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PROPERTIES OF SCHWARZIAN DIFFERENCE EQUATIONS

SHUANG-TING LAN, ZONG-XUAN CHEN

Abstract. We consider the Schwarzian type difference equationh∆3f(z)

∆f(z)
−

3

2

“∆2f(z)

∆f(z)

”2ik
= R(z),

where R(z) is a nonconstant rational function. We study the existence of ratio-
nal solutions and value distribution of transcendental meromorphic solutions

with finite order of the above equation.

1. Introduction and statement of main results

In this article, we use the basic notions of Nevanlinna’s theory [6, 12]. In addition,
σ(f) denotes the order of growth of the meromorphic function f(z); λ(f) and λ

(
1
f

)
denote the exponents of convergence of zeros and poles of f(z). Let S(r, w) denote
any quantity satisfying S(r, w) = o

(
T (r, w)

)
for all r outside of a set with finite

logarithmic measure. A meromorphic solution w of a difference (or differential)
equation is called admissible if the characteristic function of all coefficients of the
equation are S(r, w). For every n ∈ N+, the forward differences ∆nf(z) are defined
in the standard way [11] by

∆f(z) = f(z + 1)− f(z), ∆n+1f(z) = ∆nf(z + 1)−∆nf(z).

The Schwarzian differential equation[f ′′′
f ′
− 3

2
(f ′′
f ′
)2]k = R(z, f) =

P (z, f)
Q(z, f)

(1.1)

was studied by Ishizaki [7], and obtained some important results. Chen and Li [3]
investigated Schwarzian difference equation, and obtained the following theorem.

Theorem 1.1. Let f(z) be an admissible solution of difference equation[∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2]k
= R(z, f) =

P (z, f)
Q(z, f)

such that σ2(f) < 1, where k(≥ 1) is an integer, P (z, f) and Q(z, f) are polynomials
with degf P (z, f) = p, degf Q(z, f) = q, d = max{p, q}. Let α1, . . . , αs be s(≥ 2)
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distinct complex constants. Then
s∑
j=1

δ(αj , f) ≤ 4− q

2k
.

In particular, if N(r, f) = S(r, f), then
s∑
j=1

δ(αj , f) ≤ 2− d

2k
.

Set degf P (z, f) = degf Q(z, f) = 0 in equation (1.1), then R(z, f) ≡ R(z) is a
small function with respect to f(z). Liao and Ye [10] studied this type of Schwarzian
differential equation, and obtained the following result.

Theorem 1.2. Let P and Q be polynomials with degP = p, degQ = q, and let
R(z) = P (z)

Q(z) and k a positive integer. If f(z) is a transcendental meromorphic
solution of equation [f ′′′

f ′
− 3

2

(f ′′
f ′

)2]k
= R(z),

then p− q + 2k > 0 and the order σ(f) = p−q+2k
2k .

In this article, we study a Schwarzian difference equation, and obtain the follow-
ing result.

Theorem 1.3. Let R(z) = P (z)
Q(z) be an irreducible rational function with degP (z) =

p, degQ(z) = q. Consider the difference equation[∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2]k
= R(z), (1.2)

where k is a positive integer. Then
(i) every transcendental meromorphic solution f(z) of (1.2) satisfies σ(f) ≥ 1;

if p− q + 2k > 0, then (1.2) has no rational solutions;
(ii) if f(z) is a mereomorphic solution of (1.2) with finite order, terms ∆2f(z)

∆f(z)

and ∆3f(z)
∆f(z) in (1.2) are nonconstant rational functions;

(iii) every transcendental meromorphic solution f(z) with finite order has at
most one Borel exceptional value unless

f(z) = b+R0(z)eaz, (1.3)

where b ∈ C, a ∈ C \ {0} and R0(z) is a nonzero rational function.
(iv) if p− q+ 2k > 0, σ(f) <∞, then ∆f(z) has at most one Borel exceptional

value unless
∆f(z) = R1(z)eaz, (1.4)

where a ∈ C, a 6= i2k1π for any k1 ∈ Z, and R1(z) is a nonzero rational
function.

Corollary 1.4. Let f(z) be a finite order meromorphic solution of (1.2), if p−q+
2k > 0, then f(z), ∆f(z), ∆2f(z) and ∆3f(z) cannot be rational functions, and
∆2f(z)
∆f(z) and ∆3f(z)

∆f(z) are nonconstant rational functions.

Remark 1.5. Let f(z) be the function in the form (1.3), then the Schwarzian
difference is an irreducible rational function R(z) = P (z)

Q(z) with degP ≤ degQ.
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Proof. Suppose that f(z) has the form (1.3). Since R0(z) is a rational function, we
see R0(z) satisfies

R0(z + j)
R0(z)

→ 1, z →∞, j = 1, 2, 3. (1.5)

By (1.3), we have

∆f(z) = eaz(eaR0(z + 1)−R0(z));

∆2f(z) = eaz(e2aR0(z + 2)− 2eaR0(z + 1) +R0(z));

∆3f(z) = eaz(e3aR0(z + 3)− 3e2aR0(z + 2) + 3eaR0(z + 1)−R0(z)).

Combining these with (1.5), we have

∆3f(z)
∆f(z)

=
e3aR0(z + 3)− 3e2aR0(z + 2) + 3eaR0(z + 1)−R0(z)

eaR0(z + 1)−R0(z)

=
e3a R0(z+3)

R0(z) − 3e2a R0(z+2)
R0(z) + 3ea R0(z+1)

R0(z) − 1

ea R0(z+1)
R0(z) − 1

→ e3a − 3e2a + 3ea − 1
ea − 1

= (ea − 1)2, z →∞,

(1.6)

and
∆2f(z)
∆f(z)

=
e2aR0(z + 2)− 2eaR0(z + 1) +R0(z)

eaR0(z + 1)−R0(z)

=
e2a R0(z+2)

R0(z) − 2ea R0(z+1)
R0(z) + 1

ea R0(z+1)
R0(z) − 1

→ e2a − 2ea + 1
ea − 1

= ea − 1, z →∞.

(1.7)

Thus,

∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2

→ (ea − 1)2 − 3
2

(ea − 1)2 = −1
2

(ea − 1)2, z →∞. (1.8)

By (1.6), (1.7) and R0(z) begin a rational function, we see that

R(z) =
[∆3f(z)

∆f(z)
− 3

2

(∆2f(z)
∆f(z)

)2]k
is a rational function. Denote R(z) = P (z)

Q(z) , where P (z) and Q(z) are prime poly-
nomials. By (1.8), we see

R(z) =
P (z)
Q(z)

=
[∆3f(z)

∆f(z)
− 3

2

(∆2f(z)
∆f(z)

)2]k
→ (−1)k

2k
(ea − 1)2k, z →∞.

If ea 6= 1, then degP = degQ; if ea = 1, then degP < degQ. So, degP ≤
degQ. �

Remark 1.6. Checking the proof of Theorem 1.3 (iv), we see that for f(z) a
function such that ∆f(z) in the form (1.4), then the Schwarzian difference satisfies

∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2

= e2aR1(z + 2)
R1(z)

− 3
2
e2a
(R1(z + 1)

R1(z)

)2

+ ea
R1(z + 1)
R1(z)

− 1
2
.

Examples 1.7 and 1.8 below show that the condition “p−q+2k > 0” in Theorem
1.3 (i) cannot be omitted.
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Example 1.7. Consider the Schwarzian type difference equation

∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2

= − 6
(2z + 1)2

,

where k = 1, p = 0, q = 2, and p−q+2k = 0. This equation has a rational solution
f1(z) = z2, and a transcendental meromorphic solution f2(z) = ei2πz + z2.

Example 1.8. Consider the Schwarzian type difference equation

∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2

=
−6

(z + 3)(z + 2)2
,

where k = 1, p = 0, q = 3, and p− q + 2k = −1 < 0. This equation has a rational
solution f1(z) = 1

z , and a transcendental meromorphic solution f2(z) = ei2πz + 1
z .

Example 1.9. The function f(z) = ze(log 3)z satisfies Schwarzian type difference
equation

∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2

=
−8z2 − 48z − 108

(2z + 3)2
.

We see σ(f) = 1 and f(z) has finitely many zeros and poles. It shows the result of
Theorem 1.3 (iii) is precise.

2. Preliminaries

Lemma 2.1 ([2]). Let f(z) be a meromorphic function of finite order σ and let η
be a nonzero complex constant. Then for each ε(0 < ε < 1), we have

m
(
r,
f(z + η)
f(z)

)
+m

(
r,

f(z)
f(z + η)

)
= O(rσ−1+ε).

Lemma 2.2 ([2]). Let f(z) be a meromorphic function with order σ = σ(f), σ <∞,
and let η be a fixed nonzero complex number, then for each ε > 0,

T (r, f(z + η)) = T (r, f(z)) +O
(
rσ−1+ε

)
+O(log r).

Lemma 2.3 ([4, Theorem 1.8.1], [9]). Let c ∈ C \ {0} and f(z) be a finite order
meromorphic function with two finite Borel exceptional values a and b. Then for
every n ∈ N+,

T (r,∆nf) = (n+ 1)T (r, f) + S(r, f)
unless f(z) and c satisfy

f(z) = b+
b− a

pedz − 1
, p, d ∈ C \ {0},

mdc = i2k1π for some k1 ∈ Z and m ∈ {1, 2, . . . , n}.

Remark 2.4. Checking the proof of Lemma 2.3, we point out that when c ∈ C\{0}
and f(z) is a finite order meromorphic function with two finite Borel exceptional
values, for every n ∈ N+, if c, 2c, . . . , nc are not periods of f(z), then

T (r,∆nf) = (n+ 1)T (r, f) + S(r, f).

Lemma 2.5 ([1]). Let f(z) be a function transcendental and meromorphic in the
plane which satisfies

lim inf
r→∞

T (r, f)
r

= 0.

Then ∆f and ∆f/f are both transcendental.
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Lemma 2.6. Suppose that f(z) = H(z)eaz, where a 6= 0 is a constant, H(z) is a
transcendental meromorphic function with σ(H) < 1. Then ∆f(z)

f(z) is transcendental.

Proof. Substituting f(z) = H(z)eaz into ∆f(z)
f(z) , we see that

∆f(z)
f(z)

=
f(z + 1)− f(z)

f(z)
=
H(z + 1)ea(z+1) −H(z)eaz

H(z)eaz

= ea
H(z + 1)
H(z)

− 1 = ea
(H(z + 1)

H(z)
− 1
)

+ ea − 1

= ea
∆H(z)
H(z)

+ ea − 1.

(2.1)

From the fact σ(H) < 1, we see that

lim sup
r→∞

log T (r,H)
log r

= σ(H) < 1.

Then for large enough r, choose ε = 1−σ(H)
2 > 0, we have

log T (r,H) < (σ(H) + ε) log r;

that is,
T (r,H) < rσ(H)+ε.

Thus,

lim inf
r→∞

T (r,H)
r

≤ lim inf
r→∞

rσ(H)+ε

r
= lim inf

r→∞
rσ(H)+ε−1 = lim inf

r→∞
r−ε = 0. (2.2)

So, H(z) is a transcendental meromorphic function which satisfies (2.2). From
Lemma 2.5, we see ∆H(z)

H(z) is transcendental. By (2.1), ∆f(z)
f(z) is transcendental

too. �

Lemma 2.7 ([4, Lemma 5.2.2]). Let f(z) be a transcendental meromorphic function
with σ(f) < 1, and let g1(z) and g2(z)( 6≡ 0) be polynomials, c1, c2 (c1 6= c2) be
constants. Then

h(z) = g2(z)f(z + c2) + g1(z)f(z + c1)

is transcendental.

Lemma 2.8 ([5, 8]). Let w be a transcendental meromorphic solution with finite
order of difference equation

P (z, w) = 0,

where P (z, w) is a difference polynomial in w(z). If P (z, a) 6≡ 0 for a meromorphic
function a, where a is a small function with respect to w, then

m
(
r,

1
w − a

)
= S(r, w).

Remark 2.9. Ishizaki [7, Remark 1] pointed out that if P (z, w) and Q(z, w) are
mutually prime, there exist polynomials of w,U(z, w) and V (z, w) such that

U(z, w)P (z, w) + V (z, w)Q(z, w) = s(z),

where s(z) and coefficients of U(z, w) and V (z, w) are small functions with respect
to w(z).
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Lemma 2.10. Let R(z) be a nonconstant rational function. Suppose that f(z) is
a transcendental meromorphic solution of equation (1.2) with finite order, then in
(1.2), terms ∆2f(z)

∆f(z) and ∆3f(z)
∆f(z) are both nonconstant rational functions.

Proof. Set G(z) = ∆f(z+1)
∆f(z) . Then G(z) is a meromorphic function with finite order,

and

∆f(z + 1) = G(z)∆f(z),

∆f(z + 2) = G(z + 1)∆f(z + 1) = G(z + 1)G(z)∆f(z).

Hence,
∆2f(z) = ∆f(z + 1)−∆f(z) = (G(z)− 1)∆f(z), (2.3)

and
∆3f(z) = ∆2(∆f(z)) = ∆f(z + 2)− 2∆f(z + 1) + ∆f(z)

= (G(z + 1)G(z)− 2G(z) + 1)∆f(z).
(2.4)

From (1.2),

R(z) =
[∆3f(z)

∆f(z)
− 3

2

(∆2f(z)
∆f(z)

)2]k
is a nonconstant rational function, then

∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2

is also a nonconstant rational function. Denote

∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2

= R2(z), (2.5)

where R2(z) is a nonconstant rational function.
It follows from (2.3)–(2.5) that

G(z + 1)G(z)− 2G(z) + 1− 3
2

(G(z)− 1)2 = R2(z); (2.6)

that is,

G(z + 1) =
3
2G

2(z)−G(z) +R2(z) + 1
2

G(z)
. (2.7)

Since R2(z) is a nonconstant rational function, by (2.6), G(z) cannot be a constant.
Suppose that G(z) is transcendental. We see that

3
2
G2(z)−G(z) +R2(z) +

1
2

+ (−3
2
G(z) + 1)G(z) = R2(z) +

1
2
.

Together with Remark 2.9, 3
2G

2(z) − G(z) + R2(z) + 1
2 and G(z) are irreducible.

Applying Valiron-Mohon’ko Theorem to (2.7), we have

T (r,G(z + 1)) = 2T (r,G(z)) + S(r,G),

which contradicts Lemma 2.2. So, G(z) is a nonconstant rational function. By (2.3)
and (2.4), we see that ∆2f(z)

∆f(z) and ∆3f(z)
∆f(z) are nonconstant rational functions. �
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3. Proofs of theorems

Proof of Theorem 1.3. (i) Suppose that f(z) is a transcendental meromorphic so-
lution of equation (1.2) with σ(f) < 1. Lemma 2.5 shows g(z) = ∆f(z) is tran-
scendental with σ(g) < 1. Again by Lemma 2.5, we see ∆2f(z)

∆f(z) = ∆g(z)
g(z) is also

transcendental, which contradicts with Lemma 2.10. Thus, σ(f) ≥ 1.
Next, we prove that if f(z) is a rational solution of equation (1.2), then p− q +

2k ≤ 0. Set g(z) = ∆f(z). By (1.2), we see[∆2g(z)
g(z)

− 3
2

(∆g(z)
g(z)

)2]k
= R(z). (3.1)

Thus, g(z) is a rational solution of equation

∆2g(z)
g(z)

− 3
2

(∆g(z)
g(z)

)2

= R2(z),

or

g(z)∆2g(z)− 3
2

(∆g(z))2 = R2(z)g2(z), (3.2)

where R2(z) is some rational function such that Rk2(z) = R(z). Since R(z) =
Azp−q(1 + o(1)), where A is some nonzero constant, then

R2(z) = Bz
p−q

k (1 + o(1)), (3.3)

where B is some nonzero constant.
Suppose that

g(z) = h(z) +
m(z)
n(z)

, (3.4)

where h(z),m(z) and n(z) are polynomials with deg h(z) = l(≥ 0), degm(z) = m,
deg n(z) = n with m < n. Denote

h(z) = c0z
l + · · ·+ cl, m(z) = a0z

m + · · ·+ am, n(z) = b0z
n + · · ·+ bn, (3.5)

where c0, . . . , cl, a0, . . . , am, b0, . . . , bn are constants, with a0 6= 0 and b0 6= 0.
We divide this proof into the following three cases.

Case 1. l > 0. By (3.4) and (3.5), when z is large enough, g(z) can be written as

g(z) = c0z
l(1 + o(1)). (3.6)

Hence,

∆g(z) = lc0z
l−1(1 + o(1)), ∆2g(z) = l(l − 1)c0zl−2(1 + o(1)). (3.7)

Substituting (3.3), (3.6), (3.7) in (3.2), we obtain

c0z
ll(l − 1)c0zl−2(1 + o(1))− 3

2
(lc0zl−1)2(1 + o(1)) = Bz

p−q
k c20z

2l(1 + o(1));

that is,

−
( l

2
+ 1
)
lc20z

2l−2(1 + o(1)) = Bz
p−q

k c20z
2l(1 + o(1)),

from which it follows

2l − 2 =
p− q
k

+ 2l.

So, p− q + 2k = 0.
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Case 2. l = 0, c0 6= 0. By (3.4) and (3.5), when z is large enough, g(z) can be
written as

g(z) = c0 +
m(z)
n(z)

= c0 + o(1). (3.8)

By calculation and m < n, we see that

n(z)n(z + 1) = b20z
2n(1 + o(1)),

m(z + 1)n(z)−m(z)n(z + 1) = (m− n)a0b0z
m+n−1(1 + o(1)).

Thus,

∆g(z) =
m(z + 1)n(z)−m(z)n(z + 1)

n(z)n(z + 1)
= (m− n)

a0

b0
zm−n−1(1 + o(1)). (3.9)

Again by calculations, we have

∆2g(z) = (m− n)(m− n− 1)
a0

b0
zm−n−2(1 + o(1)). (3.10)

Submitting (3.3), (3.8)–(3.10) in (3.2), since 2(m−n−1) < m−n−2 < 0, we have

Bz
p−q

k (c20 + o(1)) = c0(m− n)(m− n− 1)
a0

b0
zm−n−2(1 + o(1))

− 3
2

(
(m− n)

a0

b0
zm−n−1

)2

(1 + o(1))

= c0(m− n)(m− n− 1)
a0

b0
zm−n−2(1 + o(1)).

Hence, p− q = k(m− n− 2) = k(m− n)− 2k < −2k. That is, p− q + 2k < 0.
Case 3.l = 0, c0 = 0. Because m < n, we see that

g(z) =
m(z)
n(z)

=
a0

b0
zm−n(1 + o(1)). (3.11)

We also obtain (3.9) and (3.10). Substituting (3.3), (3.9)–(3.11) into (3.2), we have

n−m− 2
2

(m− n)
a2

0

b20
z2m−2n−2(1 + o(1)) = Bz

p−q
k
a2

0

b20
z2m−2n(1 + o(1)). (3.12)

If n 6= m+ 2, by (3.12),

2m− 2n− 2 =
p− q
k

+ (2m− 2n);

thus, p− q + 2k = 0.
If n = m+ 2, by (3.12),

2m− 2n− 2 >
p− q
k

+ (2m− 2n),

thus, p− q + 2k < 0.
By the above Cases 1–3, we see if (1.2) has a rational solution f(z), then p− q+

2k ≤ 0.
(ii) By Lemma 2.10, we see that Theorem 1.3 (ii) holds.
(iii) Set G(z) = ∆2f(z)

∆f(z) . Lemma 2.10 shows G(z) is a nonconstant rational
function. Then

∆2f(z) = G(z)∆f(z), (3.13)
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By (1.2), we easily see ∆f(z) 6≡ 0, that is f(z + 1) 6≡ f(z). Assert that f(z + 2) 6≡
f(z). Otherwise,

∆2f(z) = f(z + 2)− 2f(z + 1) + f(z) = 2f(z)− 2f(z + 1) = −2∆f(z).

Together with (3.13),

G(z) =
∆2f(z)
∆f(z)

≡ −2,

which contradicts with the fact G(z) is a nonconstant rational function.
If f(z) has two finite Borel exceptional values, by f(z+2) 6≡ f(z), f(z+1) 6≡ f(z)

and Remark 2.4, we have

T (r,∆2f) = 3T (r, f) + S(r, f), T (r,∆f) = 2T (r, f) + S(r, f).

On the other hand, (3.13) shows that

T (r,∆2f) = T (r,∆f) +O(log r).

The last two equalities follows T (r, f) = S(r, f). It is a contradiction. So, f(z)
cannot have two finite Borel exceptional values.

Suppose that f(z) has two Borel exceptional values b ∈ C and∞. By Hadamard’s
factorization theory, f(z) takes the form

f(z) = b+R0(z)eh(z), (3.14)

where R0(z) is a meromorphic function, and h(z) is a polynomial such that

σ(R0) = max
{
λ(f − b), λ

( 1
f

)}
< deg h.

Thus,

∆f(z) =
(
R0(z + 1)eh(z+1)−h(z) −R0(z)

)
eh(z) = R1(z)eh(z), (3.15)

where R1(z) = R0(z + 1)eh(z+1)−h(z) −R0(z). Obviously,

σ(R1) = σ
(
R0(z + 1)eh(z+1)−h(z) −R0(z)

)
≤ max{σ(R0),deg h− 1} < deg h.

(3.16)
From (3.15) and (3.16), we see that σ(∆f) = σ(f), and ∆f(z) has two Borel

exceptional values 0 and ∞. Substituting ∆f(z) = R1(z)eh(z) into (3.13), we have

R1(z + 1)eh(z+1)−h(z) = R1(z)(G(z) + 1). (3.17)

If deg h ≥ 2, then σ(eh(z+1)−h(z)) = deg h − 1 ≥ 1. By (3.17) and Lemma 2.1, for
any given ε > 0, we have

m(r, eh(z+1)−h(z)) ≤ m
(
r,

R1(z)
R1(z + 1)

)
+m(r,G(z) + 1)

= O(rσ(R1)−1+ε) +O(log r),

which yields deg h − 1 ≤ σ(R1) − 1 + ε. Letting ε → 0, we have deg h ≤ σ(R1),
which contradicts with (3.16). Hence, if deg h ≥ 2, then f(z) has at most one Borel
exceptional value.

If deg h = 1, then F (z) = ∆f(z) = R1(z)eaz, where a ∈ C \ {0}. If R1(z) is
transcendental with σ(R1) < 1, by Lemma 2.6, we see G(z) = ∆2f(z)

∆f(z) = ∆F (z)
F (z)

is also transcendental. This contradicts with the fact G(z) is a rational function.
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Therefore, R1(z) is a rational function. Combining this with (3.14) and (3.15), we
have

f(z) = b+R0(z)eaz (3.18)

and
R1(z) = eaR0(z + 1)−R0(z),

where σ(R0) < 1. If R0(z) is transcendental, by Lemma 2.7, we see eaR0(z + 1)−
R0(z) is transcendental, which contradicts with R1(z) = eaR0(z + 1) − R0(z) is a
rational function. Hence, R0(z) is a rational function.

(iv) Suppose that f(z) is a meromorphic solution of equation (1.2), then g(z) =
∆f(z) is a meromorphic solution of equation (3.1). Checking the proof of (i), we
see if g(z) is a rational solution of (3.1), then p− q+ 2k ≤ 0. Since p− q+ 2k > 0,
we know ∆f(z) is transcendental. (3.13) still hold. By (3.13), set

P (z,∆f) := ∆2f(z)−G(z)∆f(z) = 0.

Since G(z) is a nonconstant rational function, then for any given a ∈ C \ {0}, we
have P (z, a) = −aG(z) 6≡ 0. Together with Lemma 2.8 , we have m

(
r, 1

∆f−a
)

=
S(r,∆f). Thus, δ(a,∆f) = 0. By this and the proof of (iii), we see taht ∆f(z) has
at most one Borel exceptional value 0 or ∞ unless

∆f(z) = R1(z)eaz (3.19)

where a ∈ C\{0}, R1(z) is a nonzero rational function. Now we prove that a 6= i2k1π
for any k1 ∈ Z. We see R1(z) satisfies

R1(z + 2)
R1(z)

→ 1,
R1(z + 1)
R1(z)

→ 1, z →∞. (3.20)

By (3.19), we have

∆2f(z) = ∆(∆f(z)) = eaz(eaR1(z + 1)−R1(z)),

∆3f(z) = ∆2(∆f(z)) = eaz(e2aR1(z + 2)− 2eaR1(z + 1) +R1(z)).
(3.21)

From (3.19)–(3.21), we deduce that

∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2

= e2aR1(z + 2)
R1(z)

− 3
2
e2a
(R1(z + 1)

R1(z)

)2

+ ea
R1(z + 1)
R1(z)

− 1
2

→ e2a − 3
2
e2a + ea − 1

2
= −1

2
(ea − 1)2, z →∞.

Combining this with (1.2), we have[∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2]k
= R(z)→ (−1)k

2k
(ea − 1)2k, z →∞.

If ea = 1, by (3.21), we have

∆2f(z) = eaz∆R1(z), ∆3f(z) = eaz∆2R1(z).

Combining this with (1.2) and (3.19), we obtain[∆3f(z)
∆f(z)

− 3
2

(∆2f(z)
∆f(z)

)2]k
=
[∆2R1(z)
R1(z)

− 3
2

(∆R1(z)
R1(z)

)2]k
= R(z).
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Hence, R1(z) is a rational solution of the equation[∆2g(z)
g(z)

− 3
2

(∆g(z)
g(z)

)2]k
= R(z). (3.22)

By the conclusion of (i), we see if p − q + 2k > 0, equation (3.22) has no rational
solutions. It is a contradiction. Thus, ea 6= 1. So, a 6= i2k1π for any k1 ∈ Z. �
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