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MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF
PROBLEMS WITH SIGN-CHANGING POTENTIAL

GAO-SHENG LIU, CHUN-YU LEI, LIU-TAO GUO, HONG RONG

Abstract. In this article, we study the existence and multiplicity of positive
solutions for a class of Kirchhoff type equations with sign-changing potential.

Using the Nehari manifold, we obtain two positive solutions.

1. Introduction and statement of main result

Consider the Kirchhoff type problems with Dirichlet boundary value conditions

−(a+ b

∫
Ω

(|∇u|2 + v(x)u2) dx)(∆u− v(x)u) = h(x)up + λf(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in R3, a > 0, b > 0, λ > 0, 3 < p < 5,
h ∈ C(Ω̄), with h+ = max{h, 0} 6= 0, v ∈ C(Ω̄) is a bounded function with
‖v‖∞ > 0, and f(x, u) satisfies the following two conditions:

(F1) f(x, u) ∈ C1(Ω× R) with f(x, 0) ≥ 0, and f(x, 0) 6= 0. There exists
a constant c1 > 0, such that f(x, u) ≤ c1(1 + uq) for 0 < q < 1 and
(x, u) ∈ Ω× R+.

(F2) fu(x, u) ∈ L∞(Ω× R) and for all u ∈ H1
0 (Ω),

∫
∂Ω

∂
∂uf(x, t|u|)u2 has the

same sign for every t ∈ (0,+∞).

Remark 1.1. Note that under assumptions (F1) and (F2) hold, we have:
(F3) there exists a constant c2 > 0, such that pf(x, u) − ufu(x, u) ≤ c2(1 + u),

for all (x, u) ∈ Ω× R+.
(F4) F (x, u)− 1

p+1f(x, u)u ≤ c2(1 + u2), for all (x, u) ∈ Ω× R+, where F (x, u)
is defined by F (x, u) =

∫ u
0
f(x, s)ds for x ∈ Ω, u ∈ R.

In recent years, the existence and multiplicity of solutions to the nonlocal prob-
lem

−
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u = g(x, u) in Ω,

u = 0, on ∂Ω,
(1.2)

have been studied by various researchers and many interesting and important re-
sults can be found. For instance, positive solutions could be obtained in [3, 5, 13].

2010 Mathematics Subject Classification. 35D05, 35J60, 58J32.

Key words and phrases. Kirchhoff type equation; sign-changing potential; Nehari manifold.
c©2015 Texas State University - San Marcos.

Submitted June 22, 2015. Published August 4, 2015.

1



2 G.-S. LIU, C.-Y. LEI, L.-T. GUO, H. RONG EJDE-2015/202

Especially, Chen et al [4] discussed a Kirchhoff type problem when g(x, u) =
f(x)up−2u + λg(x)|u|q−2u, where 1 < q < 2 < p < 2∗(2∗ = 2N

N−2 if N ≥ 3,
2∗ =∞ if N = 1, 2), f(x) and g(x) with some proper conditions are sign-changing
weight functions. And they have obtained the existence of two positive solutions if
p > 4, 0 < λ < λ0(a). Researchers, such as Mao and Zhang [2], Mao and Luan [1],
found sign-changing solutions. As for infinitely many solutions, we refer readers
to [11, 12]. He and Zou [14] considered the class of Kirchhoff type problem when
g(x, u) = λf(x, u) with some conditions and proved a sequence of a.e. positive weak
solutions tending to zero in L∞(Ω). In addition, problems on unbounded domains
have been studied by researchers, such as Figueiredo and Santos Junior [9], Li et
al. [15], Li and Ye [8].

Our main result read as follows.

Theorem 1.2. Assume that conditions (F1) and (F2) hold. Then there exists λ∗ >
0 such that for any λ ∈ (0, λ∗), problem (1.1) has at least two positive solutions.

The article is organized as following: Section 2 contains notation and prelimi-
naries. Section 3 contains the proof of Theorem 1.2.

2. Preliminaries

Throughout this article, we use the following notation: The space H1
0 (Ω) is

equipped with the norm ‖u‖2 =
∫

Ω
(|∇u|2+v(x)|u|2) dx. Let Sr be the best Sobolev

constant for the embedding of H1
0 (Ω) into Lr(Ω), where 1 ≤ r < 6, then

1

S
2(p+1)
p+1

≤ ‖u‖2(p+1)

(
∫

Ω
|u|p+1)2

. (2.1)

We define a functional Iλ(u): H1
0 (Ω)→ R by

Iλ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − 1

p+ 1
H(u)− λ

∫
Ω

F (x, |u|) dx for u ∈ H1
0 (Ω), (2.2)

where

H(u) =
∫

Ω

h(x)|u|p+1 dx.

The weak solutions of (1.1) is the critical points of the functional Iλ. Generally
speaking, a function u is called a solution of (1.1) if u ∈ H1

0 (Ω) and for all ϕ ∈ H1
0 (Ω)

it holds

(a+ b‖u‖2)
∫

Ω

(∇u · ∇ϕ+ v(x)uϕ) dx =
∫

Ω

h(x)|u|p−1|u|ϕdx+ λ

∫
Ω

f(x, |u|)ϕdx.

As Iλ(u) is unbounded below on H1
0 (Ω), it is useful to consider the functional on

the Nehari manifold:

Nλ(Ω) = {u ∈ H1
0 (Ω)\{0} : 〈I ′λ(u), u〉 = 0}.

It is obvious that the Nehari manifold contains all the nontrivial critical points of
Iλ, thus, for u ∈ Nλ(Ω), if and only if

(a+ b‖u‖2)‖u‖2 −
∫

Ω

h(x)|u|p+1 dx− λ
∫

Ω

f(x, |u|)|u| dx = 0. (2.3)

Define
ψλ(u) = 〈I ′λ(u), u〉,
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then it follows that

Iλ(tu) =
a

2
t2‖u‖2 +

b

4
t4‖u‖4 − tp+1

p+ 1

∫
Ω

h(x)|u|p+1 dx− λ
∫

Ω

F (x, |tu|) dx, (2.4)

ψλ(tu) = at2‖u‖2 + bt4‖u‖4 − tp+1

∫
Ω

h(x)|u|p+1 dx− λ
∫

Ω

f(x, |tu|)|tu| dx, (2.5)

〈ψ′λ(tu), tu〉 = 2at2‖u‖2 + 4bt4‖u‖4 − (p+ 1)tp+1

∫
Ω

h(x)|u|p+1 dx

− λ
∫

Ω

fu(x, |tu|)|tu|2 dx− λ
∫

Ω

f(x, |tu|)|tu| dx.
(2.6)

Notice that ψλ(tu) = 0 if and only if tu ∈ Nλ(Ω). And we divide Nλ(Ω) into three
parts:

N−λ (Ω) = {u ∈ Nλ(Ω) : 〈ψ′λ(u), u〉 < 0},
N+
λ (Ω) = {u ∈ Nλ(Ω) : 〈ψ′λ(u), u〉 > 0},
N 0
λ (Ω) = {u ∈ Nλ(Ω) : 〈ψ′λ(u), u〉 = 0}.

Then we have the following results.

Lemma 2.1. There exists a constant λ1 > 0, for 0 < λ < λ1, such that N 0
λ (Ω) = ∅.

Proof. By contradiction, suppose u ∈ N 0
λ (Ω), we obtain

〈ψ′λ(u), u〉 = 2a‖u‖2 + 4b‖u‖4 − (p+ 1)
∫

Ω

h(x)|u|p+1 dx

− λ
∫

Ω

fu(x, |u|)|u|2 dx− λ
∫

Ω

f(x, |u|)|u| dx = 0.

On one hand, from (2.1), (2.3), (2.6) and (F2), one deduces that

a‖u‖2 + 3b‖u‖4 = p

∫
Ω

h(x)|u|p+1 dx+ λ

∫
Ω

fu(x, |u|)u2 dx

≤ L‖u‖p+1 + λL′‖u‖2,

where L = p‖h‖∞Sp+1
p+1 , L′ = ‖fu(x, |u|)‖L∞S2

2 , then

L‖u‖p+1 ≥ (a− λL′)‖u‖2 + 3b‖u‖4 ≥ (a− λL′)‖u‖2,
consequently,

‖u‖2 ≥
(a− λL′

L

) 2
p−1

. (2.7)

On the other hand, by (2.1), (2.3), (2.6) and (F3), we obtain

a(p− 1)‖u‖2 + (bp− 3)‖u‖4 ≤ λ
(∫

Ω

(pf(x, |u|)− fu(x, |u|)|u|)|u| dx
)

≤ c2λ
∫

Ω

(|u|+ |u|2) dx

≤ λc2|Ω|
1
2S1‖u‖+ λc2S

2
2‖u‖2,

then
λc2|Ω|

1
2S1‖u‖+ λc2S

2
2‖u‖2 ≥ a(p− 1)‖u‖2,

thus one has

‖u‖2 ≤
( λc2S1|Ω|1/2

a(p− 1)− c2λS2
2

)2

. (2.8)
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It follows from (2.7) and (2.8) that(a− λL′
L

) 2
p−1 ≤ ‖u‖2 ≤

( λc2S1|Ω|1/2

a(p− 1)− c2λS2
2

)2

,

which is a contradiction when λ is small enough. So there exists a constant λ1 > 0
such that N 0

λ (Ω) = ∅. The proof is complete. �

Lemma 2.2. There exists a constant λ2 > 0, for 0 < λ < λ2, such that N±λ (Ω) 6= ∅.

Proof. For u ∈ H1
0 (Ω), u 6= 0, let

Au(t) =
a

2
t2‖u‖2 +

b

4
t4‖u‖4 − tp+1

p+ 1

∫
Ω

h(x)|u|p+1 dx,

Ku(t) =
∫

Ω

F (x, |tu|) dx,

then Iλ(tu) = Au(t) − λKu(t), hence if ψλ(tu) = 〈I ′λ(tu), tu〉 = 0, then A′u(t) −
λK ′u(t) = 0, where

A′u(t) = at2‖u‖2 + bt3‖u‖4 − tp
∫

Ω

h(x)|u|p+1 dx,

K ′u(t) =
∫

Ω

f(x, |tu|)|u| dx.

By (F1), one obtains

K ′u(t) =
∫

Ω

f(x, |tu|)|u| dx ≤
∫

Ω

c2(1 + |tu|q)|u| dx. (2.9)

We consider the following two cases:
Case 1. When H(u) ≤ 0 and

∫
Ω
f(x, t|u|)u2 dx > 0, we have A′u(t) > 0, Au(0) = 0

and Au(t) increases sharply when t → ∞. At the same time, K ′u(t) > 0, Ku(0) is
a positive constant and Ku(t) increases relatively slowly when t → ∞ since (2.9).
When H(u) ≤ 0 and

∫
Ω
f(x, t|u|)u2 dx ≤ 0, we have K ′u(t) ≤ 0, Ku(0) is a positive

constant and Ku(t) decreases slowly when t→∞ since (2.9).
Through the above discussion, we obtain there exists t1 such that t1u ∈ Nλ(Ω)

to every situation. When 0 < t < t1, one gets ψλ(tu) < 0 and when t > t1, we
have ψλ(tu) > 0, then t1u is the local minimizer of Iλ(u), so t1u ∈ N+

λ (Ω). In
conclusion, when H(u) ≤ 0, one has N+

λ (Ω) 6= ∅.
Case 2. When H(u) > 0 and

∫
Ω
f(x, t|u|)u2 dx > 0, we have A′u(t) > 0 as t → 0

and A′u(t) < 0 for t→∞, so Au(t) increases as t→ 0 and then decreases as t→∞.
At the same time, K ′u(t) > 0, Ku(0) is a positive constant and Ku(t) increases
relatively slowly when t→∞ since (2.9). When H(u) > 0 and

∫
Ω
f(x, t|u|)u2 dx <

0, we have A′u(t) > 0 as t→ 0 and A′u(t) < 0 for t→∞, so Au(t) increases as t→ 0
and then decreases as t → ∞. At the same time, K ′u(t) < 0, Ku(0) is a positive
constant and Ku(t) decreases slowly when t→∞ since (2.9).

Through the above discussion, if λ is small enough, there exists t1 < t2, such
that ψλ(tu) = 0, for 0 < t < t1, ψλ(tu) < 0, for t1 < t < t2, ψλ(tu) > 0, and for
t > t2, ψλ(tu) < 0. Thus t1u is the local minimizer of Iλ(u) and t2u is the local
maximizer of Iλ(u). So there exists λ2 > 0, when λ < λ2, one gets t1u ∈ N+

λ (Ω)
and t2u ∈ N−λ (Ω). Therefore one concludes that when H(u) > 0 and λ is small
enough, N±λ (Ω) 6= ∅. This completes the proof. �
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Lemma 2.3. Operator Iλ is coercive and bounded below on Nλ(Ω).

Proof. From (2.1), (2.2), (2.3) and (F4), one has

Iλ(u) = a
(1

2
− 1
p+ 1

)
‖u‖2 + b

(1
4
− 1
p+ 1

)
‖u‖4

− λ
∫

Ω

(F (x, |u| − 1
p+ 1

f(x, |u|)|u|) dx

≥ a
(1

2
− 1
p+ 1

)
‖u‖2 + b

(1
4
− 1
p+ 1

)
‖u‖4 − λc3

∫
Ω

(1 + |u|2) dx

≥ a
(1

2
− 1
p+ 1

)
‖u‖2 + b

(1
4
− 1
p+ 1

)
‖u‖4 − λc3

(
|Ω|+ S2

2‖u‖2
)

≥
(a(p− 1)

2(p+ 1)
− λc3S2

2

)
‖u‖2 + b

(1
4
− 1
p+ 1

)
‖u‖4 − λc3|Ω|.

By 3 < p < 5, it follows that Iλ(u) is coercive and bounded below on Nλ(Ω). The
proof is complete. �

Remark 2.4. From Lemmas 2.1 and 2.2, one has Nλ(Ω) = N+
λ (Ω)∪N−λ (Ω) for all

0 < λ < min{λ1, λ2}. Furthermore, we obtain N+
λ (Ω) and N−λ (Ω) are non-empty,

thus, we may define

α+
λ = inf

u∈N+
λ (Ω)

Iλ(u), α−λ = inf
u∈N−λ (Ω)

Iλ(u).

Lemma 2.5. If u ∈ H1
0 (Ω)\{0}, there exists a constant λ3 > 0, such that Iλ(tu) >

0, for λ < λ3.

Proof. For every u ∈ H1
0 (Ω), u 6= 0, if H(u) ≤ 0, by (2.4), we obtain Iλ(tu) > 0

when t is large enough. Assume H(u) > 0, and let

φ1(t) =
a

2
t2‖u‖2 − tp+1

p+ 1
H(u).

Through calculations, one obtains that φ1(t) takes on a maximum at

tmax =
(a‖u‖2
H(u)

) 1
p−1

.

It follows that

φ1(tmax) =
p− 1

2(p+ 1)

( (a‖u‖2)p+1

(
∫

Ω
h(x)|u|p+1 dx)2

) 1
p−1

≥ p− 1
2(p+ 1)

( ap+1

‖h+‖2∞S
2(p+1)
p+1

) 1
p−1

:= δ1.

When 1 ≤ r < 6, one has

(tmax)r
∫

Ω

|u|r dx ≤ Srr
(a‖u‖2
H(u)

) r
p−1

(‖u‖2)r/2

= Srra
− r2
( (a‖u‖2)p+1

(H(u))2

) r
2(p−1)

= Srra
− r2
(2(p+ 1)

p− 1

)r/2(
φ1(tmax)

)r/2
= c
(
φ1(tmax)

)r/2
.

(2.10)
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Then by (F1) and (F4), we deduce that∫
Ω

F (x, tmax|u|) dx

≤ 1
p+ 1

∫
Ω

c4(2 + |tmaxu|2) dx+
∫

Ω

c1(|tmaxu|+ |tmaxu|q+1)

≤ B0 +B1φ1(tmax) +B2(φ1(tmax))1/2 +B3φ1(tmax)
q+1
2 .

(2.11)

Since

Iλ(tmaxu) = Au(tmax)− λKu(tmax) ≥ φ1(tmax)− λ
∫

Ω

F (x, tmax|u|) dx,

according to (2.4), (2.10) and (2.11), one obtains

Iλ(tmaxu) ≥ φ1(tmax)− λ
∫

Ω

F (x, tmax|u|) dx

≥ φ1(tmax)− λ
[
B0 +B1φ1(tmax) +B2(φ1(tmax))1/2 +B3φ1(tmax)

q+1
2

]
≥ δ1

[
1− λ

(
B0δ

−1 +B1 +B2δ
− 1

2 +B3δ
q−1
2

)]
.

So, if λ < λ3 = (2(B0δ
−1 +B1 +B2δ

− 1
2 +B3δ

q−1
2 ))−1, we obtain Iλ(tmaxu) > 0. �

Remark 2.6. If λ < λ3 and u ∈ N−λ (Ω), by (F2), we conclude that there is a
global maximum on u for Iλ(u), then Iλ(u) > Iλ(tmaxu) > 0.

Lemma 2.7. If u ∈ H1
0 (Ω)\{0}, there exists a constant λ4 > 0 such that ψλ(tu) =

〈I ′λ(tu), tu〉 > 0 when λ < λ4.

Proof. For every u ∈ H1
0 (Ω), u 6= 0, if H(u) ≤ 0, by (2.5), we get ψλ(tu) > 0 when

t is large enough. Assume H(u) > 0, and let

ψ1(t) = at2‖u‖2 − tp+1H(u).

Through calculations, we obtain that ψ1(t) takes on a maximum at

t̃max =
( 2a‖u‖2

(p+ 1)H(u)

) 1
p−1

.

It follows that

ψ1(t̃max) =
( 2a
p+ 1

) 2
p−1
(p− 1
p+ 1

)( (‖u‖2)p+1

(
∫

Ω
h(x)|u|p+1 dx)2

) 1
p−1

≥
( 2a
p+ 1

) 2
p−1
(p− 1
p+ 1

)( 1

‖h+‖2∞S
2(p+1)
p+1

) 1
p−1

:= δ2.

Similar to the proof of Lemma 2.5, when 1 ≤ r < 6, one obtains

(t̃max)r
∫

Ω

|u|r dx ≤ c̃
(
ψ1(t̃max)

)r/2
. (2.12)

According to (F1), we deduce that∫
Ω

f(x, t̃max|u|)|t̃maxu| dx ≤ c1
∫

Ω

(
|t̃maxu|+ |t̃maxu|q+1

)
dx

≤ b0
(
ψ1(t̃max)

)1/2 + b1
(
ψ1(t̃max)

) q+1
2 ,

(2.13)
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then, by (2.5), (2.12) and (2.13), it follows that

ψλ(t̃maxu) ≥ ψ1(t̃max)− λ
∫

Ω

f(x, t̃max|u|)|t̃maxu| dx

≥ (ψ1(t̃max))
1+q
2

(
ψ1(t̃max))

1−q
2 − λ(b0(ψ1(t̃max))−

q
2 + b1)

)
≥ δ

1+q
2

2

(
δ

1−q
2

2 − λ(b0δ
− q2
2 + b1)

)
,

consequently, when λ < λ4 = δ
1−q
2

2 /2(b0δ
− q2
2 + b1), we obtain ψλ(t̃maxu) > 0. �

Remark 2.8. We claim that: (1) If H(u) ≤ 0 for every u ∈ H1
0 (Ω)\{0}, there exists

t1 such that Iλ(t1u) < 0 for t1u ∈ N+
λ (Ω). Indeed, obviously, in this condition,

ψλ(0) < 0 and limt→∞ ψλ(tu) = +∞, therefore, there exists t1 > 0 such that
ψλ(tu) = 0. Because of ψλ(tu) < 0 for 0 < t < t1 and ψλ(tu) > 0 for t > t1, we
obtain that t1u ∈ N+

λ (Ω) and Iλ(t1u) < Iλ(0) = 0.
(2) If H(u) > 0 for 0 < λ < λ1, there exists t1 < t2, such that t1u ∈ N+

λ (Ω),
t2u ∈ N−λ (Ω) and Iλ(t1u) < 0. Indeed, in this condition, one gets ψλ(0) < 0 and
limt→∞ ψλ(tu) = −∞. By Lemma 2.7, there exists T > 0 such that ψλ(Tu) > 0,
therefore, we could obtain there exists 0 < t1 < T < t2, such that ψλ(t1u) =
ψλ(t2u) = 0, t1u ∈ N+

λ (Ω), t2u ∈ N−λ (Ω) and Iλ(t1u) < Iλ(0) = 0.

Lemma 2.9. Suppose {un} ⊂ H1
0 (Ω) is a (PS)c sequence for Iλ(u), then {un} is

bounded in H1
0 (Ω).

Proof. Let {un} ⊂ H1
0 (Ω) be such that

Iλ(un)→ c, I ′λ(un)→ 0 as n→∞.
We claim that {un} is bounded in H1

0 (Ω). Otherwise, we can suppose that ‖un‖ →
∞ as n→∞. It follows from (2.1), (2.4), (2.5) and (F4) that

1 + c+ o(1)‖un‖

≥ Iλ(un)− 1
p+ 1

〈I ′λ(un), un〉

≥ a
(1

2
− 1
p+ 1

)
‖un‖2 + b

(1
4
− 1
p+ 1

)
‖un‖4

− λ
∫

Ω

[F (x, |un|)−
1

p+ 1
f(x, |un|)|un|] dx

≥ a
(1

2
− 1
p+ 1

)
‖un‖2 + b

(1
4
− 1
p+ 1

)
‖un‖4 − λc3

∫
Ω

(1 + |un|2) dx

≥ a
(1

2
− 1
p+ 1

)
‖un‖2 + b

(1
4
− 1
p+ 1

)
‖un‖4 − λc3

(
|Ω|+ S2

2‖un‖2
)

≥
(a(p− 1)

2(p+ 1)
− λc3S2

2

)
‖un‖2 + b

(1
4
− 1
p+ 1

)
‖un‖4 − λc3|Ω|.

Since 3 < p < 5, it follows that the last inequality is an absurd. Therefore, {un} is
bounded in H1

0 (Ω). So Lemma 2.9 holds. �

3. Proof of Theorem 1.2

Let λ∗ = min{λ1, λ2, λ3, λ4}, then Lemmas 2.1–2.9 hold for every λ ∈ (0, λ∗).
We prove Theorem 1.2 by three steps.
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Step 1. We claim that Iλ(u) has a minimizer on N+
λ (Ω). Indeed, from Remark 2.8,

there exists u ∈ N+
λ (Ω) such that Iλ(u) < 0, so it follows that infu∈N+

λ (Ω) Iλ(u) < 0.
By Lemma 2.3, let {un} be a sequence minimizing for Iλ(u) on N+

λ (Ω). Clearly,
this minimizing sequence is of course bounded, up to a subsequence (still denoted
{un}), there exists u1 ∈ H1

0 (Ω) such that

un ⇀ u1, weakly in H1
0 (Ω),

un → u1, strongly in Lp(Ω) (1 ≤ p < 6),

un(x)→ u1, a.e. in Ω.

Now we claim that un → u1 in H1
0 (Ω). In fact, set limn→∞ ‖un‖2 = l2. By the

Ekeland’s variational principle [7], it follows that

o(1) = 〈I ′λ(un), u1〉

=
(
a+ bl2

) ∫
Ω

(∇un · ∇u1 + v(x)unu1) dx

−
∫

Ω

h(x)|un|pu1 dx− λ
∫

Ω

f(x, |un|)|u1| dx,

thus one obtains

0 = (a+ bl2)‖u1‖2 −
∫

Ω

h(x)|u1|p+1 dx− λ
∫

Ω

f(x, |u1|)|u1| dx. (3.1)

Replacing u1 with un, we obtain

o(1) = 〈I ′λ(un), un〉

=
(
a+ bl2

)
l2 −

∫
Ω

h(x)|un|p+1 dx− λ
∫

Ω

f(x, |un|)|un| dx,

consequently, one obtains

0 = (a+ bl2)l2 −
∫

Ω

h(x)|u1|p+1 dx− λ
∫

Ω

f(x, |u1|)|u1| dx. (3.2)

According to (3.1) and (3.2), we obtain ‖u1‖2 = l2 = limn→∞ ‖un‖2, which suggests
that un → u1 in H1

0 (Ω). Therefore, by Remark 2.8, one obtains

Iλ(u1) = α+
λ = lim

n→∞
Iλ(un) = inf

u∈N+
λ (Ω)

Iλ(u) < 0.

So we proved the claim.
Step 2. Iλ(u) has a minimizer on N−λ (Ω). As a matter of fact, from Remark
2.6, we have Iλ(u) > 0 for u ∈ N−λ (Ω), so it follows that infu∈N−λ (Ω) Iλ(u) > 0.
Similarly to step 1, we define a sequence {un} as a minimizing for Iλ(u) on N−λ (Ω),
and there exists u2 ∈ H1

0 (Ω) such that

un ⇀ u2, weakly in H1
0 (Ω),

un → u2, strongly in Lp(Ω) (1 ≤ p < 6),

un(x)→ u2, a.e. in Ω.

We claim that H(un) > 0. By contradiction, assume H(un) ≤ 0, then −pH(un) ≥
0, from un ∈ N−λ (Ω), by (2.1), (2.4), (2.5) and (F2), it follows that

a‖un‖2 < a‖un‖2 + 3b‖un‖4 − pH(un)
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< λ

∫
Ω

fu(x, |un|)|un|2 dx

≤ λ‖fu(x, |un|)‖L∞S2
2‖un‖2,

which is a contradiction when λ is small enough. We get H(un) > 0. Therefore
H(u2) > 0 as n → ∞. Similar to the proof of step 1, one can get un → u2 in
H1

0 (Ω). Therefore,

Iλ(u2) = α−λ = lim
n→∞

Iλ(un) = inf
u∈N−λ (Ω)

Iλ(u) > 0.

From above discussion, we obtain that Iλ(u) has a minimizer on N−λ (Ω).
By Step 1 and Step 2, there exist u1 ∈ N+

λ (Ω) and u2 ∈ N−λ (Ω) such that
Iλ(u1) = α+

λ < 0 and Iλ(u2) = α−λ > 0. It follows that u1 and u2 are nonzero
solutions of (1.1). Because of Iλ(u) = Iλ(|u|), one gets u1, u2 ≥ 0. Therefore,
by the Harnack inequality (see [6, Theorem 8.20]), we have u1, u2 > 0 a.e. in Ω.
Consequently the proof of Theorem 1.2 is complete.
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