strang and Fix algorithm (see [4]).
This confirm the theory since the dual method gives us an optimal error estimate
and bring to light the efficiency of spectral discretization of this type of problem.
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