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SOLVABLE PRODUCT-TYPE SYSTEM OF DIFFERENCE
EQUATIONS OF SECOND ORDER

STEVO STEVIĆ, MOHAMMED A. ALGHAMDI,

ABDULLAH ALOTAIBI, ELSAYED M. ELSAYED

Abstract. We show that the system of difference equations

zn+1 =
wa

n

zb
n−1

, wn+1 =
zc
n

wd
n−1

, n ∈ N0,

where a, b, c, d ∈ Z, and initial values z−1, z0, w−1, w0 ∈ C, is solvable in closed

form, and present a method for finding its solutions.

1. Introduction

Difference equations and systems not closely related to differential equations is a
topic of considerable recent interest (see, e.g., [1]-[10], [12], [14]-[23], [25]-[56]). Since
the appearance of paper [29], in which was explained the formula for solutions to
the difference equation in [12], the area of solving difference equations and systems
of difference equations reattracted some attention (see, e.g., [1]-[5], [10], [12], [23],
[31], [36], [37], [39], [40], [42]-[50], [52]-[56] and the related references therein).

On the other hand, symmetric systems of difference equations and systems of a
similar appearance, whose investigation began by Papaschinopoulos, Schinas and
their collaborators during the mid of 1990’s, is another area which has attracted
some recent attention (see, e.g., [10, 18, 19, 20, 21, 25, 26, 27, 36, 39, 40, 42, 44,
45, 46, 47, 48, 49, 50, 51, 53, 54, 56] and the related references therein).

The publication of [28] and [30] initiated a considerable investigation of the
boundedness character of some classes of difference equations and systems contain-
ing non-integer powers of their variables (see, e.g., [7, 8, 22, 33, 35, 51] and the
related references therein). An interesting fact is that these equations and sys-
tems are perturbations of some product-type equations and systems of difference
equations, usually obtained by using the translation operator

τa(s) = a+ s, a ∈ R, (1.1)

or the following operator with maximum

ma(s) = max{a, s}, a ∈ R. (1.2)
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Note that operator (1.1) can act on the space of complex sequences, unlike operator
(1.2), which can act only on the space of real sequences. However, practically there
are no results which deal with the equations and systems generated by operator
(1.1) on the space of complex sequences.

Properties of solutions to difference equations and systems obtained by using
operators (1.1) and (1.2) are frequently closely related to the corresponding product-
type ones. For example, in [51], it was studied the following system of difference
equations

xn+1 = max
{
a,

ypn
xqn−1

}
, yn+1 = max

{
a,

xpn
yqn−1

}
, n ∈ N0, (1.3)

with min{a, p, q} > 0, where the boundedness character of their positive solutions
was completely characterized. Note that system (1.3) can be regarded as a pertur-
bation of the following product-type system of difference equations

xn+1 =
ypn
xqn−1

, yn+1 =
xpn
yqn−1

, n ∈ N0. (1.4)

If only positive solutions to system (1.4) are considered then it can be solved in
closed form. Generally speaking, a great majority of papers on difference equations
and systems consider only their positive solutions. One of the reasons is that such
equations and systems can be frequently regarded as models of some population
or biological models (see, e.g., [11, 31]). For some other applications to difference
equations, see, for example [13, 14, 24]. Beside this, their investigation is somewhat
simpler than in the general case. Hence, a natural problem, which seems has been
neglected so far, is to study behavior of solutions to product-type equations and
systems whose initial conditions need not be positive numbers only. This paper is
devoted to the problem and can be regarded as a starting point in the investigation.

The following second-order system of difference equations, which is an extension
of system (1.4),

zn+1 =
wan
zbn−1

, wn+1 =
zcn
wdn−1

, n ∈ N0, (1.5)

where a, b, c, d ∈ R and initial values z−1, z0, w−1, w0 are positive numbers can be
solved in closed form. Namely, by using the method of induction, it can be shown

zn > 0, wn > 0, for n ≥ −1,

which enables us, by taking the logarithm to the both sides of both equations
in (1.5), to transform it to a linear second-order system of difference equations
with constant coefficients, which is solvable in closed form. If z−1, z0, w−1, w0 are
complex numbers, then the method cannot be used, since in the case the sequences
(zn)n≥−1 and (wn)n≥−1 need not be uniquely defined.

Our aim here is to show that in some cases system (1.5) can be solved in closed
form also when z−1, z0, w−1, w0 are complex numbers. By the obtained formulas
we will present some results on the long-term behavior of solutions to system (1.5).

A vector sequence ~zn = (z(1)
n , . . . , z

(l)
n ), n ≥ −k, is called periodic (or eventually

periodic) with period p ∈ N if there is n0 ≥ −k, such that

z
(j)
n+p = z(j)

n , for n ≥ n0,

for every j ∈ {1, . . . , l}. Period p is prime if there is no p̂ ∈ N, p̂ < p which is
a period for the vector sequence. For p = 1 the sequences are called eventually
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constant or trivial (see, e.g., [15]). The periodicity is also one of the areas of
considerable interest (see, e.g., [6, 9, 14, 16, 17, 27, 31, 32, 34, 38, 41], and the
related references therein). If we say that a solution of system (1.5) is periodic with
period p we will tacitly regard that p need not be its prime period.

2. Main result

In this section we prove the main result in this paper, which presents formulas for
solutions to system (1.5). Before we formulate and prove it, note that the domain
of undefinable solutions ([45]) to system (1.5) is the set

U = {(z−1, z0, w−1, w0) ∈ C4 : z−1 = 0 or z0 = 0 or w−1 = 0 or w0 = 0}.
Hence, such solutions will be excluded from our considerations.

Theorem 2.1. Assume that a, b, c, d ∈ Z and initial values z−1, z0, w−1, w0 ∈
C \ {0}. Then system (1.5) is solvable in closed form.

Proof. Let
a1 = a, b1 = b, c1 = c, d1 = d. (2.1)

By using the equations in (1.5) we obtain

zn+1 =
wa1
n

zb1n−1

=
zca1−b1
n−1

wda1
n−2

=
za2
n−1

wb2n−2

, (2.2)

wn+1 =
zc1n
wd1n−1

=
wac1−d1n−1

zbc1n−2

=
wc2n−1

zd2n−2

, (2.3)

where we define a2, b2, c2 and d2 as follows

a2 := ca1 − b1, b2 := da1, c2 := ac1 − d1, d2 := bc1.

By using (2.2), (2.3) and the equations in (1.5) we further obtain

zn+1 =
za2
n−1

wb2n−2

=
waa2−b2
n−2

zba2
n−3

=
wa3
n−2

zb3n−3

, (2.4)

wn+1 =
wc2n−1

zd2n−2

=
zcc2−d2n−2

wdc2n−3

=
zc3n−2

wd3n−3

, (2.5)

where we define a3, b3, c3 and d3 as follows

a3 := aa2 − b2, b3 := ba2, c3 := cc2 − d2, d3 := dc2.

Assume that

zn+1 =
w
a2k−1
n−2k+2

z
b2k−1
n−2k+1

, wn+1 =
z
c2k−1
n−2k+2

w
d2k−1
n−2k+1

, (2.6)

where

a2k−1 := aa2k−2 − b2k−2, b2k−1 := ba2k−2,

c2k−1 := cc2k−2 − d2k−2, d2k−1 := dc2k−2,

and

zn+1 =
za2k
n−2k+1

wb2kn−2k

, wn+1 =
wc2kn−2k+1

zd2kn−2k

, (2.7)

where

a2k := ca2k−1 − b2k−1, b2k := da2k−1,



4 S. STEVIĆ, M. A. ALGHAMDI, A. ALOTAIBI, E. M. ELSAYED EJDE-2015/169

c2k := ac2k−1 − d2k−1, d2k := bc2k−1,

for some k ∈ N such that n ≥ 2k − 2.
By using (2.7) and the equations in (1.5) we obtain

zn+1 =
za2k
n−2k+1

wb2kn−2k

=
waa2k−b2k
n−2k

zba2k
n−2k−1

=
w
a2k+1
n−2k

z
b2k+1
n−2k−1

, (2.8)

wn+1 =
wc2kn−2k+1

zd2kn−2k

=
zcc2k−d2kn−2k

wdc2kn−2k−1

=
z
c2k+1
n−2k

w
d2k+1
n−2k−1

, (2.9)

where we define a2k+1, b2k+1, c2k+1 and d2k+1 as follows

a2k+1 := aa2k − b2k, b2k+1 := ba2k, c2k+1 := cc2k − d2k, d2k+1 := dc2k.

From (2.8), (2.9) and by using the equations in (1.5) we obtain

zn+1 =
w
a2k+1
n−2k

z
b2k+1
n−2k−1

=
z
ca2k+1−b2k+1
n−2k−1

w
da2k+1
n−2k−2

=
z
a2k+2
n−2k−1

w
b2k+2
n−2k−2

, (2.10)

wn+1 =
z
c2k+1
n−2k

w
d2k+1
n−2k−1

=
w
ac2k+1−d2k+1
n−2k−1

z
bc2k+1
n−2k−2

=
w
c2k+2
n−2k−1

z
d2k+2
n−2k−2

, (2.11)

where we define a2k+2, b2k+2, c2k+2 and d2k+2 as follows

a2k+2 := ca2k+1 − b2k+1, b2k+2 := da2k+1,

c2k+2 := ac2k+1 − d2k+1, d2k+2 := bc2k+1.

Hence, this inductive argument shows that relations (2.6) and (2.7) hold for
every k ∈ N and n ≥ 2k−1, and that above defined sequences (an)n∈N and (bn)n∈N
satisfy the following recurrent relations

a2k = ca2k−1 − b2k−1, b2k = da2k−1, (2.12)

a2k+1 = aa2k − b2k, b2k+1 = ba2k, (2.13)

c2k = ac2k−1 − d2k−1, d2k = bc2k−1, (2.14)

c2k+1 = cc2k − d2k, d2k+1 = dc2k, (2.15)

for k ∈ N.
From (2.8)-(2.11) we obtain

z2n+1 =
w
a2n+1
0

z
b2n+1
−1

, z2n+2 =
z
a2n+2
0

w
b2n+2
−1

(2.16)

w2n+1 =
z
c2n+1
0

w
d2n+1
−1

, w2n+2 =
w
c2n+2
0

z
d2n+2
−1

, (2.17)

for n ∈ N0.
Using (2.12) and (2.13) we have

a2k+1 = aa2k − da2k−1, a2k+2 = ca2k+1 − ba2k, k ∈ N,

from which it follows that

a2k+3 − (ac− b− d)a2k+1 + bda2k−1 = 0, k ∈ N, (2.18)

a2k+2 − (ac− b− d)a2k + bda2k−2 = 0, k ≥ 2. (2.19)
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From (2.14) and (2.15) we have

c2k+1 = cc2k − bc2k−1, c2k+2 = ac2k+1 − dc2k, k ∈ N,
from which it follows that

c2k+3 − (ac− b− d)c2k+1 + bdc2k−1 = 0, k ∈ N, (2.20)

c2k+2 − (ac− b− d)c2k + bdc2k−2 = 0, k ≥ 2. (2.21)

In what follows we will consider three cases separately; that is, b = 0, d = 0 and
bd 6= 0.
Case b = 0. In this case equations (2.18)-(2.21) become

a2k+3 = (ac− d)a2k+1, a2k+2 = (ac− d)a2k, k ∈ N,
c2k+3 = (ac− d)c2k+1, c2k+2 = (ac− d)c2k, k ∈ N,

from which it follows that

a2k+1 = a1(ac− d)k = a(ac− d)k, (2.22)

a2k+2 = a2(ac− d)k = ac(ac− d)k, (2.23)

c2k+1 = c1(ac− d)k = c(ac− d)k, (2.24)

c2k+2 = c2(ac− d)k = (ac− d)k+1, (2.25)

for k ∈ N0.
Using (2.22)-(2.25) in (2.12)-(2.15), as well as the condition b = 0, it follows that

b2k+1 = 0, b2k+2 = ad(ac− d)k, k ∈ N0, (2.26)

d2k+1 = d(ac− d)k, d2k+2 = 0, k ∈ N0. (2.27)

Employing (2.22)-(2.27) in (2.16) and (2.17) we obtain that well-defined solutions
to system (1.5) in this case are given by the following formulas

z2n+1 = w
a(ac−d)n

0 , z2n+2 =
z
ac(ac−d)n

0

w
ad(ac−d)n

−1

(2.28)

w2n+1 =
z
c(ac−d)n

0

w
d(ac−d)n

−1

, w2n+2 = w
(ac−d)n+1

0 , n ∈ N0. (2.29)

Case d = 0. In this case equations (2.18)-(2.21) become

a2k+3 = (ac− b)a2k+1, a2k+2 = (ac− b)a2k, k ∈ N,
c2k+3 = (ac− b)c2k+1, c2k+2 = (ac− b)c2k, k ∈ N,

from which it follows that

a2k+1 = a1(ac− b)k = a(ac− b)k, (2.30)

a2k+2 = a2(ac− b)k = (ac− b)k+1, (2.31)

c2k+1 = c1(ac− b)k = c(ac− b)k, (2.32)

c2k+2 = c2(ac− b)k = ac(ac− b)k, (2.33)

for k ∈ N0.
Using (2.30)-(2.33) in (2.12)-(2.15), as well as the condition d = 0, it follows that

b2k+1 = b(ac− b)k, b2k+2 = 0, k ∈ N0, (2.34)
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d2k+1 = 0, d2k+2 = bc(ac− b)k, k ∈ N0. (2.35)

Employing (2.30)-(2.35) in (2.16) and (2.17) we obtain that well-defined solutions
to system (1.5) in this case are given by the following formulas

z2n+1 =
w
a(ac−b)n
0

z
b(ac−b)n
−1

, z2n+2 = z
(ac−b)n+1

0 (2.36)

w2n+1 = z
c(ac−b)n
0 , w2n+2 =

w
ac(ac−b)n
0

z
bc(ac−b)n
−1

, n ∈ N0. (2.37)

Case b 6= 0 6= d. Let λ1,2 be the roots of the characteristic polynomial

P (λ) = λ2 − (ac− b− d)λ+ bd, (2.38)

of the difference equation

un+2 − (ac− b− d)un+1 + bdun = 0, n ∈ N. (2.39)

From (2.18)-(2.21) it is clear that the sequences (a2k+1)k∈N0 , (a2k)k∈N, (c2k+1)k∈N0 ,
(c2k)k∈N, are solutions to equation (2.39).

It is known that the general solution of (2.39) has the form

un = α1λ
n
1 + α2λ

n
2 , n ∈ N,

if (ac − b − d)2 6= 4bd, where α1 and α2 are arbitrary constants, while in the case
(ac− b− d)2 = 4bd, the general solution has the following form

un = (β1n+ β2)λn1 , n ∈ N,

where β1 and β2 are arbitrary constants.
By some calculation and using the values for ai, bi, ci, di, for i ∈ {1, 2, 3, 4}, if

(ac− b− d)2 6= 4bd, we obtain

a2k+1 = a
λk+1

1 − λk+1
2

λ1 − λ2
, (2.40)

a2k+2 =
(ac− b− λ2)λk+1

1 − (ac− b− λ1)λk+1
2

λ1 − λ2
, (2.41)

b2k+1 = b
(ac− b− λ2)λk1 − (ac− b− λ1)λk2

λ1 − λ2
, (2.42)

b2k+2 = ad
λk+1

1 − λk+1
2

λ1 − λ2
, (2.43)

c2k+1 = c
λk+1

1 − λk+1
2

λ1 − λ2
, (2.44)

c2k+2 =
(ac− d− λ2)λk+1

1 − (ac− d− λ1)λk+1
2

λ1 − λ2
, (2.45)

d2k+1 = d
(ac− d− λ2)λk1 − (ac− d− λ1)λk2

λ1 − λ2
, (2.46)

d2k+2 = bc
λk+1

1 − λk+1
2

λ1 − λ2
, (2.47)

for k ∈ N0.
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By using (2.40)-(2.47) into (2.16) and (2.17) we obtain that well-defined solutions
to system (1.5) in this case are given by the following formulas

z2n+1 = w
a
λ
n+1
1 −λn+1

2
λ1−λ2

0 z
−b (ac−b−λ2)λn1−(ac−b−λ1)λn2

λ1−λ2
−1 , (2.48)

z2n+2 = z
(ac−b−λ2)λn+1

1 −(ac−b−λ1)λn+1
2

λ1−λ2
0 w

−adλ
n+1
1 −λn+1

2
λ1−λ2

−1 , (2.49)

w2n+1 = z
c
λ
n+1
1 −λn+1

2
λ1−λ2

0 w
−d (ac−d−λ2)λn1−(ac−d−λ1)λn2

λ1−λ2
−1 , (2.50)

w2n+2 = w
(ac−d−λ2)λn+1

1 −(ac−d−λ1)λn+1
2

λ1−λ2
0 z

−bcλ
n+1
1 −λn+1

2
λ1−λ2

−1 , (2.51)

for n ∈ N0.
If (ac− b− d)2 = 4bd, that is, if

λ1 = λ2 =
ac− b− d

2
,

we have

a2k+1 = a(k + 1)λk1 (2.52)

a2k+2 =
(
(ac− b− λ1)(k + 1) + λ1

)
λk1 , (2.53)

b2k+1 = b
(
(ac− b− λ1)k + λ1

)
λk−1

1 , (2.54)

b2k+2 = ad(k + 1)λk1 , (2.55)

c2k+1 = c(k + 1)λk1 , (2.56)

c2k+2 =
(
(ac− d− λ1)(k + 1) + λ1

)
λk1 , (2.57)

d2k+1 = d
(
(ac− d− λ1)k + λ1

)
λk−1

1 , (2.58)

d2k+2 = bc(k + 1)λk1 , (2.59)

for k ∈ N0.
By using (2.52)-(2.59) into (2.16) and (2.17) we obtain that well-defined solutions

to system (1.5) in this case are given by the following formulas

z2n+1 = w
a(n+1)λn1
0 z

−b((ac−b−λ1)n+λ1)λn−1
1

−1 , (2.60)

z2n+2 = z
((ac−b−λ1)(n+1)+λ1)λn1
0 w

−ad(n+1)λn1
−1 , (2.61)

w2n+1 = z
c(n+1)λn1
0 w

−d((ac−d−λ1)n+λ1)λn−1
1

−1 , (2.62)

w2n+2 = w
((ac−d−λ1)(n+1)+λ1)λn1
0 z

−bc(n+1)λn1
−1 , n ∈ N0, (2.63)

finishing the proof of the theorem. �

From the proof of Theorem 2.1 we obtain the following corollary.

Corollary 2.2. Consider (1.5) with a, b, c, d ∈ Z. Assume that z−1, z0, w−1, w0 ∈
C \ {0}. Then the following statements hold:

(a) If b = 0, then the general solution of system (1.5) is given by (2.28) and
(2.29).

(b) If d = 0, then the general solution of system (1.5) is given by (2.36) and
(2.37).
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(c) If bd 6= 0 and (ac− b− d)2 6= 4bd, then the general solution of system (1.5)
is given by (2.48)-(2.51).

(d) If bd 6= 0 and (ac− b− d)2 = 4bd, then the general solution of system (1.5)
is given by (2.60)-(2.63).

Remark 2.3. The condition a, b, c, d ∈ Z is posed in order to avoid multi-values of
powers of complex numbers, that is, we want that initial values z−1, z0, w−1, w0 ∈ C
define unique solutions to system (1.5).

3. Applications

In this section we give some applications of the formulas obtained in the previous
section. The long-term behavior of solutions to system (1.5) in several cases is
described.

Theorem 3.1. Consider system (1.5). Assume that a, c, d ∈ Z, b = 0, and initial
values z−1, z0, w−1, w0 ∈ C \ {0}. Then the following statements hold:

(a) If ac = d, then the solution (zn, wn)n≥−1 is eventually constant.
(b) If ac−d = 1, then the solution (zn, wn)n≥−1 is two-periodic, while if ac−d =
−1, then the solution (zn, wn)n≥−1 is four-periodic.

(c) If ac− d ≥ 2 and 0 < |wa0 | < 1, then z2n+1 → 0, as n→∞.
(d) If ac− d ≥ 2 and |wa0 | > 1, then z2n+1 →∞, as n→∞.
(e) If wa0 = 1, then z2n+1 = 1, n ∈ N0.
(f) If ac 6= d, a 6= 0, and w0 = eiθ, θ = pπ/q, q ∈ N and p ∈ Z, then z2n+1 is

periodic with period T ≤ 2q.
(g) If ac − d ≤ −2 and 0 < |wa0 | < 1, then z4n+1 → 0, as n → ∞, while if
|wa0 | > 1, then z4n+1 →∞, as n→∞.

(h) If ac − d ≤ −2 and 0 < |wa0 | < 1, then z4n+3 → ∞, as n → ∞, while if
|wa0 | > 1, then z4n+3 → 0, as n→∞.

(i) If ac− d ≥ 2 and 0 < |zac0 /wad−1| < 1, then z2n+2 → 0, as n→∞.
(j) If ac− d ≥ 2 and |zac0 /wad−1| > 1, then z2n+2 →∞, as n→∞.
(k) If zac0 = wad−1, then z2n+2 = 1, n ∈ N0.
(l) If ac 6= d, a 6= 0, c 6= 0 or d 6= 0, and zac0 = wad−1e

iθ, θ = pπ/q, q ∈ N and
p ∈ Z, then z2n+2 is periodic with period T ≤ 2q.

(m) If ac − d ≤ −2 and 0 < |zac0 /wad−1| < 1, then z4n+2 → 0, as n → ∞, while
if |zac0 /wad−1| > 1, then z4n+2 →∞, as n→∞.

(n) If ac− d ≤ −2 and 0 < |zac0 /wad−1| < 1, then z4n →∞, as n→∞, while if
|zac0 /wad−1| > 1, then z4n → 0, as n→∞.

(o) If ac− d ≥ 2 and 0 < |zc0/wd−1| < 1, then w2n+1 → 0, as n→∞.
(p) If ac− d ≥ 2, and |zc0/wd−1| > 1, then w2n+1 →∞, as n→∞.
(q) If zc0 = wd−1, then w2n+1 = 1, n ∈ N0.
(r) If ac 6= d, and zc0 = wd−1e

iθ, θ = pπ/q, q ∈ N and p ∈ Z, then w2n+1 is
periodic with period T ≤ 2q.

(s) If ac − d ≤ −2, 0 < |zc0/wd−1| < 1, then w4n+1 → 0, as n → ∞, while if
|zc0/wd−1| > 1, then w4n+1 →∞, as n→∞.

(t) If ac− d ≤ −2, and 0 < |zc0/wd−1| < 1, then w4n+3 →∞, as n→∞, while
if |zc0/wd−1| > 1, then w4n+3 → 0, as n→∞.

(u) If ac− d ≥ 2 and 0 < |w0| < 1, then w2n+2 → 0, as n→∞.
(v) If ac− d ≥ 2, and |w0| > 1, then w2n+2 →∞, as n→∞.
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(w) If w0 = 1, then w2n+2 = 1, n ∈ N0.
(x) If ac 6= d, and w0 = eiθ, θ = pπ/q, q ∈ N and p ∈ Z, then w2n+2 is periodic

with period T ≤ 2q.
(y) If ac−d ≤ −2, |w0| > 1, then w4n+2 → 0, as n→∞, while if 0 < |w0| < 1,

then w4n+2 →∞, as n→∞.
(z) If ac − d ≤ −2, and 0 < |w0| < 1, then w4n+4 → 0, as n → ∞, while if
|w0| > 1, then w4n+4 →∞, as n→∞.

Proof. (a) Using the condition ac = d in (2.28) and (2.29) we obtain

z2n+1 = z2n+2 = w2n+1 = w2n+2 = 1, n ∈ N,
from which the statement follows.

(b) Using the condition ac− d = 1 in (2.28) and (2.29) we obtain

z2n+1 = wa0 , z2n+2 =
zac0

wad−1

, w2n+1 =
zc0
wd−1

, w2n+2 = w0, n ∈ N0,

which means that (zn, wn)n≥−1 is two-periodic.
Using the condition ac− d = −1 in (2.28) and (2.29) we obtain

z2n+1 = w
a(−1)n

0 , z2n+2 =
z
ac(−1)n

0

w
ad(−1)n

−1

, w2n+1 =
z
c(−1)n

0

w
d(−1)n

−1

, w2n+2 = w
(−1)n+1

0 ,

for n ∈ N0. From this we have

z4n+1 = wa0 , z4n+2 =
zac0

wad−1

, w4n+1 =
zc0
wd−1

, w4n+2 =
1
w0
, (3.1)

z4n+3 =
1
wa0

, z4n+4 =
wad−1

zac0

, w4n+3 =
wd−1

zc0
, w4n+4 = w0, (3.2)

for n ∈ N0, which means that (zn, wn)n≥−1 is four-periodic.
(c), (d) If ac−d ≥ 2, then (ac−d)n → +∞ as n→ +∞. Hence, if 0 < |wa0 | < 1,

by using the formula
z2n+1 = w

a(ac−d)n

0 , n ∈ N0, (3.3)
we obtain that z2n+1 → 0, as n → ∞, while if |wa0 | > 1, then we obtain that
z2n+1 →∞, as n→∞.

(e) The statement directly follows by using the condition wa0 = 1 in (3.3).
(f) Using the conditions w0 = eiθ, θ = pπ/q, q ∈ N and p ∈ Z, in (3.3) we have

z2n+1 = eiπ
pa(ac−d)n

q , n ∈ N0. (3.4)

Now note that among the numbers

pa, pa(ac− d), pa(ac− d)2, . . . , pa(ac− d)2q,

there are two which have the same reminder by dividing by 2q, say, pa(ac−d)i and
pa(ac− d)j , 0 ≤ i < j ≤ 2q. This means that there is a k0 ∈ N such that

pa(ac− d)j − pa(ac− d)i = 2k0q,

from which it follows that

pa(ac− d)m+j − pa(ac− d)m+i = 2k0q(ac− d)m,

for every m ∈ N0. This means that the sequence pa(ac − d)n (mod 2q), n ∈ N0,
is eventually periodic with period T = j − i ≤ 2q. Using this fact in (3.4) the
statement easily follows.
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(g), (h) Since ac− d ≤ −2 from (3.3) we have

z4n+1 = w
a(ac−d)2n

0 , z4n+3 = w
−a|ac−d|2n+1

0 , n ∈ N0. (3.5)

From (3.5) and the posed conditions these two statements easily follow.
(i)-(l) The proofs are the same as those ones of (c)-(f), when wa0 is replaced by

zac0 /wad−1, and z2n+1 is replaced by z2n+2. Hence, we omit the detail.
(m), (n) From (2.28) we have

z4n+2 =
( zac0

wad−1

)(ac−d)2n

, z4n+4 =
( zac0

wad−1

)−|ac−d|2n+1

, (3.6)

for n ∈ N0. From (3.6) and the posed conditions these two statements easily follow.
(o)-(r) Using the formula

w2n+1 =
( zc0
wd−1

)(ac−d)n

, n ∈ N0, (3.7)

statements (o)-(q) easily follow, while (r) is proved similarly to (f).
(s), (t) From (3.7) and since ac− d ≤ −2, it follows that

w4n+1 =
( zc0
wd−1

)(ac−d)2n

, w4n+3 =
( zc0
wd−1

)−|ac−d|2n+1

, n ∈ N0. (3.8)

Using the formulas in (3.8) these two statements easily follow.
(u)-(x) Using the formula

w2n+2 = w
(ac−d)n+1

0 , n ∈ N0, (3.9)

statements (u)-(w) easily follow, while (x) is proved similar to (f).
(y), (z) From (3.9) and since ac− d ≤ −2, it follows that

w4n+2 = w
−|ac−d|2n+1

0 , w4n+4 = w
(ac−d)2n+2

0 , n ∈ N0. (3.10)

Using the formulas in (3.10) these two statements easily follow. �

Remark 3.2. The long-term behavior of solutions to system (1.5) in the cases
wa0 = eiθ or zac0 /wad−1 = eiθ or zc0/w

d
−1 = eiθ or w0 = eiθ, when θ/π 6∈ Q, is more

complex and will be not treated here in detail. We can only mention here that in
some cases the sequence θ(ab−d)n (mod 2π), n ∈ N0, can have a set of accumulation
points which is nowhere dense in the interval [0, 2π], but is some other cases it can
be everywhere dense in the interval.

Theorem 3.3. Consider system (1.5). Assume that a, b, c ∈ Z, d = 0, and initial
values z−1, z0, w−1, w0 ∈ C \ {0}. Then the following statements hold:

(a) If ac = b, then the solution (zn, wn)n≥−1 is eventually constant.
(b) If ac−b = 1, then the solution (zn, wn)n≥−1 is two-periodic, while if ac−b =
−1, then the solution (zn, wn)n≥−1 is four-periodic.

(c) If ac− b ≥ 2 and 0 < |wa0/zb−1| < 1, then z2n+1 → 0, as n→∞.
(d) If ac− b ≥ 2 and |wa0/zb−1| > 1, then z2n+1 →∞, as n→∞.
(e) If wa0 = zb−1, then z2n+1 = 1, n ∈ N0.
(f) If ac 6= b and wa0 = zb−1e

iθ, θ = pπ/q, q ∈ N and p ∈ Z, then z2n+1 is
periodic with period T ≤ 2q.

(g) If ac− b ≤ −2 and 0 < |wa0/zb−1| < 1, then z4n+1 → 0, as n→∞, while if
|wa0/zb−1| > 1, then z4n+1 →∞, as n→∞.
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(h) If ac − b ≤ −2 and 0 < |wa0/zb−1| < 1, then z4n+3 → ∞, as n → ∞, while
if |wa0/zb−1| > 1, then z4n+3 → 0, as n→∞.

(i) If ac− b ≥ 2 and 0 < |z0| < 1, then z2n+2 → 0, as n→∞.
(j) If ac− b ≥ 2 and |z0| > 1, then z2n+2 →∞, as n→∞.
(k) If ac = b or z0 = 1, then z2n+2 = 1, n ∈ N0.
(l) If ac 6= b and z0 = eiθ, θ = pπ/q, q ∈ N and p ∈ Z, then z2n+2 is periodic

with period T ≤ 2q.
(m) If ac − b ≤ −2 and 0 < |z0| < 1, then z4n+2 → ∞, as n → ∞, while if

|z0| > 1, then z4n+2 → 0, as n→∞.
(n) If ac− b ≤ −2 and 0 < |z0| < 1, then z4n → 0, as n→∞, while if |z0| > 1,

then z4n →∞, as n→∞.
(o) If ac− b ≥ 2 and 0 < |zc0| < 1, then w2n+1 → 0, as n→∞.
(p) If ac− b ≥ 2 and |zc0| > 1, then w2n+1 →∞, as n→∞.
(q) If zc0 = 1, then w2n+1 = 1, n ∈ N0.
(r) If ac 6= b, and zc0 = eiθ, θ = pπ/q, q ∈ N and p ∈ Z, then w2n+1 is periodic

with period T ≤ 2q.
(s) If ac − b ≤ −2 and 0 < |zc0| < 1, then w4n+1 → 0, as n → ∞, while if
|zc0| > 1, then w4n+1 →∞, as n→∞.

(t) If ac − b ≤ −2 and 0 < |zc0| < 1, then w4n+3 → ∞, as n → ∞, while if
|zc0| > 1, then w4n+3 → 0, as n→∞.

(u) If ac− b ≥ 2 and 0 < |wac0 /z
bc
−1| < 1, then w2n+2 → 0, as n→∞.

(v) If ac− b ≥ 2 and |wac0 /z
bc
−1| > 1, then w2n+2 →∞, as n→∞.

(w) If wac0 = zbc−1, then w2n+2 = 1, n ∈ N0.
(x) If ac 6= b and wac0 = zbc−1e

iθ, θ = pπ/q, q ∈ N and p ∈ Z, then w2n+2 is
periodic with period T ≤ 2q.

(y) If ac − b ≤ −2 and 0 < |wac0 /z
bc
−1| < 1, then w4n+2 → 0, as n → ∞, while

if |wac0 /z
bc
−1| > 1, then w4n+2 →∞, as n→∞.

(z) If ac− b ≤ −2 and 0 < |wac0 /z
bc
−1| < 1, then w4n+4 →∞, as n→∞, while

if |wac0 /z
bc
−1| > 1, then w4n+4 → 0, as n→∞.

Proof. (a) Using the condition ac = b in (2.36) and (2.37) we obtain

z2n+1 = z2n+2 = w2n+1 = w2n+2 = 1, n ∈ N,
from which the statement follows.

(b) Using the condition ac− b = 1 in (2.36) and (2.37) we obtain

z2n+1 =
wa0
zb−1

, z2n+2 = z0, w2n+1 = zc0, w2n+2 =
wac0

zbc−1

, n ∈ N0,

which means that (zn, wn)n≥−1 is two-periodic.
Using the condition ac− b = −1 in (2.36) and (2.37) we obtain

z2n+1 =
w
a(−1)n

0

z
b(−1)n

−1

, z2n+2 = z
(−1)n+1

0 , w2n+1 = z
c(−1)n

0 , w2n+2 =
w
ac(−1)n

0

z
bc(−1)n

−1

,

for n ∈ N0. From this we have

z4n+1 =
wa0
zb−1

, z4n+2 =
1
z0
, w4n+1 = zc0, w4n+2 =

wac0

zbc−1

(3.11)

z4n+3 =
zb−1

wa0
, z4n+4 = z0, w4n+3 =

1
zc0
, w4n+4 =

zbc−1

wac0

, (3.12)
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for n ∈ N0, which means that (zn, wn)n≥−1 is four-periodic.
(c), (d) If ac−b ≥ 2, then (ac−b)n → +∞ as n→ +∞. Hence, if 0 < |wa0/zb−1| <

1, by using the formula

z2n+1 =
( wa0
zb−1

)(ac−b)n

, n ∈ N0, (3.13)

we obtain that z2n+1 → 0, as n → ∞, while if |wa0/zb−1| > 1, then we obtain that
z2n+1 → 0, as n→∞.

(e) The statement directly follows by using the condition wa0 = zb−1 in (3.13).
(f) Using the conditions w0 = eiθ, θ = pπ/q, q ∈ N and p ∈ Z, in (3.13) we have

z2n+1 = eiπ
p(ac−d)n

q , n ∈ N0. (3.14)

The rest of the proof is similar to the one of statement (f) in Theorem 3.1, so is
omitted.

(g), (h) Since ac− b ≤ −2 from (3.13) we have

z4n+1 =
( wa0
zb−1

)(ac−b)2n

, z4n+3 =
( wa0
zb−1

)−|ac−b|2n+1

, n ∈ N0. (3.15)

From (3.15) and the posed conditions these two statements easily follow.
(i)-(l) The proofs are similar to those ones of (c)-(f), when wa0/z

b
−1 is replaced

by z0, and z2n+1 is replaced by z2n+2. Hence, we omit the detail.
(m), (n) From (2.36) and since ac− b ≤ −2, we have

z4n+2 = z
−|ac−b|2n+1

0 , z4n+4 = z
(ac−b)2n+2

0 , (3.16)

for n ∈ N0. From (3.16) and the posed conditions these two statements easily
follow.

(o)-(r) Using the formula

w2n+1 = (zc0)(ac−b)n , n ∈ N0, (3.17)

statements (o)-(q) easily follow, while (r) is proved similar to (f).
(s), (t) From (3.17) and since ac− d ≤ −2, it follows that

w4n+1 = (zc0)(ac−b)2n , w4n+3 = (zc0)−|ac−b|
2n+1

, n ∈ N0. (3.18)

Using the formulas in (3.18) these two statements easily follow.
(u)-(x) Using the formula

w2n+2 =
(wac0

zbc−1

)(ac−b)n

, n ∈ N0, (3.19)

statements (u)-(w) easily follow, while (x) is proved similar to (f).
(y), (z) From (3.19) and since ac− b ≤ −2, it follows that

w4n+2 =
(wac0

zbc−1

)(ac−b)2n

, w4n+4 =
(wac0

zbc−1

)−|ac−b|2n+1

, n ∈ N0. (3.20)

Using the formulas in (3.20) these two statements easily follow. �

Theorem 3.4. Consider system (1.5). Assume that a, b, c, d ∈ Z, (ac−b−d)2 = 4bd
and ac− b−d = 2, and initial values z−1, z0, w−1, w0 ∈ C\{0}. Then the following
statements hold:

(a) If 0 < |wa0/z
b(ac−b−1)
−1 | < 1, then z2n+1 → 0, as n→∞.
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(b) If |wa0/z
b(ac−b−1)
−1 | > 1, then z2n+1 →∞, as n→∞.

(c) If wa0 = z
b(ac−b−1)
−1 , then z2n+1 = wa0/z

b
−1, as n→∞.

(d) If wa0 = z
b(ac−b−1)
−1 eiθ, θ = pπ/q, q ∈ N and p ∈ Z, then z2n+1 is periodic

with period T ≤ 2q.
(e) If 0 < |zac−b−1

0 /wad−1| < 1, then z2n+2 → 0, as n→∞.
(f) If |zac−b−1

0 /wad−1| > 1, then z2n+2 →∞, as n→∞.
(g) If zac−b−1

0 = wad−1, then z2n+2 = zac−b0 /wad−1, as n→∞.
(h) If zac−b−1

0 = wad−1e
iθ, θ = pπ/q, q ∈ N and p ∈ Z, then z2n+2 is periodic

with period T ≤ 2q.
(i) If 0 < |zc0/w

d(ac−d−1)
−1 | < 1, then w2n+1 → 0, as n→∞.

(j) If |zc0/w
d(ac−d−1)
−1 | > 1, then w2n+1 →∞, as n→∞.

(k) If zc0 = w
d(ac−d−1)
−1 , then w2n+1 = zc0/w

d
−1, as n→∞.

(l) If zc0 = w
d(ac−d−1)
−1 eiθ, θ = pπ/q, q ∈ N and p ∈ Z, then w2n+1 is periodic

with period T ≤ 2q.
(m) If 0 < |wac−d−1

0 /zbc−1| < 1, then w2n+2 → 0, as n→∞.
(n) If |wac−d−1

0 /zbc−1| > 1, then w2n+2 →∞, as n→∞.
(o) If wac−d−1

0 = zbc−1, then w2n+2 = wac−d0 /zbc−1, as n→∞.
(p) If wac−d−1

0 = zbc−1e
iθ, θ = pπ/q, q ∈ N and p ∈ Z, then z2n+2 is periodic

with period T ≤ 2q.

Proof. First note that in this case the characteristic roots of polynomial (2.38) are
λ1 = λ2 = 1. Using it into (2.60)-(2.63) we obtain the following formulas

z2n+1 =
wa0
zb−1

( wa0

z
b(ac−b−1)
−1

)n
, z2n+2 =

zac−b0

wad−1

(zac−b−1
0

wad−1

)n
,

w2n+1 =
zc0
wd−1

( zc0

w
d(ac−d−1)
−1

)n
, w2n+2 =

wac−d0

zbc−1

(wac−d−1
0

zbc−1

)n
,

for n ∈ N0, from which all the statements of the theorem easily follow. �

Theorem 3.5. Consider system (1.5). Assume that a, b, c, d ∈ Z, (ac−b−d)2 = 4bd
and ac−b−d = −2, and initial values z−1, z0, w−1, w0 ∈ C\{0}. Then the following
statements hold:

(a) If 0 < |wa0z
b(ac−b+1)
−1 | < 1, then z4n+1 → 0 and z4n+3 →∞, as n→∞.

(b) If |wa0z
b(ac−b+1)
−1 | > 1, then z4n+1 →∞ and z4n+3 → 0, as n→∞.

(c) If wa0z
b(ac−b+1)
−1 = 1, then z4n+1 = wa0/z

b
−1 = 1/z4n+3, as n ∈ N0.

(d) If wa0z
b(ac−b+1)
−1 = eiθ, θ = pπ/q, q ∈ N and p ∈ Z, then z4n+1 and z4n+3

are periodic with period T ≤ 2q.
(e) If 0 < |zac−b+1

0 /wad−1| < 1, then z4n+2 → 0 and z4n+4 →∞, as n→∞.
(f) If |zac−b+1

0 /wad−1| > 1, then z4n+2 →∞ and z4n+4 → 0, as n→∞.
(g) If zac−b+1

0 = wad−1, then z4n+2 = zac−b0 /wad−1 = 1/z4n+4, as n ∈ N0.
(h) If zac−b+1

0 = wad−1e
iθ, θ = pπ/q, q ∈ N and p ∈ Z, then z4n+2 and z4n+4 are

periodic with period T ≤ 2q.
(i) If 0 < |zc0w

d(ac−d+1)
−1 | < 1, then w4n+1 → 0 and w4n+3 →∞, as n→∞.

(j) If |zc0w
d(ac−d+1)
−1 | > 1, then w4n+1 →∞ and w4n+3 → 0, as n→∞.

(k) If zc0w
d(ac−d+1)
−1 = 1, then w4n+1 = zc0/w

d
−1 = 1/w4n+3, as n ∈ N0.
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(l) If zc0w
d(ac−d+1)
−1 = eiθ, θ = pπ/q, q ∈ N and p ∈ Z, then w4n+1 and w4n+3

are periodic with period T ≤ 2q.
(m) If 0 < |wac−d+1

0 /zbc−1| < 1, then w4n+2 → 0 and w4n+4 →∞, as n→∞.
(n) If |wac−d+1

0 /zbc−1| > 1, then w4n+2 →∞ and w4n+4 → 0, as n→∞.
(o) If wac−d+1

0 = zbc−1, then w4n+2 = wac−d0 /zbc−1 = 1/w4n+4, as n ∈ N0.
(p) If wac−d+1

0 = zbc−1e
iθ, θ = pπ/q, q ∈ N and p ∈ Z, then w4n+2 and w4n+4

are periodic with period T ≤ 2q.

Proof. First note that in this case the characteristic roots of polynomial (2.38) are
λ1 = λ2 = −1. Using it into (2.60)-(2.63) we obtain the following formulas

z2n+1 =
w
a(−1)n

0

z
b(−1)n

−1

( wa0

z
−b(ac−b+1)
−1

)n(−1)n

, z2n+2 =
z

(ac−b)(−1)n

0

w
ad(−1)n

−1

(zac−b+1
0

wad−1

)n(−1)n

,

w2n+1 =
z
c(−1)n

0

w
d(−1)n

−1

( zc0

w
−d(ac−d+1)
−1

)n(−1)n

, w2n+2 =
w

(ac−d)(−1)n

0

z
bc(−1)n

−1

(wac−d+1
0

zbc−1

)n(−1)n

,

for n ∈ N0, from which it follows that

z4n+1 =
wa0
zb−1

( wa0

z
−b(ac−b+1)
−1

)2n

, z4n+3 =
zb−1

wa0

(z−b(ac−b+1)
−1

wa0

)2n+1

, (3.21)

z4n+2 =
zac−b0

wad−1

(zac−b+1
0

wad−1

)2n

, z4n+4 =
wad−1

zac−b0

( wad−1

zac−b+1
0

)2n+1

, (3.22)

w4n+1 =
zc0
wd−1

( zc0

w
−d(ac−d+1)
−1

)2n

, w4n+3 =
wd−1

zc0

(w−d(ac−d+1)
−1

zc0

)2n+1

, (3.23)

w4n+2 =
wac−d0

zbc−1

(wac−d+1
0

zbc−1

)2n

, w4n+4 =
zbc−1

wac−d0

( zbc−1

wac−d+1
0

)2n+1

, (3.24)

for n ∈ N0. Using formulas (3.21)-(3.24) all the statements of the theorem easily
follow. �

Theorem 3.6. Consider system (1.5). Assume that a, b, c, d ∈ Z, bd 6= 0, (ac− b−
d)2 = 4bd and ac − b − d > 2, and initial values z−1, z0, w−1, w0 ∈ C \ {0}. Then
the following statements hold:

(a) If 0 < |waλ1
0 /z

b(ac−b−λ1)
−1 | < 1, then z2n+1 → 0, as n→∞.

(b) If |waλ1
0 /z

b(ac−b−λ1)
−1 | > 1, then z2n+1 →∞, as n→∞.

(c) If waλ1
0 = z

b(ac−b−λ1)
−1 and 0 < |wa0/zb−1| < 1, then z2n+1 → 0, as n→∞.

(d) If waλ1
0 = z

b(ac−b−λ1)
−1 and |wa0/zb−1| > 1, then z2n+1 →∞, as n→∞.

(e) If waλ1
0 = z

b(ac−b−λ1)
−1 and wa0 = zb−1, then z2n+1 = 1, as n ∈ N0.

(f) If waλ1
0 = z

b(ac−b−λ1)
−1 and wa0 = zb−1e

iθ, θ = pπ/q, q ∈ N and p ∈ Z, then
z2n+1 is periodic with period T ≤ 2q.

(g) If 0 < |zac−b−λ1
0 /wad−1| < 1, then z2n+2 → 0, as n→∞.

(h) If |zac−b−λ1
0 /wad−1| > 1, then z2n+2 →∞, as n→∞.

(i) If zac−b−λ1
0 = wad−1 and 0 < |zac−b0 /wad−1| < 1, then z2n+2 → 0, as n→∞.

(j) If zac−b−λ1
0 = wad−1 and |zac−b0 /wad−1| > 1, then z2n+2 →∞, as n→∞.

(k) If zac−b−λ1
0 = wad−1 and zac−b0 = wad−1, then z2n+2 = 1, as n ∈ N0.
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(l) If zac−b−λ1
0 = wad−1 and zac−b0 = wad−1e

iθ, θ = pπ/q, q ∈ N and p ∈ Z, then
z2n+2 is periodic with period T ≤ 2q.

(m) If 0 < |zcλ1
0 /w

d(ac−d−λ1)
−1 | < 1, then w2n+1 → 0, as n→∞.

(n) If |zcλ1
0 /w

d(ac−d−λ1)
−1 | > 1, then w2n+1 →∞, as n→∞.

(o) If zcλ1
0 = w

d(ac−d−λ1)
−1 and 0 < |zc0/wd−1| < 1, then w2n+1 → 0, as n→∞.

(p) If zcλ1
0 = w

d(ac−d−λ1)
−1 and |zc0/wd−1| > 1, then w2n+1 →∞, as n→∞.

(q) If zcλ1
0 = w

d(ac−d−λ1)
−1 and zc0 = wd−1, then w2n+1 = 1, as n ∈ N0.

(r) If zcλ1
0 = w

d(ac−d−λ1)
−1 and zc0 = wd−1e

iθ, θ = pπ/q, q ∈ N and p ∈ Z, then
w2n+1 is periodic with period T ≤ 2q.

(s) If 0 < |wac−d−λ1
0 /zbc−1| < 1, then w2n+2 → 0, as n→∞.

(t) If |wac−d−λ1
0 /zbc−1| > 1, then w2n+2 →∞, as n→∞.

(u) If wac−d−λ1
0 = zbc−1 and 0 < |wac−d0 /zbc−1| < 1, then w2n+2 → 0, as n→∞.

(v) If wac−d−λ1
0 = zbc−1 and |wac−d0 /zbc−1| > 1, then w2n+2 →∞, as n→∞.

(w) If wac−d−λ1
0 = zbc−1 and wac−d0 = zbc−1, then w2n+2 = 1, as n ∈ N0.

(x) If wac−d−λ1
0 = zbc−1 and wac−d0 = zbc−1e

iθ, θ = pπ/q, q ∈ N and p ∈ Z, then
w2n+2 is periodic with period T ≤ 2q.

Proof. First note that in this case the characteristic roots of polynomial (2.38) are
such that

λ1 = λ2 =
√
|bd| > 1.

Note that they are natural numbers, since 2
√
|bd| = |ac − b − d| ∈ N. Equations

(2.60)-(2.63) can be written in the form

z2n+1 =
( wa0
zb−1

)λn1 ( waλ1
0

z
b(ac−b−λ1)
−1

)nλn−1
1

, (3.25)

z2n+2 =
(zac−b0

wad−1

)λn1 (zac−b−λ1
0

wad−1

)nλn1
, (3.26)

w2n+1 =
( zc0
wd−1

)λn1 ( zcλ1
0

w
d(ac−d−λ1)
−1

)nλn−1
1

, (3.27)

w2n+2 =
(wac−d0

zbc−1

)λn1 (wac−d−λ1
0

zbc−1

)nλn1
, (3.28)

for n ∈ N0. Using formulas (3.25)-(3.28) all the statement easily follow. �

Theorem 3.7. Consider system (1.5). Assume that a, b, c, d ∈ Z, bd 6= 0, (ac −
b − d)2 = 4bd and ac − b − d < −2, and initial values z−1, z0, w−1, w0 ∈ C \ {0}.
Then the following statements hold:

(a) If 0 < |waλ1
0 /z

b(ac−b−λ1)
−1 | < 1, then z4n+1 →∞ and z4n+3 → 0, as n→∞.

(b) If |waλ1
0 /z

b(ac−b−λ1)
−1 | > 1, then z4n+1 → 0 and z4n+3 →∞, as n→∞.

(c) If waλ1
0 = z

b(ac−b−λ1)
−1 and 0 < |wa0/zb−1| < 1, z4n+1 → 0 and z4n+3 → ∞,

as n→∞.
(d) If waλ1

0 = z
b(ac−b−λ1)
−1 and |wa0/zb−1| > 1, z4n+1 → ∞ and z4n+3 → 0, as

n→∞.
(e) If waλ1

0 = z
b(ac−b−λ1)
−1 and wa0 = zb−1, then z2n+1 = 1, as n ∈ N0.
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(f) If waλ1
0 = z

b(ac−b−λ1)
−1 and wa0 = zb−1e

iθ, θ = pπ/q, q ∈ N and p ∈ Z, then
z4n+1 and z4n+3 are periodic with period T ≤ 2q.

(g) If 0 < |zac−b−λ1
0 /wad−1| < 1, then z4n+2 → 0 and z4n+4 →∞, as n→∞.

(h) If |zac−b−λ1
0 /wad−1| > 1, then z4n+2 →∞ and z4n+4 → 0, as n→∞.

(i) If zac−b−λ1
0 = wad−1 and 0 < |zac−b0 /wad−1| < 1, then z4n+2 → 0 and z4n+4 →

∞, as n→∞.
(j) If zac−b−λ1

0 = wad−1 and |zac−b0 /wad−1| > 1, then z4n+2 → ∞ and z4n+4 → 0,
as n→∞.

(k) If zac−b−λ1
0 = wad−1 and zac−b0 = wad−1, then z2n+2 = 1, as n ∈ N0.

(l) If zac−b−λ1
0 = wad−1 and zac−b0 = wad−1e

iθ, θ = pπ/q, q ∈ N and p ∈ Z, then
z4n+2 and z4n+4 are periodic with period T ≤ 2q.

(m) If 0 < |zcλ1
0 /w

d(ac−d−λ1)
−1 | < 1, w4n+1 →∞ and w4n+3 → 0, as n→∞.

(n) If |zcλ1
0 /w

d(ac−d−λ1)
−1 | > 1, w4n+1 → 0 and w4n+3 →∞, as n→∞.

(o) If zcλ1
0 = w

d(ac−d−λ1)
−1 and 0 < |zc0/wd−1| < 1, then w4n+1 → 0 and w4n+3 →

∞, as n→∞.
(p) If zcλ1

0 = w
d(ac−d−λ1)
−1 and |zc0/wd−1| > 1, w4n+1 → ∞ and w4n+3 → 0, as

n→∞.
(q) If zcλ1

0 = w
d(ac−d−λ1)
−1 and zc0 = wd−1, then w2n+1 = 1, as n ∈ N0.

(r) If zcλ1
0 = w

d(ac−d−λ1)
−1 and zc0 = wd−1e

iθ, θ = pπ/q, q ∈ N and p ∈ Z, then
w4n+1 and w4n+3 are periodic with period T ≤ 2q.

(s) If 0 < |wac−d−λ1
0 /zbc−1| < 1, then w4n+2 → 0 and w4n+4 →∞, as n→∞.

(t) If |wac−d−λ1
0 /zbc−1| > 1, then w4n+2 →∞ and w4n+4 → 0, as n→∞.

(u) If wac−d−λ1
0 = zbc−1 and 0 < |wac−d0 /zbc−1| < 1, then w4n+2 → 0 and w4n+4 →

∞, as n→∞.
(v) If wac−d−λ1

0 = zbc−1 and |wac−d0 /zbc−1| > 1, then w4n+2 →∞ and w4n+4 → 0,
as n→∞.

(w) If wac−d−λ1
0 = zbc−1 and wac−d0 = zbc−1, then w2n+2 = 1, as n ∈ N0.

(x) If wac−d−λ1
0 = zbc−1 and wac−d0 = zbc−1e

iθ, θ = pπ/q, q ∈ N and p ∈ Z, then
w4n+2 and w4n+4 are periodic with period T ≤ 2q.

Proof. First note that in this case the characteristic roots of polynomial (2.38) are
such that

λ1 = λ2 = −
√
|bd| < 1.

Note that they are negative integers, since 2
√
|bd| = |ac − b − d| ∈ N. Equations

(3.25)-(3.28) can be written in the form

z2n+1 =
( wa0
zb−1

)(−|λ1|)n( waλ1
0

z
b(ac−b−λ1)
−1

)n(−|λ1|)n−1

, (3.29)

z2n+2 =
(zac−b0

wad−1

)(−|λ1|)n(zac−b−λ1
0

wad−1

)n(−|λ1|)n

, (3.30)

w2n+1 =
( zc0
wd−1

)(−|λ1|)n( zcλ1
0

w
d(ac−d−λ1)
−1

)n(−|λ1|)n−1

, (3.31)

w2n+2 =
(wac−d0

zbc−1

)(−|λ1|)n(wac−d−λ1
0

zbc−1

)n(−|λ1|)n

, (3.32)

for n ∈ N0.
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From (3.29)-(3.32) it follows that

z4n+1 =
( wa0
zb−1

)λ2n
1
( waλ1

0

z
b(ac−b−λ1)
−1

)−2n|λ1|2n−1

, (3.33)

z4n+3 =
( wa0
zb−1

)−|λ1|2n+1( waλ1
0

z
b(ac−b−λ1)
−1

)(2n+1)λ2n
1
, (3.34)

z4n+2 =
(zac−b0

wad−1

)λ2n
1
(zac−b−λ1

0

wad−1

)2nλ2n
1
, (3.35)

z4n+4 =
(zac−b0

wad−1

)−|λ1|2n+1(zac−b−λ1
0

wad−1

)−(2n+1)|λ1|2n+1

, (3.36)

w4n+1 =
( zc0
wd−1

)λ2n
1
( zcλ1

0

w
d(ac−d−λ1)
−1

)−2n|λ1|2n−1

, (3.37)

w4n+3 =
( zc0
wd−1

)−|λ1|2n+1( zcλ1
0

w
d(ac−d−λ1)
−1

)(2n+1)|λ1|2n

, (3.38)

w4n+2 =
(wac−d0

zbc−1

)λ2n
1
(wac−d−λ1

0

zbc−1

)2nλ2n
1
, (3.39)

w4n+4 =
(wac−d0

zbc−1

)−|λ1|2n+1(wac−d−λ1
0

zbc−1

)−(2n+1)|λ1|2n+1

, (3.40)

for n ∈ N0.
Using formulas (3.33)-(3.40) all the statements easily follow. �

Formulations and the proofs of the results on the long-term behavior of solu-
tions to system (1.5) for the case a, b, c, d ∈ Z, bd 6= 0, (ac − b − d)2 6= 4bd,
z−1, z0, w−1, w0 ∈ C \ {0}, we leave them for the reader as an exercise.
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[30] S. Stević; On the recursive sequence xn+1 = α + (xp
n−1/x

p
n), J. Appl. Math. & Computing,

18 (1-2) (2005) 229-234.
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[33] S. Stević; On a generalized max-type difference equation from automatic control theory,

Nonlinear Anal. TMA, 72 (2010), 1841-1849.
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