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SOLVABLE PRODUCT-TYPE SYSTEM OF DIFFERENCE
EQUATIONS OF SECOND ORDER

STEVO STEVIC, MOHAMMED A. ALGHAMDI,
ABDULLAH ALOTAIBI, ELSAYED M. ELSAYED

ABSTRACT. We show that the system of difference equations
a ZC
n n
Zntl = =, Wny1=——, nENp,
Zn—1 n—1

where a, b, ¢, d € Z, and initial values z_1, zg, w—1,wp € C, is solvable in closed
form, and present a method for finding its solutions.

1. INTRODUCTION

Difference equations and systems not closely related to differential equations is a
topic of considerable recent interest (see, e.g., [1]-[10], [12], [14]-[23], [25]-[56]). Since
the appearance of paper [29], in which was explained the formula for solutions to
the difference equation in [I2], the area of solving difference equations and systems
of difference equations reattracted some attention (see, e.g., [1]-[5], [10], [12], [23],
[31], [36], [37], [39], [40], [42]-[50], [52]-[56] and the related references therein).

On the other hand, symmetric systems of difference equations and systems of a
similar appearance, whose investigation began by Papaschinopoulos, Schinas and
their collaborators during the mid of 1990’s, is another area which has attracted
some recent attention (see, e.g., [10, 18| 19, 20} 21 25, 26] 27, 36} [39] (40, [42], 44

[45], [46], 47, [48] [49, 50}, 51, 53| 54, 56] and the related references therein).
The publication of [28] and [30] initiated a considerable investigation of the

boundedness character of some classes of difference equations and systems contain-
ing non-integer powers of their variables (see, e.g., [7, 8, 22, [33] B35, 51] and the
related references therein). An interesting fact is that these equations and sys-
tems are perturbations of some product-type equations and systems of difference
equations, usually obtained by using the translation operator

To(s) =a+s, a€R, (1.1)
or the following operator with maximum

me(s) = max{a,s}, a€R. (1.2)
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Note that operator can act on the space of complex sequences, unlike operator
(1.2), which can act only on the space of real sequences. However, practically there
are no results which deal with the equations and systems generated by operator
on the space of complex sequences.

Properties of solutions to difference equations and systems obtained by using
operators and are frequently closely related to the corresponding product-
type ones. For example, in [51], it was studied the following system of difference
equations

yn 5

Tpp1 = MAX A, —g~— ¢, Ynyl = Maxqa, —5— ¢, 1 € No, (1.3)
Tp_1 n—1

with min{a, p,q} > 0, where the boundedness character of their positive solutions

was completely characterized. Note that system (1.3)) can be regarded as a pertur-

bation of the following product-type system of difference equations

n i N (1.4)
s Ynt1=—¢—, n €N 1.4
Th " Yn—1

Tn+1 =

If only positive solutions to system are considered then it can be solved in
closed form. Generally speaking, a great majority of papers on difference equations
and systems consider only their positive solutions. One of the reasons is that such
equations and systems can be frequently regarded as models of some population
or biological models (see, e.g., [I1l, B1]). For some other applications to difference
equations, see, for example [13] (T4, [24]. Beside this, their investigation is somewhat
simpler than in the general case. Hence, a natural problem, which seems has been
neglected so far, is to study behavior of solutions to product-type equations and
systems whose initial conditions need not be positive numbers only. This paper is
devoted to the problem and can be regarded as a starting point in the investigation.

The following second-order system of difference equations, which is an extension

of system ([1.4)),

wa

Zn+1 - b TL 9 wn+1 -

Zp—1
where a, b, c,d € R and initial values z_1, 29, w_1,wy are positive numbers can be
solved in closed form. Namely, by using the method of induction, it can be shown

N

(&
n

d
Wy 1

, n € Ny, (L5)

zn >0, w, >0, forn>-1,

which enables us, by taking the logarithm to the both sides of both equations
in , to transform it to a linear second-order system of difference equations
with constant coefficients, which is solvable in closed form. If z_1, zg, w_1,wq are
complex numbers, then the method cannot be used, since in the case the sequences
(2n)n>—1 and (wy)n>—1 need not be uniquely defined.

Our aim here is to show that in some cases system can be solved in closed
form also when z_1, zg,w_1,wy are complex numbers. By the obtained formulas
we will present some results on the long-term behavior of solutions to system .

A vector sequence Z,, = (ZT(LI), ... ,zy(f)), n > —k, is called periodic (or eventually
periodic) with period p € N if there is ng > —k, such that

zr(ﬁp =2 for n > ny,
for every j € {1,...,l}. Period p is prime if there is no p € N, p < p which is

a period for the vector sequence. For p = 1 the sequences are called eventually
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constant or trivial (see, e.g., [15]). The periodicity is also one of the areas of

considerable interest (see, e.g., [6, @, [14] 16, 17, 27, B1, 32 B4, B8] 41], and the
related references therein). If we say that a solution of system (1.5|) is periodic with
period p we will tacitly regard that p need not be its prime period.

2. MAIN RESULT

In this section we prove the main result in this paper, which presents formulas for
solutions to system (|1.5). Before we formulate and prove it, note that the domain
of undefinable solutions ([45]) to system ([1.5]) is the set

U={(z_1,20,w_1,w0) €EC*: 21 =00r 2g=0o0r w_y =0 or wy =0}
Hence, such solutions will be excluded from our considerations.

Theorem 2.1. Assume that a,b,c,d € Z and initial values z_1,zp,w_1,wy €
C\ {0}. Then system (L.5) is solvable in closed form.

Proof. Let
a; = a, bl = b, C1 = ¢, d1 =d. (2.1)
By using the equations in (1.5) we obtain
a ca;—by as
_ wnl _ Zn—1 _ Zn-1 2.9
Zn+1 = b1 - da, — by’ ( . )
Zn—1 Wy 9 W9
aclfdl C2
_ Zle _ Wy _1 _ Wy_1 2.3
wn+1 - d1 - ber - do ) ( . )
Wy_1 Zn—2 Zn—2

where we define aq, by, co and ds as follows
as :=cay — by, by:=day, cp:=acy—dy, do:=bcy.

By using (2.2)), (2.3) and the equations in (|1.5)) we further obtain

as aaz—bz as
z . Z’Vl—l . w’ﬂ—Q _ wn—2 (2 4)
TL+1 - bQ - ba2 - bg ? :
Wy_2 Zn-—3 Zn—3
Cc2 Ccz—dz C3
w _ Wy 1 _ Zn—2 _ Zn—2 (2 5)
n+1 - d2 - dcz - d3 ! :
Zn72 wn73 wn73
where we define ag, b3, c3 and d3 as follows
asz :=aay — by, bz :=bay, c3:=ccy—ds, d3:=dco.
Assume that o eon
2k—1 C2k—1
Wy _opyo  Pn2k42 26
Il = 0 Wntl = g (2.6)
Zp—2k+1 Wy —2k+1
where
Qok—1 = Qagg—2 — bagp_2, bap_1 1= bagy_2,
Cop—1 1= CCop—2 — dog_2, dop_1 = dcap_2,
and Zazk wczk
_ An—2k+1 Wy op41 97
Antl = T Wnpl = (2.7)
Wy ok “n—2k
where

Qo) := COgkp—1 — bap—1, bop := dagp_1,
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Cok i= aCop—1 — dag—1, dop = begg—1,
for some k € N such that n > 2k — 2.
By using (2.7) and the equations in (1.5 we obtain

az aazy—bak a2k+1

.  Ppok41  Wpog Wy 9
n+1 wb2k szZk bok41
n—2k n—2k—1 Zn—2k—1

Cak ccap—dag Cok+41

w Wy Topyr1  RFnlok _ Rnok

n+l 42k wdczk dopy1
n—2k n—2k—1 Wy —2k—1

where we define asgy1, bok+1, Cak+1 and dag41 as follows

Aok41 = GGk — bag, bopyy1 = bask, cCopq1 i= ceap —dag, dopyr = deog.

From (2.8)), (2.9) and by using the equations in (1.5) we obtain

w2kt cazg+1—bak41 02k
P _ n—2k _ “n—2k—1 _ “n—2k—1
ntl bakt1 Wiz w2z
n—2k—1 n—2k—2 n—=2k—2
C2k+1 wa02k+1—d2k+1 C2k+2
w _ n—2k _ “'n—2k—1 _ n—2k—1
n+l dakt1 Sbeakt L2tz
n—2k—1 n—2k—2 n—2k—2

where we define asgy2,bakt2, Copro and dopyo as follows

Aok42 = CO2%+1 — bagy1, bokqo := dagp41,

Cok42 = GC2k+1 — dogt1, dok42 = bCopt1.

(2.10)

(2.11)

Hence, this inductive argument shows that relations (2.6) and (2.7) hold for
every k € N and n > 2k — 1, and that above defined sequences (a,)nen and (by)nen

satisfy the following recurrent relations
ag = cagk—1 — bag—1, box = dagk—1,
Aok4+1 = aazr — bag, bak1 = baag,

Cok = ACok—1 — dag—1, dor = bcap_1,

Cokt1 = CCop — dag, dog+1 = deag,
for k € N.
From ([2.8)-(2.11) we obtain

wg2n+1 282n+2

Zon4l = s Fon42 = o
Z_2{L+1 w_2n+2
ZC2n+1 w82n+2

Won4+1 = —g——5 Won42 = ——,
w 2n+1 z 2n+2

for n € Np.
Using (2.12) and (2.13) we have
agk+1 = aagg — dagg—1, A2k+2 = Cagx+1 — bagg, Kk €N,

from which it follows that

agk+3 — (ac —b— d)a2k+1 + bdasg,_1 =0, keN,
agk+2 — (ac —b-— d)agk + bdas,_2 =0, k>2.
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From and we have
Cok41 = CCak, — bCog—1, Copt2 = aCopy1 —dcgk, k EN,
from which it follows that
Cakt3 — (ac — b — d)cagy1 + bdegg—1 =0, k€N, (2.20)
Cokta — (ac — b —d)cop + bdeor—o =0, k> 2. (2.21)
In what follows we will consider three cases separately; that is, b = 0, d = 0 and
bd # 0.
Case b = 0. In this case equations — become
agk+3 = (ac — d)agk4+1, Gop+2 = (ac — d)agk, k€N,
Cokt3 = (ac — d)cagt1, Capy2 = (ac — d)ca, k€N,

from which it follows that

asp 11 = a1(ac — d)* = a(ac — d)*, (2.22)

skt = as(ac — d)*¥ = ac(ac — d)*, (2.23)

cont1 = c1(ac — d)F = c(ac — d)¥, (2.24)

Conto = ca(ac — d)¥ = (ac — d)* 1, (2.25)

for k € Ny.

Using (2-22))-(2-25)) in (2.12))-(2.15)), as well as the condition b = 0, it follows that
bokt1 =0, bopio =ad(ac—d)*, ke Ny, (2.26)
dog1 = d(ac — d)*,  dopio =0, ke Ng. (2.27)

Employing ([2.22)-(2.27)) in (2.16)) and (2.17]) we obtain that well-defined solutions
to system ([L.5)) in this case are given by the following formulas

zac(acfd)"
—d)"
2n4+1 = wg(ac ) ) 2n42 = m (228)
—1
—d\"
B Zg(ac ) B (ac—d)”Jrl N
Won+1 = W, Waon4+2 = Wy 5 n € Ng. (229)

-1

Case d = 0. In this case equations ([2.18)-(2.21)) become
ask+3 = (ac — bagk4+1, aopr2 = (ac —bagy, k€N,
Cokt3 = (ac = b)capy1, Copq2 = (ac —b)co, k€N,

from which it follows that

agrs1 = a1 (ac — b)* = a(ac — b, (2.30)
aaky2 = az(ac — b)* = (ac — b)*1, (2.31)
cort1 = c1(ac — b)F = c(ac — b)*, (2.32)
ot = ca(ac — b)* = ac(ac — b)*, (2.33)

for k € Ny.
Using (2.30)-(2.33) in (2.12)-(2.15)), as well as the condition d = 0, it follows that

bori1 = b(ac — b)*,  bopyo =0, k€ Ny, (2.34)
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dog+1 =0, dokgo = bc(ac - b)k, k € Np. (2.35)

Employing (2.30)-(2.35)) in (2.16)) and (2.17) we obtain that well-defined solutions
to system (1.5)) in this case are given by the following formulas

g(ac—b)" (ac—by+i
22n+1 = W, 22n+2 = % (2-36)
-1
e ac(ac—b)"
Wan+1 = ZS(M_ ) y  Want2 = “be(ac—b)" n € Np. (2.37)
z

Case b # 0 # d. Let A1 2 be the roots of the characteristic polynomial
P(\) =\ — (ac — b —d)\ + bd, (2.38)
of the difference equation
Upy2 — (ac — b — d)up41 + bdu, =0, neN. (2.39)

From ([2.18)-(2.21) it is clear that the sequences (G2r+1)keNys (@2k)keN,; (C2k+1)keN,
(car)ken, are solutions to equation (2.39).
It is known that the general solution of (2.39)) has the form

Up = Al + @z, neN,

if (ac —b— d)2 = 4bd, where o1 and «q are arbitrary constants, while in the case
(ac — b — d)? = 4bd, the general solution has the following form

un:(ﬁln+ﬁ2) ?7 nEN7

where 31 and (; are arbitrary constants.
By some calculation and using the values for a;,b;,c¢;,d;, for i € {1,2,3,4}, if
(ac — b — d)? # 4bd, we obtain

k+1 k+1
)‘1 — >‘2

A2k+1 = aﬁv (2.40)

S (ac—b— /\2)/\11“; : g\(zc —b— AT | (2.41)
AP et Az)iij - (;;c —b= AN (2.42)
Cok4+1 = C/\]f;:;\\]iﬂ, (2.44)

Cors — (ac—d — )\2))\]1“;1 : ;(Zc —d— \)NEH | (2.45)
PR Gl Az)f\’f - (;;c —d—X)AS , (2.46)
dojosn = bcw, (2.47)

for k € Ny.



EJDE-2015/169 SOLVABLE PRODUCT-TYPE SYSTEM OF DIFFERENCE EQUATIONS 7

By using (2.40))-(2.47)) into (2.16]) and (2.17) we obtain that well-defined solutions
to system ([L.5)) in this case are given by the following formulas

1 1
AP ant _plaembao)A (aemboap)aR

Zon+1 = wg he Z_1 e ’ (248)
(ac—b=2)AT T —(ac—b—xp)an+t? _adxi""'lfxg‘*'l
Zoany2 = % e woy U (2.49)
c/\1L+1—/\g+1 _gleemd=2o)A ] —(ac—d—r)ap
Won+1 = 2 e w_q e ) (250)
(ac—d=Ag)AT T —(ac—d—a)ApT! 7bCA;‘+1—,\§+1
Wont2 = Wy A=Az z_, T (2.51)
for n € Np.
If (ac — b — d)? = 4bd, that is, if
ac—b—d
= =
we have
agpy1 = a(k + AN (2.52)
a2k+2 = ((ac —b-— Al)(k + 1) + )\1)/\]16, (253)
bokt1 = b((ac —b— A1)k + M)A\, (2.54)
bog o = ad(k + 1)AF, (2.55)
Coky1 = C(k‘ + 1)/\]f, (256)
corta2 = ((ac —d = M)(k + 1) + A1) AL, (2.57)
dogy1 = d((ac —d — M)k + M)A, (2.58)
darya = be(k + 1)AY, (2.59)
for k € Ny.

By using (2.52))-(2.59)) into (2.16]) and (2.17) we obtain that well-defined solutions
to system ([L.5)) in this case are given by the following formulas

Yami1 = wg(n—i—l))\;‘Z:lln((ac—b—)\l)n-l-)\l))\;l_l7 (2.60)

omia = z(()(ac_b_’\l)("Jrl)H‘l))‘?w:fd("ﬂ)/\?, (2.61)

Wony1 = ZS(nJrl)/\I‘w:f((acfdﬂ\l)nﬁ\l))\l""l’ (2.62)

Wonss = w(()(ac—d—)\l)(n-l-l)-l-)\l))\?Z:i)c(n-i-l))\?, n e N, (2.63)

finishing the proof of the theorem. [l

From the proof of Theorem 2.1] we obtain the following corollary.

Corollary 2.2. Consider (L.5) with a,b,c,d € Z. Assume that z_1, zp, w—1,wy €
C\ {0}. Then the following statements hold:
(a) If b = 0, then the general solution of system (1.5 is given by (2.28) and
[2-29).

(b) If d = 0, then the general solution of system (L.5)) is given by (2.36]) and
237).
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If bd # 0 and (ac — b — d)? # 4bd, then the general solution of system (1.5

is given by (245)-(251).
If bd # 0 and (ac — b — d)? = 4bd, then the general solution of system (1.5)

is given by (2.60)-(2-63).

Remark 2.3. The condition a, b, c,d € Z is posed in order to avoid multi-values of
powers of complex numbers, that is, we want that initial values z_1, zg, w_1,wy € C
define unique solutions to system (1.5]).

3. APPLICATIONS

In this section we give some applications of the formulas obtained in the previous
section. The long-term behavior of solutions to system (|1.5) in several cases is
described.

Theorem 3.1. Consider system (1.5)). Assume that a,c,d € Z, b =0, and initial
values z_1, zg, w—1,wg € C\ {0}. Then the following statements hold:

If ac = d, then the solution (zp, Wn)n>—1 is eventually constant.

If ac—d =1, then the solution (z,, wy)n>—1 is two-periodic, while if ac—d =
—1, then the solution (zn,Wn)n>_1 is four-periodic.

Ifac—d>2 and 0 < |w§| < 1, then zop4+1 — 0, as n — oco.

Ifac—d > 2 and |wg| > 1, then za,41 — 00, as n — 0.

If w§ =1, then zap41 =1, n € Np.

Ifac#d, a #0, and wy = ¢, 0 = pr/q, ¢ € N and p € Z, then zop 41 is
periodic with period T < 2q.

Ifac —d < =2 and 0 < |w§| < 1, then z4nt1 — 0, as n — oo, while if
|wg| > 1, then z4n41 — 00, as n — 0.

Ifac—d < =2 and 0 < |wd| < 1, then z4p+3 — 00, as n — oo, while if
|wg| > 1, then z4n43 — 0, as n — 0.

Ifac—d>2 and 0 < |28¢/w*| < 1, then 22,12 — 0, as n — oo.

If ac—d > 2 and |28¢/w*| > 1, then zg,12 — 00, as n — 00.

If 25¢ = wa_”i, then zont+2 = 1, n € Ny.

Ifac#d,a#0,c#0 ord#0, and 23¢ = we, 0 = pr/q, ¢ €N and
p € Z, then zopto is periodic with period T < 2q.

Ifac—d < =2 and 0 < |28¢/w*| < 1, then zini2 — 0, as n — oo, while
if |28¢/w®| > 1, then zyn12 — 00, as N — 00.

Ifac—d < -2 and 0 < |28¢/w*d| < 1, then z4, — 00, as n — oo, while if
|z8¢ Jw | > 1, then z4n, — 0, as n — 00.

Ifac—d>2 and 0 < |2§/we,| < 1, then wa,11 — 0, as n — oo.

If ac —d > 2, and |z§/w?,| > 1, then wa,. 1 — o0, asn — oo.

If 2§ = w?,, then wap11 =1, n € Np.

If ac # d, and 2§ = wl,e?, 0 = pr/q, ¢ € N and p € Z, then wa, 41 is
periodic with period T < 2q.

Ifac—d < =2, 0 < |2§/w?,| < 1, then wany1 — 0, as n — oo, while if
|26 /wl| > 1, then wan1 — 00, as n — oo.

Ifac—d < =2, and 0 < |2§/w?,| < 1, then wy,43 — o0, as n — oo, while
if |25 /w?,| > 1, then w3 — 0, as n — oo.

Ifac—d >2 and 0 < |wg| < 1, then wapi2 — 0, as n — oo.

If ac—d > 2, and |wp| > 1, then wa,412 — 00, as n — oo.



EJDE-2015/169 SOLVABLE PRODUCT-TYPE SYSTEM OF DIFFERENCE EQUATIONS 9

(w) If wg =1, then wapyo =1, n € Np.

(x) Ifac #d, and wy = €*?, 0 = pr/q, ¢ € N and p € Z, then wa, 2 is periodic
with period T < 2q.

(y) Ifac—d < =2, |wo| > 1, then wan+2 — 0, asn — oo, while if 0 < |wp| < 1,
then Wwyp42 — 00, as N — 00.

(z) If ac—d < =2, and 0 < |wg| < 1, then wanta — 0, as n — oo, while if
|wo| > 1, then waptq — 00, as N — 0.

Proof. (a) Using the condition ac = d in (2.28) and (2.29) we obtain

29n41 = Zon42 = Wopq1 = Wopt2 = 1, n €N,
from which the statement follows.
(b) Using the condition ac —d =1 in (2.28]) and (2.29) we obtain
ch ZC

0
’LUad ) Wan+1 = ’U}d ) W2on4+2 = Wo, n e N07
—1 —1

a
Zoan+1 = Wy, 2on+2 =

which means that (2, w,),>—1 is two-periodic.

Using the condition ac —d = —1 in (2.28)) and (2.29)) we obtain

" Zac(fl)" Zc(fl)" 1
_ a(=1) _ ~0 _ *0 _ (=1
Z21’L+1 - 'LUO 9 Z2n+2 - ad(—l)" ) w2n+1 - d(—l)" ) w277,+2 - w() )
w_q w_y
for n € Ny. From this we have
ac c
Z 2 1
a 0 0
Zan4l = WG,  Fant2 = — o Wintl = —g—, Wing2 = ——, (3.1)
w7y w-q wWo
1 w“% w? 1
Zan43 = —g, Rdntd = oo, Wintd = —o;  Wintd = Wo, (3.2)
Wy ) 20

for n € Ny, which means that (z,, w,),>—1 is four-periodic.

(c), (d) If ac—d > 2, then (ac—d)"™ — +o0 as n — +oo. Hence, if 0 < |w§| < 1,
by using the formula

2op+1 = wg“wid)n, n € Ny, (33)

we obtain that zo,41 — 0, as n — oo, while if |w§| > 1, then we obtain that
Zoni1 — 00, a8 N — 0C.

(e) The statement directly follows by using the condition w§ =1 in (3.3]).

(f) Using the conditions wy = €, § = pr/q, ¢ € N and p € Z, in e have

A 4y
qpalac—d)

2opn+1 = e’ q , n € Ng. (34)
Now note that among the numbers
pa, pa(ac—d), pa(ac—d)?, ... pa(ac—d)*,

there are two which have the same reminder by dividing by 2¢, say, pa(ac —d)* and
pa(ac —d)7, 0 <i < j <2q. This means that there is a kg € N such that

pa(ac — d) — pa(ac — d)* = 2koq,
from which it follows that
pa(ac —d)™ — pa(ac — d)™ " = 2koq(ac — d)™,

for every m € Ny. This means that the sequence pa(ac — d)™ (mod 2¢), n € Ny,
is eventually periodic with period T' = j — i < 2q. Using this fact in (3.4]) the
statement easily follows.
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(g), (h) Since ac — d < —2 from (3.3]) we have

a(ac—d)?" —alac—d|?" Tt
Zqn+1 = Wy y  Zdn+3 = Wy ., n € Ng. (35)

From ([3.5) and the posed conditions these two statements easily follow.

(i)-(1) The proofs are the same as those ones of (c¢)-(f), when w§ is replaced by

z3¢/ w‘idl, and zoy,41 is replaced by z9,42. Hence, we omit the detail.

(m), (n) From (2.28) we have

ch )(ac_d)Zn ch )_lac_d|2n+1

Zon+2 = ( 3 Z4n+4 = ( y (36)

w“_cg wa_”i
for n € Ny. From (3.6)) and the posed conditions these two statements easily follow.
(0)-(r) Using the formula

c \ (ac—d)"
%G ) . ne N, (3.7)

Woan+1 = (w‘il
statements (0)-(q) easily follow, while (r) is proved similarly to (f).
(s), (t) From (3.7)) and since ac — d < —2, it follows that

€ N (ac—d)®™ € \ —lac—d|*" Tt
Wan+1 = ( ; ) , Wapt3z = ( 3 ) , n € Np. (38)
we Wy
Using the formulas in (3.8 these two statements easily follow.
(u)-(x) Using the formula
ac—d)"t?t
Waon 42 = wé d) , ne No, (39)

statements (u)-(w) easily follow, while (x) is proved similar to (f).
(y), (z) From (3.9) and since ac — d < —2, it follows that

lac—d|2n T ac—d)2n+2?
Whn+2 = Wy ! ! ;,  Wan+q = UJ(() ) , n € Np. (310)

Using the formulas in (3.10) these two statements easily follow. (]

Remark 3.2. The long-term behavior of solutions to system in the cases
wg = e or 28¢/w = € or z5/we, = e or wy = €, when /7 ¢ Q, is more
complex and will be not treated here in detail. We can only mention here that in
some cases the sequence §(ab—d)™ (mod 27), n € Ny, can have a set of accumulation
points which is nowhere dense in the interval [0, 27], but is some other cases it can

be everywhere dense in the interval.

Theorem 3.3. Consider system . Assume that a,b,c € Z, d = 0, and initial
values z_1, zg, w_1,wg € C\ {0}. Then the following statements hold:
(a) If ac = b, then the solution (z,,wn)n>—1 15 eventually constant.
(b) Ifac—b =1, then the solution (2, Wy )n>—1 15 two-periodic, while if ac—b =
—1, then the solution (z,, Wy )n>—1 s four-periodic.
Ifac—b>2 and 0 < |wi/2" ;| < 1, then 22,41 — 0, as n — .
If ac —b>2 and |ws /2" 1| > 1, then zon41 — 00, as n — 0.
If wd = 2%, then 22,41 = 1, n € Ny.
If ac # b and wd = 21", 0 = pr/q, ¢ € N and p € Z, then 23,1 is
periodic with period T < 2q.
(g) Ifac—b< -2 and 0 < |w§/2b | < 1, then 24n41 — 0, as n — oo, while if
|wg /21| > 1, then 24541 — 00, as n — oo.
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Proof.

Ifac—b< -2 and 0 < |ws/zb | < 1, then 24,43 — 00, as n — oo, while
if |lw§ /2% 4| > 1, then zani3 — 0, as n — oo.

Ifac—b>2 and 0 < |z| < 1, then zop42 — 0, as n — oo.

If ac— b >2 and |29| > 1, then zo, 19 — 00, as n — oo.

If ac=1b or zg = 1, then zo,42 =1, n € Ny.

Ifac# b and zo = €, 0 = pr/q, ¢ € N and p € Z, then za, o is periodic
with period T < 2q.

If ac — b < =2 and 0 < |29 < 1, then z4p42 — 00, as n — oo, while if
|z0] > 1, then z4pto — 0, as n — co.

Ifac—b < =2 and 0 < 20| < 1, then z4, — 0, as n — oo, while if |zo| > 1,
then z4, — 00, as n — Q.

Ifac—b>2 and 0 < |z§| < 1, then wap41 — 0, as n — oo.

Ifac—b > 2 and |z§| > 1, then wap41 — 00, as n — oo.

If 2§ =1, then wap41 = 1, n € Np.

Ifac#b, and 2§ =€, 0 = pr/q, ¢ € N and p € Z, then wa, 11 is periodic
with period T < 2q.

Ifac—b < =2 and 0 < |2§| < 1, then wyny1 — 0, as n — oo, while if
|2§| > 1, then wani1 — 00, as n — oo.

Ifac—b < =2 and 0 < |z§| < 1, then wynt3 — 00, as n — oo, while if
|25 > 1, then wap43 — 0, as n — oo.

Ifac—b>2 and 0 < |wic/2%| < 1, then wa, 1o — 0, as n — oo,

If ac — b > 2 and |wgc/z%4| > 1, then wa, 12 — 00, asn — oo.

If wade = 2%, then wapio =1, n € Ny.

If ac # b and w3 = 2%e’, 0 = pr/q, ¢ € N and p € Z, then wa, 2 is
periodic with period T < 2q.

If ac—b < —2 and 0 < |w3c/2%| < 1, then wanio — 0, as n — oo, while
if |wgc/2%| > 1, then wani2 — 00, as n — oo.

Ifac—b < =2 and 0 < |wd</zb| < 1, then wypyq — 00, as n — oo, while
if |wg /24| > 1, then waniq — 0, as n — 0.

(a) Using the condition ac = b in (2.36]) and (2.37) we obtain

Zon41 = Zon42 = Wap41 = Wapy2 =1, nEN,

from which the statement follows.

(b) Using the condition ac — b =1 in (2.36]) and (2.37)) we obtain

a ac
w

_ 0 _ _ .C _ 0
Zon+1 = b 22n+2 = 20, Wan41 = Zg, Wan+t2 = “he n € No,
~1 -1

which means that (z,,wy)n>—1 is two-periodic.

Using the condition ac —b = —1 in (2.36]) and (2.37)) we obtain

a(—1)" ac(—1)"
_w _ = — =" — Yo
o+l = Ty F2nt2 = 2o y Wan4l = Zg v Wand2 = Ty
z z
-1 -1

for n € Ny. From this we have

wg 1 . wge
RAn+1 = —p 5 Rdn+2 = —5  Win+1 = 2, Win42 = (3-11)
2% A 2%
Zlil 1 Z[ic]_
Zant3 = o ntd =20, Wangs = oo Wantd = oo (3.12)
0 0 0
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for n € Ny, which means that (z,,w,)n>—1 is four-periodic.
(c), (d) If ac—b > 2, then (ac—b)™ — 400 as n — +oo. Hence, if 0 < |wg /2% || <
1, by using the formula

”U.)S’ ) (ac—b)™

Z2 1:(
n—+ Zlil

, n € Ny, (313)

we obtain that zo,,41 — 0, as n — oo, while if |wd/z% ;| > 1, then we obtain that
Zop4+1 — 0, as n — oo.

(e) The statement directly follows by using the condition wg = 2°; in (3.13).

(f) Using the conditions wy = €¥, § = pr/q, ¢ € N and p € Z, in (3.13)) we have

. plac—d)"
2on+1 = emp a , n € Ng. (314)

The rest of the proof is similar to the one of statement (f) in Theorem so is
omitted.

(g), (h) Since ac — b < —2 from (3.13) we have

'LUg ) (aC—b)Qn

Z4n+1 = ( b ) Z4’I’L+3 = ( b
224 221

From and the posed conditions these two statements easily follow.

(i)-(1) The proofs are similar to those ones of (c)-(f), when wg/z%, is replaced
by zp, and 29,41 is replaced by z2,42. Hence, we omit the detail.

(m), (n) From and since ac — b < —2, we have

—lac—b|2"+? (ac—b)2n+2
Z4n+4+2 = Zg s Z4n+4 = 2 5 (316)

for n € Nyg. From (3.16) and the posed conditions these two statements easily
follow.
(0)-(r) Using the formula

Wop4+1 = (28)((16_1))", n € Ny, (317)

a _‘ac_b|2n+1
ad ] ) , neN. (3.15)

statements (0)-(q) easily follow, while (r) is proved similar to (f).
(s), (t) From (3.17) and since ac — d < —2, it follows that

_p)2n _ _p2n+1
Wing1 = (26) @7, wanys = (26) 717" n € No. (3.18)

Using the formulas in (3.18)) these two statements easily follow.
(u)-(x) Using the formula

we (ac=b)"
Wansa = (zboc ) . neNy, (3.19)
—1

statements (u)-(w) easily follow, while (x) is proved similar to (f).
(y), (z) From (3.19)) and since ac — b < —2, it follows that

W€ (ac—b)>™ W€ —lac—b|>" 1
Wiyn42 = ( bOc ) ,  Wn44 = ( boc ) , n € Ng. (320)
229 229
Using the formulas in (3.20) these two statements easily follow. O

Theorem 3.4. Consider system (1.5)). Assume that a,b,c,d € Z, (ac—b—d)? = 4bd
and ac—b—d = 2, and initial values z_1, zg, w_1,wg € C\ {0}. Then the following
statements hold:

(a) If0< |w8/zli(fc_b_1)\ <1, then zop41 — 0, as n — oo.



EJDE-2015/169 SOLVABLE PRODUCT-TYPE SYSTEM OF DIFFERENCE EQUATIONS 13

(b) If |w§/= b(ac_b_1)| > 1, then zop41 — 00, as n — 00.

(¢) If w§ = b(ac "D then Zopp1 = wd /2%, as n — oco.

(d) If wg = Zi(fc = ¢, 0 =pr/q, ¢ €N and p € Z, then za,11 is periodic
with period T < 2q

If 0 < |z9°7b 1/w 1l <1, then zopyo — 0, as n — oo.

If | 28707 Jwad | > 1, then zgp42 — 00, as n — 00.

If 2097071 = ® 1, then zapt2 = 25 b/w 1, as n — oo.

If 25~ b7l — wde® 9 = pr/q, g € N and p € Z, then zp, o is periodic
wzth period T < 2q.

If0 < |zc/wd(ac 1)| <1, then wap41 — 0, as n — oo.

If |26 /w™ d(ac = 1)\ > 1, then wap41 — 00, as n — 00.

If 2§ = d(a° =1 then Wapy1 = 25/wly, as n — oo.

If 2§ = d(ac @) e 0 =pr/q, g €N and p € Z, then wa, 1 is periodic
with pemod T < 2q.

(m) If 0 < |wge™~ 1/2 1| < 1, then wapta — 0, as n — oo.

(n) If lwge™ 3=t /20 |>1 then wap 42 — 00, as n — 00.

(0) Ifwge a7t = 2b¢ 1, then wan 12 = wi*"/2%, as n — co.

(p) If wie =1 — b e 9 =pr/q, g € N and p € Z, then za,,o is periodic

with period T< 2q.

Proof. First note that in this case the characteristic roots of polynomial (2.38)) are
A1 = A2 = 1. Using it into ([2.60)-(2.63)) we obtain the following formulas

ac—b ac—b—1

a a

. _ wy () " 5 &0 20

et =\ placb1) ) 0 AR T ad T ped ) 0
—1 820 @ o

ac—d ac—d—1

z5 ( 25 )" wy (wo )
w = R w —) ,
ant wd,1 wi({widﬂ) s Zicl Z}icl
for n € Ny, from which all the statements of the theorem easily follow. [

Theorem 3.5. Consider system (L.5)). Assume thata,b,c,d € Z, (ac—b—d)* = 4bd
and ac—b—d = =2, and initial values z_1, zg, w_1,wg € C\{0}. Then the following
statements hold:

(a) If0 < |wgzli(fc_b+1)| <1, then z4pnt1 — 0 and 24443 — 00, as n — o0o.

) If |w§z b(ac_b+1)| > 1, then z4p41 — 00 and z4ny3 — 0, as n — oo.
(c) If w§ zb(ac ) = =1, then z4n1 = w§ /2%, = 1/24n13, as n € Ny.
) If wg b(ac M) — ¢ 9 = pr/q, g € N and p € Z, then zapi1 and 24nis
are pemodzc wzth period T < 2q.

) If 0 < |25 b+1/w 1l <1, then z4n12 — 0 and z4p44 — 00, as N — 00.
) If |z5 b“/w | > 1, then zgnio — 00 and zypi1q — 0, as n — oo.
) If 25 bl — o o then 24nio = 20 b/uL1 = 1/24n+44, as n € Ny.
) If zgcfbﬂ =w¥e? §=pr/q, q €N and p € Z, then z4p42 and 245,44 are
periodic with period T < 2q.
(i) If0 < |zowd(a( d+1)\ < 1, then wyn11 — 0 and wapys — 00, as n — 0.
() If |=5w d(ac d+1)| > 1, then w11 — 00 and wypy3 — 0, as n — oo.

(k) If 25w d(ac ) - =1, then w41 = 25/wey = 1/wyn43, as n € Ny.
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(0 If zgwi(fc_d+1) =e% 0=pr/q, g €N and p € Z, then w1 and w3
are periodic with period T < 2q.

If 0 < Jwge™ %1 /2% | < 1, then wan o — 0 and wapq — 00, as n — oo.
If \wgcfdﬂ/zlicﬂ > 1, then w2 — 00 and Wyp1q — 0, as n — 0.

If wgcfdﬂ = 2%, then win o = wg“’*d/zﬁcl = 1/wyn+4, as n € Np.

If wgcfdﬂ =2"e?, 0 =pr/q, ¢ €N and p € Z, then wyn2 and Winia
are periodic with period T < 2q.

N o~
T o
T —

Proof. First note that in this case the characteristic roots of polynomial (2.38)) are
A1 = A2 = —1. Using it into (2.60))-(2.63]) we obtain the following formulas

wg' " ( wg )n(—l)" e V" (zgcfb“)n(—l)"
z - Z = R
2n+1 zb_(fl)n Z:ll,(aC,bJrl) ) 2n+2 w(idl(,l)n w‘idl

B ZS(_l) Z(C) n(—1)" B w(()ac—d)(—l) wgc—d+1 n(=1)"
W2n+1 = 3w\ —d(ac—d+1) v Wand2 = 0Ty e ’
woy w_} z2] -1

for n € Ny, from which it follows that

wg ( wg \m by
Ran+1 = x W ) RdAn+3 = we T ) (3.21)
- —1
ac—b ac—b+1 ad ad
Zanyo = 207(%7)2” 24 +4_&(&)2n+1 (3.22)
n - ad ad ) T — _ac—b ac—b+1 ’ '
w*q w 2§ 2§
2 % \n wly w {TD n
Won41 = U}dl (wfd(acfdJrl)) ) Wiyn+3 = 28 ( 28 ) (323)
- —1
ac—d ac—d+1 be be
wn o — W0 " (W = L (L N (3.24)
An+2 — zbcl Zbcl ’ dn+4 = wac—d wac—d+1 ) .
- - 0 0

for n € Ny. Using formulas (3.21)-(3.24) all the statements of the theorem easily
follow. O

Theorem 3.6. Consider system (L.5)). Assume that a,b,c,d € Z, bd # 0, (ac—b—
d)? = 4bd and ac — b —d > 2, and initial values z_1,z0,w_1,wy € C\ {0}. Then

the following statements hold:
(a) If0 < |w8)‘1/zll(fcfb7>‘l)| <1, then zap41 — 0, as n — oo.
(b) If \wg)‘l/zll(fcfbfh)\ > 1, then zop41 — 00, as N — 00.

[f wa/\l _ blac—=b—X;
ot =

c z24 ) and 0 < lwg /2% 1| < 1, then 22,41 — 0, as n — oo.

)
()
ali b(a67b7)\1) a b
(d) If wy™ =22 and |wg/z2 1| > 1, then zopt1 — 00, as N — 0o.
) If wg™ = zll(iw*bf)‘l) and w§ = 2%, then 20,41 =1, as n € Ny.
) If wit = PHeemt=2)

e

—

and wd = 2° 1€, 0 = pr/q, ¢ € N and p € Z, then
Zon+1 @8 periodic with period T' < 2q.
If 0 < |28¢707 2 fpd | < 1, then zgn49 — 0, as n — co.

(
(

g)
(h) If [28°7P7 2 Jwod | > 1, then zg, 19 — 00, as n — oco.
(i) If 23702 = and 0 < [28°7° /w®| < 1, then za,19 — 0, as n — occ.
G) If 2570 = w and 2870 Jw| > 1, then zap40 — 00, as n — 0.
)

(k) If zgc_b_)‘l =w and ch—b = w, then za,12 =1, as n € Ny.
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0 If zgcfbf)‘l = w and ch—b =w*e?, 0 =pr/q, g €N and p € Z, then
Zon+2 18 periodic with period T < 2q.

) IfO< |z8>‘1/wd_(fc_d_)‘l)| <1, then wony1 — 0, as n — oo.

) If \zg)‘l/wd_(fc_d_)‘l)| > 1, then wopt1 — 00, as N — 0.

(o) If 2™ = wd_(lac*df)‘l) and 0 < |25 /wt,| < 1, then wa,1 — 0, as n — oc.

) If 250 = wd_(lac*df)‘l) and |25 /w,| > 1, then wa,11 — 00, as n — co.

) If 250 = wi(lacfdf)‘l) and z§ = w?, then wa,1 =1, as n € Ny.

) If zg)‘l = w‘i({w*dfh) and z§ = wl e, 0 = pr/q, ¢ €N and p € Z, then
Wap+1 48 periodic with period T < 2q.

If 0 < [wge™ 972 /20 | < 1, then wapie — 0, as n — oco.

If [wge™ 2 /28 | > 1, then wapio — 00, as n — oo.

If w7 = 20 and 0 < |wi®™ /20| < 1, then way o — 0, as n — oco.
If wge™ 42 = 2% and [w3=4/20 | > 1, then way 9 — 00, as n — oco.

If wgc_d_h = 2% and wgcfd = 2%, then wa,i2 =1, asn € Ny.

If wgcfdf)‘l = 2% and wgc_d =2e? 0 =pr/q, ¢ €N and p € Z, then
Wapt2 48 periodic with period T < 2q.

Proof. First note that in this case the characteristic roots of polynomial (2.38)) are

such that
A=Ay = \ |bd| > 1.

Note that they are natural numbers, since 24/|bd| = |ac — b — d| € N. Equations

(2.60])-(2.63]) can be written in the form

@ \n arr a1
wWo Al Wy 1
2on4+1 = (7) (7ac— — ) s (325)
Zlil Zi(l =)
ac—b \n , ac—b—A1 _ par
Z 1/ Z 1
Z2n+42 :< 0 ) ( L ) ; (3.26)
wg wg
- n cA n—1
2:6 AL 2 ! nAy
Wans1 = ( ) ( 0 ) , (3.27)
’w‘il w‘i(l d—X1)
wac—d AT wacfdfkl nAY
Wan42 = ( Obc ) ( o o ) , (3.28)
229 229
for n € Ny. Using formulas (3.25))-(3.28]) all the statement easily follow. O

Theorem 3.7. Consider system (1.5). Assume that a,b,c,d € Z, bd # 0, (ac —
b—d)? = 4bd and ac — b —d < —2, and initial values z_1,z,w_1,wo € C\ {0}.
Then the following statements hold:
(a) If0< \wgkl/zi(fcfbfAl)\ <1, then zant1 — 00 and z4ny3 — 0, as n — co.
(b) If \wgkl/zi(fcfbfAl)\ > 1, then z4nt1 — 0 and z4ny3 — 00, as n — 0.
(c) If wi™ = zi(iw*bf)‘l) and 0 < |wg/2% 1| <1, zany1 — 0 and 24n43 — 00,
asn — oo.
(d) If wi* = zli(fcfbf)‘l) and |[wg/z%1| > 1, z4nt1 — 00 and zansz — 0, as
n — 00.
(e) If wd™ = zi({w_b_h) and wg = 2|, then z2,.1 =1, asn € Ny.
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() If wg>‘1 = zli(fc_b_’\l) and w§ = 2° 1€, 0 = pr/q, ¢ € N and p € Z, then
Zan+1 and Zgn4s are periodic with period T' < 2q.
(2) If 0 < |20 2 | < 1, then z4ny2 — 0 and 24n14 — 00, as 1 — oo.
(h) If | 237" Jw® | > 1, then zipio — 00 and Zgniq — 0, as n — 0o.
(i) If 25" = w and 0 < |25 /w| < 1, then zany2 — 0 and zaniq —
00, as n — oo.
G) If 2870 = w and |28 Jw®| > 1, then z4ni2 — 00 and ziniq — 0,
asn — oo.
(k) If 209707 = w9 and 28°7° = w, then zonio = 1, as n € Np.
0 If zgcfbf)‘l = w and ch—b =we® 0 =pr/q, g €N and p € Z, then
Zan+2 and Zgntq are periodic with period T < 2q.
(m) If0 < |z§>‘1/wd_(fc_d_)‘l)| <1, want+1 — 00 and wap+3 — 0, as n — oo.
) If \ngl/wd_(fcfdf)“” > 1, wypt1 — 0 and wypi3 — 00, as n — oo.
) If 20 = w'i({w*dﬂ\l) and 0 < |2§/w? | < 1, then wyny1 — 0 and Want3 —
00, as n — o0o.

—~
o =

(p) If 25 = wdf(lacfdfkl) and |25 /w? (| > 1, w1 — oo and wa,13 — 0, as
n — oo.

(q) If zM = wd_(lacfdf)‘l) and z§ = w?, then wa,+1 =1, as n € Ny.

(v) If zg)‘l = w‘i({w*df)‘l) and z§ = wl e, 0 = pr/q, ¢ €N and p € Z, then
Wan+t1 and Wyan43 are periodic with period T < 2q.

(s) If 0 < Jwg™ 972 /20 | < 1, then winio — 0 and wap g — 00, as 1 — 0.

(t) If |wge 21 /20 > 1, then wapnia — 00 and winyqa — 0, as n — 0.

(u) IFwi™ M =22 and 0 < [wi /22| < 1, then winio — 0 and win g —
00, as m — 00.

(v) Ifw‘owfd*)‘1 = 2% and |wgc_d/zicl| > 1, then wypy2 — 00 and wyp1q — 0,
asmn — oo.

(w) If wi® ™ = 2% and wie™ = 2%, then wan 42 = 1, as n € No.

(x) If w4 = 20 and wi*™4 = 2%9e, 0 = pr/q, ¢ € N and p € Z, then
Wan+t2 and Wyentq are periodic with period T < 2q.

Proof. First note that in this case the characteristic roots of polynomial (2.38)) are

such that
A1 =Xy = —/ |bd| < 1.
Note that they are negative integers, since 24/|bd| = |ac — b — d| € N. Equations

(3.25))-(3.28)) can be written in the form

S (:égl)(lh)” (Zb_(ﬁ:l_/\l))n(lh)”_l’ (3.20)
N (zizlb><—|m" (20;; )n<—w|>”7 (3:30)
— (;§1><—|A1>" (my(—wwl’ (3.31)

for n € Ny.
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From (3.29)-(3.32)) it follows that

a 2n aly —on|A 2
w§ \ M Wy 1
2t = (50) " (S ) ) (3.33)
Z—l z (1 1)
wd \ P wiM (2n+1)A3"
Zan+y3 = (ZTl) (m) ) (3.34)
ac b Af” Zacfbf)\l 2n>\?n
Z4An+2 = ( ) (Oﬁ) N (335)
-1
z5e flm%“ 23e7OTAL —(@n ) P
Zinta = ( sjadl ) ( me{ ) , (3.36)
c 2n cA1 —2n|A |2n71
z5 \M 25 1
winir = (9-)" () , (3.37)
w?, wi(lac )
c o\ — n cAl 2n
Y [Ag]?nt? 5 (2n+1)|A1]
Wyn+3 = (@) (m) ) (3"38)
ac d AZn w d—X1 2n A"
Wyn+2 ( ) ( Ozbc ) 9 (339)
-1
. wge 4N\~ P
Wyn+4 = ( ) ( Zbc ) ) (340)
for n € Ny.
Using formulas (3.33)-(3.40) all the statements easily follow. O

Formulations and the proofs of the results on the long-term behavior of solu-
tions to system (1.5 for the case a,b,c,d € Z, bd # 0, (ac — b — d)? # 4bd,
z_1,20,w_1,wy € C\ {0}, we leave them for the reader as an exercise.
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