Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 202, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF PROBLEMS WITH SIGN-CHANGING POTENTIAL

GAO-SHENG LIU, CHUN-YU LEI, LIU-TAO GUO, HONG RONG

Abstract

In this article, we study the existence and multiplicity of positive solutions for a class of Kirchhoff type equations with sign-changing potential. Using the Nehari manifold, we obtain two positive solutions.

1. Introduction and statement of main result

Consider the Kirchhoff type problems with Dirichlet boundary value conditions

$$
\begin{gather*}
-\left(a+b \int_{\Omega}\left(|\nabla u|^{2}+v(x) u^{2}\right) d x\right)(\Delta u-v(x) u)=h(x) u^{p}+\lambda f(x, u) \quad \text { in } \Omega, \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega,
\end{gather*}
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{3}, a>0, b>0, \lambda>0,3<p<5$, $h \in C(\bar{\Omega})$, with $h^{+}=\max \{h, 0\} \neq 0, v \in C(\bar{\Omega})$ is a bounded function with $\|v\|_{\infty}>0$, and $f(x, u)$ satisfies the following two conditions:
(F1) $f(x, u) \in C^{1}(\Omega \times \mathbb{R})$ with $f(x, 0) \geq 0$, and $f(x, 0) \neq 0$. There exists a constant $c_{1}>0$, such that $f(x, u) \leq c_{1}\left(1+u^{q}\right)$ for $0<q<1$ and $(x, u) \in \Omega \times \mathbb{R}^{+}$.
(F2) $f_{u}(x, u) \in L^{\infty}(\Omega \times \mathbb{R})$ and for all $u \in H_{0}^{1}(\Omega), \int_{\partial \Omega} \frac{\partial}{\partial u} f(x, t|u|) u^{2}$ has the same sign for every $t \in(0,+\infty)$.
Remark 1.1. Note that under assumptions (F1) and (F2) hold, we have:
(F3) there exists a constant $c_{2}>0$, such that $p f(x, u)-u f_{u}(x, u) \leq c_{2}(1+u)$, for all $(x, u) \in \Omega \times \mathbb{R}^{+}$.
(F4) $F(x, u)-\frac{1}{p+1} f(x, u) u \leq c_{2}\left(1+u^{2}\right)$, for all $(x, u) \in \Omega \times \mathbb{R}^{+}$, where $F(x, u)$ is defined by $F(x, u)=\int_{0}^{u} f(x, s) d s$ for $x \in \Omega, u \in \mathbb{R}$.
In recent years, the existence and multiplicity of solutions to the nonlocal problem

$$
\begin{gather*}
-\left(a+b \int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=g(x, u) \quad \text { in } \Omega, \tag{1.2}\\
u=0, \quad \text { on } \partial \Omega,
\end{gather*}
$$

have been studied by various researchers and many interesting and important results can be found. For instance, positive solutions could be obtained in [3, 5, [13).

[^0]Especially, Chen et al [4] discussed a Kirchhoff type problem when $g(x, u)=$ $f(x) u^{p-2} u+\lambda g(x)|u|^{q-2} u$, where $1<q<2<p<2^{*}\left(2^{*}=\frac{2 N}{N-2}\right.$ if $N \geq 3$, $2^{*}=\infty$ if $\left.N=1,2\right), f(x)$ and $g(x)$ with some proper conditions are sign-changing weight functions. And they have obtained the existence of two positive solutions if $p>4,0<\lambda<\lambda_{0}(a)$. Researchers, such as Mao and Zhang [2], Mao and Luan [1], found sign-changing solutions. As for infinitely many solutions, we refer readers to [11, 12]. He and Zou [14] considered the class of Kirchhoff type problem when $g(x, u)=\lambda f(x, u)$ with some conditions and proved a sequence of a.e. positive weak solutions tending to zero in $L^{\infty}(\Omega)$. In addition, problems on unbounded domains have been studied by researchers, such as Figueiredo and Santos Junior [9, Li et al. [15], Li and Ye [8].

Our main result read as follows.
Theorem 1.2. Assume that conditions (F1) and (F2) hold. Then there exists $\lambda^{*}>$ 0 such that for any $\lambda \in\left(0, \lambda^{*}\right)$, problem (1.1) has at least two positive solutions.

The article is organized as following: Section 2 contains notation and preliminaries. Section 3 contains the proof of Theorem 1.2 .

2. Preliminaries

Throughout this article, we use the following notation: The space $H_{0}^{1}(\Omega)$ is equipped with the norm $\|u\|^{2}=\int_{\Omega}\left(|\nabla u|^{2}+v(x)|u|^{2}\right) d x$. Let S_{r} be the best Sobolev constant for the embedding of $H_{0}^{1}(\Omega)$ into $L^{r}(\Omega)$, where $1 \leq r<6$, then

$$
\begin{equation*}
\frac{1}{S_{p+1}^{2(p+1)}} \leq \frac{\|u\|^{2(p+1)}}{\left(\int_{\Omega}|u|^{p+1}\right)^{2}} \tag{2.1}
\end{equation*}
$$

We define a functional $I_{\lambda}(u): H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
I_{\lambda}(u)=\frac{a}{2}\|u\|^{2}+\frac{b}{4}\|u\|^{4}-\frac{1}{p+1} H(u)-\lambda \int_{\Omega} F(x,|u|) d x \quad \text { for } u \in H_{0}^{1}(\Omega) \tag{2.2}
\end{equation*}
$$

where

$$
H(u)=\int_{\Omega} h(x)|u|^{p+1} d x
$$

The weak solutions of (1.1) is the critical points of the functional I_{λ}. Generally speaking, a function u is called a solution of 1.1 if $u \in H_{0}^{1}(\Omega)$ and for all $\varphi \in H_{0}^{1}(\Omega)$ it holds
$\left(a+b\|u\|^{2}\right) \int_{\Omega}(\nabla u \cdot \nabla \varphi+v(x) u \varphi) d x=\int_{\Omega} h(x)|u|^{p-1}|u| \varphi d x+\lambda \int_{\Omega} f(x,|u|) \varphi d x$.
As $I_{\lambda}(u)$ is unbounded below on $H_{0}^{1}(\Omega)$, it is useful to consider the functional on the Nehari manifold:

$$
\mathcal{N}_{\lambda}(\Omega)=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\}:\left\langle I_{\lambda}^{\prime}(u), u\right\rangle=0\right\}
$$

It is obvious that the Nehari manifold contains all the nontrivial critical points of I_{λ}, thus, for $u \in \mathcal{N}_{\lambda}(\Omega)$, if and only if

$$
\begin{equation*}
\left(a+b\|u\|^{2}\right)\|u\|^{2}-\int_{\Omega} h(x)|u|^{p+1} d x-\lambda \int_{\Omega} f(x,|u|)|u| d x=0 \tag{2.3}
\end{equation*}
$$

Define

$$
\psi_{\lambda}(u)=\left\langle I_{\lambda}^{\prime}(u), u\right\rangle
$$

then it follows that

$$
\begin{gather*}
I_{\lambda}(t u)=\frac{a}{2} t^{2}\|u\|^{2}+\frac{b}{4} t^{4}\|u\|^{4}-\frac{t^{p+1}}{p+1} \int_{\Omega} h(x)|u|^{p+1} d x-\lambda \int_{\Omega} F(x,|t u|) d x \tag{2.4}\\
\begin{aligned}
\psi_{\lambda}(t u)= & a t^{2}\|u\|^{2}+b t^{4}\|u\|^{4}-t^{p+1} \int_{\Omega} h(x)|u|^{p+1} d x-\lambda \int_{\Omega} f(x,|t u|)|t u| d x \\
\left\langle\psi_{\lambda}^{\prime}(t u), t u\right\rangle= & 2 a t^{2}\|u\|^{2}+4 b t^{4}\|u\|^{4}-(p+1) t^{p+1} \int_{\Omega} h(x)|u|^{p+1} d x \\
& -\lambda \int_{\Omega} f_{u}(x,|t u|)|t u|^{2} d x-\lambda \int_{\Omega} f(x,|t u|)|t u| d x
\end{aligned} \tag{2.5}
\end{gather*}
$$

Notice that $\psi_{\lambda}(t u)=0$ if and only if $t u \in \mathcal{N}_{\lambda}(\Omega)$. And we divide $\mathcal{N}_{\lambda}(\Omega)$ into three parts:

$$
\begin{aligned}
& \mathcal{N}_{\lambda}^{-}(\Omega)=\left\{u \in \mathcal{N}_{\lambda}(\Omega):\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle<0\right\}, \\
& \mathcal{N}_{\lambda}^{+}(\Omega)=\left\{u \in \mathcal{N}_{\lambda}(\Omega):\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle>0\right\}, \\
& \mathcal{N}_{\lambda}^{0}(\Omega)=\left\{u \in \mathcal{N}_{\lambda}(\Omega):\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle=0\right\} .
\end{aligned}
$$

Then we have the following results.
Lemma 2.1. There exists a constant $\lambda_{1}>0$, for $0<\lambda<\lambda_{1}$, such that $\mathcal{N}_{\lambda}^{0}(\Omega)=\emptyset$.
Proof. By contradiction, suppose $u \in \mathcal{N}_{\lambda}^{0}(\Omega)$, we obtain

$$
\begin{aligned}
\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle= & 2 a\|u\|^{2}+4 b\|u\|^{4}-(p+1) \int_{\Omega} h(x)|u|^{p+1} d x \\
& -\lambda \int_{\Omega} f_{u}(x,|u|)|u|^{2} d x-\lambda \int_{\Omega} f(x,|u|)|u| d x=0
\end{aligned}
$$

On one hand, from 2.1, 2.3, 2.6) and (F2), one deduces that

$$
\begin{aligned}
a\|u\|^{2}+3 b\|u\|^{4} & =p \int_{\Omega} h(x)|u|^{p+1} d x+\lambda \int_{\Omega} f_{u}(x,|u|) u^{2} d x \\
& \leq L\|u\|^{p+1}+\lambda L^{\prime}\|u\|^{2}
\end{aligned}
$$

where $L=p\|h\|_{\infty} S_{p+1}^{p+1}, L^{\prime}=\left\|f_{u}(x,|u|)\right\|_{L^{\infty}} S_{2}^{2}$, then

$$
L\|u\|^{p+1} \geq\left(a-\lambda L^{\prime}\right)\|u\|^{2}+3 b\|u\|^{4} \geq\left(a-\lambda L^{\prime}\right)\|u\|^{2}
$$

consequently,

$$
\begin{equation*}
\|u\|^{2} \geq\left(\frac{a-\lambda L^{\prime}}{L}\right)^{\frac{2}{p-1}} \tag{2.7}
\end{equation*}
$$

On the other hand, by 2.1, (2.3), 2.6) and (F3), we obtain

$$
\begin{aligned}
a(p-1)\|u\|^{2}+(b p-3)\|u\|^{4} & \leq \lambda\left(\int_{\Omega}\left(p f(x,|u|)-f_{u}(x,|u|)|u|\right)|u| d x\right) \\
& \leq c_{2} \lambda \int_{\Omega}\left(|u|+|u|^{2}\right) d x \\
& \leq \lambda c_{2}|\Omega|^{\frac{1}{2}} S_{1}\|u\|+\lambda c_{2} S_{2}^{2}\|u\|^{2},
\end{aligned}
$$

then

$$
\lambda c_{2}|\Omega|^{\frac{1}{2}} S_{1}\|u\|+\lambda c_{2} S_{2}^{2}\|u\|^{2} \geq a(p-1)\|u\|^{2}
$$

thus one has

$$
\begin{equation*}
\|u\|^{2} \leq\left(\frac{\lambda c_{2} S_{1}|\Omega|^{1 / 2}}{a(p-1)-c_{2} \lambda S_{2}^{2}}\right)^{2} \tag{2.8}
\end{equation*}
$$

It follows from 2.7 and 2.8 that

$$
\left(\frac{a-\lambda L^{\prime}}{L}\right)^{\frac{2}{p-1}} \leq\|u\|^{2} \leq\left(\frac{\lambda c_{2} S_{1}|\Omega|^{1 / 2}}{a(p-1)-c_{2} \lambda S_{2}^{2}}\right)^{2}
$$

which is a contradiction when λ is small enough. So there exists a constant $\lambda_{1}>0$ such that $\mathcal{N}_{\lambda}^{0}(\Omega)=\emptyset$. The proof is complete.

Lemma 2.2. There exists a constant $\lambda_{2}>0$, for $0<\lambda<\lambda_{2}$, such that $\mathcal{N}_{\lambda}^{ \pm}(\Omega) \neq \emptyset$.
Proof. For $u \in H_{0}^{1}(\Omega), u \neq 0$, let

$$
\begin{gathered}
A_{u}(t)=\frac{a}{2} t^{2}\|u\|^{2}+\frac{b}{4} t^{4}\|u\|^{4}-\frac{t^{p+1}}{p+1} \int_{\Omega} h(x)|u|^{p+1} d x \\
K_{u}(t)=\int_{\Omega} F(x,|t u|) d x
\end{gathered}
$$

then $I_{\lambda}(t u)=A_{u}(t)-\lambda K_{u}(t)$, hence if $\psi_{\lambda}(t u)=\left\langle I_{\lambda}^{\prime}(t u), t u\right\rangle=0$, then $A_{u}^{\prime}(t)-$ $\lambda K_{u}^{\prime}(t)=0$, where

$$
\begin{gathered}
A_{u}^{\prime}(t)=a t^{2}\|u\|^{2}+b t^{3}\|u\|^{4}-t^{p} \int_{\Omega} h(x)|u|^{p+1} d x \\
K_{u}^{\prime}(t)=\int_{\Omega} f(x,|t u|)|u| d x
\end{gathered}
$$

By (F1), one obtains

$$
\begin{equation*}
K_{u}^{\prime}(t)=\int_{\Omega} f(x,|t u|)|u| d x \leq \int_{\Omega} c_{2}\left(1+|t u|^{q}\right)|u| d x \tag{2.9}
\end{equation*}
$$

We consider the following two cases:
Case 1. When $H(u) \leq 0$ and $\int_{\Omega} f(x, t|u|) u^{2} d x>0$, we have $A_{u}^{\prime}(t)>0, A_{u}(0)=0$ and $A_{u}(t)$ increases sharply when $t \rightarrow \infty$. At the same time, $K_{u}^{\prime}(t)>0, K_{u}(0)$ is a positive constant and $K_{u}(t)$ increases relatively slowly when $t \rightarrow \infty$ since (2.9). When $H(u) \leq 0$ and $\int_{\Omega} f(x, t|u|) u^{2} d x \leq 0$, we have $K_{u}^{\prime}(t) \leq 0, K_{u}(0)$ is a positive constant and $K_{u}(t)$ decreases slowly when $t \rightarrow \infty$ since 2.9.

Through the above discussion, we obtain there exists t_{1} such that $t_{1} u \in \mathcal{N}_{\lambda}(\Omega)$ to every situation. When $0<t<t_{1}$, one gets $\psi_{\lambda}(t u)<0$ and when $t>t_{1}$, we have $\psi_{\lambda}(t u)>0$, then $t_{1} u$ is the local minimizer of $I_{\lambda}(u)$, so $t_{1} u \in \mathcal{N}_{\lambda}^{+}(\Omega)$. In conclusion, when $H(u) \leq 0$, one has $\mathcal{N}_{\lambda}^{+}(\Omega) \neq \emptyset$.
Case 2. When $H(u)>0$ and $\int_{\Omega} f(x, t|u|) u^{2} d x>0$, we have $A_{u}^{\prime}(t)>0$ as $t \rightarrow 0$ and $A_{u}^{\prime}(t)<0$ for $t \rightarrow \infty$, so $A_{u}(t)$ increases as $t \rightarrow 0$ and then decreases as $t \rightarrow \infty$. At the same time, $K_{u}^{\prime}(t)>0, K_{u}(0)$ is a positive constant and $K_{u}(t)$ increases relatively slowly when $t \rightarrow \infty$ since (2.9). When $H(u)>0$ and $\int_{\Omega} f(x, t|u|) u^{2} d x<$ 0 , we have $A_{u}^{\prime}(t)>0$ as $t \rightarrow 0$ and $A_{u}^{\prime}(t)<0$ for $t \rightarrow \infty$, so $A_{u}(t)$ increases as $t \rightarrow 0$ and then decreases as $t \rightarrow \infty$. At the same time, $K_{u}^{\prime}(t)<0, K_{u}(0)$ is a positive constant and $K_{u}(t)$ decreases slowly when $t \rightarrow \infty$ since (2.9).

Through the above discussion, if λ is small enough, there exists $t_{1}<t_{2}$, such that $\psi_{\lambda}(t u)=0$, for $0<t<t_{1}, \psi_{\lambda}(t u)<0$, for $t_{1}<t<t_{2}, \psi_{\lambda}(t u)>0$, and for $t>t_{2}, \psi_{\lambda}(t u)<0$. Thus $t_{1} u$ is the local minimizer of $I_{\lambda}(u)$ and $t_{2} u$ is the local maximizer of $I_{\lambda}(u)$. So there exists $\lambda_{2}>0$, when $\lambda<\lambda_{2}$, one gets $t_{1} u \in \mathcal{N}_{\lambda}^{+}(\Omega)$ and $t_{2} u \in \mathcal{N}_{\lambda}^{-}(\Omega)$. Therefore one concludes that when $H(u)>0$ and λ is small enough, $\mathcal{N}_{\lambda}^{ \pm}(\Omega) \neq \emptyset$. This completes the proof.

Lemma 2.3. Operator I_{λ} is coercive and bounded below on $\mathcal{N}_{\lambda}(\Omega)$.
Proof. From 2.1, 2.2, 2.3) and (F4), one has

$$
\begin{aligned}
I_{\lambda}(u)= & a\left(\frac{1}{2}-\frac{1}{p+1}\right)\|u\|^{2}+b\left(\frac{1}{4}-\frac{1}{p+1}\right)\|u\|^{4} \\
& -\lambda \int_{\Omega}\left(F\left(x,|u|-\frac{1}{p+1} f(x,|u|)|u|\right) d x\right. \\
\geq & a\left(\frac{1}{2}-\frac{1}{p+1}\right)\|u\|^{2}+b\left(\frac{1}{4}-\frac{1}{p+1}\right)\|u\|^{4}-\lambda c_{3} \int_{\Omega}\left(1+|u|^{2}\right) d x \\
\geq & a\left(\frac{1}{2}-\frac{1}{p+1}\right)\|u\|^{2}+b\left(\frac{1}{4}-\frac{1}{p+1}\right)\|u\|^{4}-\lambda c_{3}\left(|\Omega|+S_{2}^{2}\|u\|^{2}\right) \\
\geq & \left(\frac{a(p-1)}{2(p+1)}-\lambda c_{3} S_{2}^{2}\right)\|u\|^{2}+b\left(\frac{1}{4}-\frac{1}{p+1}\right)\|u\|^{4}-\lambda c_{3}|\Omega|
\end{aligned}
$$

By $3<p<5$, it follows that $I_{\lambda}(u)$ is coercive and bounded below on $\mathcal{N}_{\lambda}(\Omega)$. The proof is complete.
Remark 2.4. From Lemmas 2.1 and 2.2, one has $\mathcal{N}_{\lambda}(\Omega)=\mathcal{N}_{\lambda}^{+}(\Omega) \cup \mathcal{N}_{\lambda}^{-}(\Omega)$ for all $0<\lambda<\min \left\{\lambda_{1}, \lambda_{2}\right\}$. Furthermore, we obtain $\mathcal{N}_{\lambda}^{+}(\Omega)$ and $\mathcal{N}_{\lambda}^{-}(\Omega)$ are non-empty, thus, we may define

$$
\alpha_{\lambda}^{+}=\inf _{u \in \mathcal{N}_{\lambda}^{+}(\Omega)} I_{\lambda}(u), \quad \alpha_{\lambda}^{-}=\inf _{u \in \mathcal{N}_{\lambda}^{-}(\Omega)} I_{\lambda}(u)
$$

Lemma 2.5. If $u \in H_{0}^{1}(\Omega) \backslash\{0\}$, there exists a constant $\lambda_{3}>0$, such that $I_{\lambda}(t u)>$ 0 , for $\lambda<\lambda_{3}$.

Proof. For every $u \in H_{0}^{1}(\Omega), u \neq 0$, if $H(u) \leq 0$, by 2.4), we obtain $I_{\lambda}(t u)>0$ when t is large enough. Assume $H(u)>0$, and let

$$
\phi_{1}(t)=\frac{a}{2} t^{2}\|u\|^{2}-\frac{t^{p+1}}{p+1} H(u)
$$

Through calculations, one obtains that $\phi_{1}(t)$ takes on a maximum at

$$
t_{\max }=\left(\frac{a\|u\|^{2}}{H(u)}\right)^{\frac{1}{p-1}}
$$

It follows that

$$
\begin{aligned}
\phi_{1}\left(t_{\max }\right) & =\frac{p-1}{2(p+1)}\left(\frac{\left(a\|u\|^{2}\right)^{p+1}}{\left(\int_{\Omega} h(x)|u|^{p+1} d x\right)^{2}}\right)^{\frac{1}{p-1}} \\
& \geq \frac{p-1}{2(p+1)}\left(\frac{a^{p+1}}{\left\|h^{+}\right\|_{\infty}^{2} S_{p+1}^{2(p+1)}}\right)^{\frac{1}{p-1}}:=\delta_{1} .
\end{aligned}
$$

When $1 \leq r<6$, one has

$$
\begin{align*}
\left(t_{\max }\right)^{r} \int_{\Omega}|u|^{r} d x & \leq S_{r}^{r}\left(\frac{a\|u\|^{2}}{H(u)}\right)^{\frac{r}{p-1}}\left(\|u\|^{2}\right)^{r / 2} \\
& =S_{r}^{r} a^{-\frac{r}{2}}\left(\frac{\left(a\|u\|^{2}\right)^{p+1}}{(H(u))^{2}}\right)^{\frac{r}{2(p-1)}} \tag{2.10}\\
& =S_{r}^{r} a^{-\frac{r}{2}}\left(\frac{2(p+1)}{p-1}\right)^{r / 2}\left(\phi_{1}\left(t_{\max }\right)\right)^{r / 2} \\
& =c\left(\phi_{1}\left(t_{\max }\right)\right)^{r / 2}
\end{align*}
$$

Then by (F1) and (F4), we deduce that

$$
\begin{align*}
& \int_{\Omega} F\left(x, t_{\max }|u|\right) d x \\
& \leq \frac{1}{p+1} \int_{\Omega} c_{4}\left(2+\left|t_{\max } u\right|^{2}\right) d x+\int_{\Omega} c_{1}\left(\left|t_{\max } u\right|+\left|t_{\max } u\right|^{q+1}\right) \tag{2.11}\\
& \leq B_{0}+B_{1} \phi_{1}\left(t_{\max }\right)+B_{2}\left(\phi_{1}\left(t_{\max }\right)\right)^{1 / 2}+B_{3} \phi_{1}\left(t_{\max }\right)^{\frac{q+1}{2}}
\end{align*}
$$

Since

$$
I_{\lambda}\left(t_{\max } u\right)=A_{u}\left(t_{\max }\right)-\lambda K_{u}\left(t_{\max }\right) \geq \phi_{1}\left(t_{\max }\right)-\lambda \int_{\Omega} F\left(x, t_{\max }|u|\right) d x
$$

according to $2.4,2.2$ and 2.11 , one obtains

$$
\begin{aligned}
I_{\lambda}\left(t_{\max } u\right) & \geq \phi_{1}\left(t_{\max }\right)-\lambda \int_{\Omega} F\left(x, t_{\max }|u|\right) d x \\
& \geq \phi_{1}\left(t_{\max }\right)-\lambda\left[B_{0}+B_{1} \phi_{1}\left(t_{\max }\right)+B_{2}\left(\phi_{1}\left(t_{\max }\right)\right)^{1 / 2}+B_{3} \phi_{1}\left(t_{\max }\right)^{\frac{q+1}{2}}\right] \\
& \geq \delta_{1}\left[1-\lambda\left(B_{0} \delta^{-1}+B_{1}+B_{2} \delta^{-\frac{1}{2}}+B_{3} \delta^{\frac{q-1}{2}}\right)\right] .
\end{aligned}
$$

So, if $\lambda<\lambda_{3}=\left(2\left(B_{0} \delta^{-1}+B_{1}+B_{2} \delta^{-\frac{1}{2}}+B_{3} \delta^{\frac{q-1}{2}}\right)\right)^{-1}$, we obtain $I_{\lambda}\left(t_{\max } u\right)>0$.
Remark 2.6. If $\lambda<\lambda_{3}$ and $u \in \mathcal{N}_{\lambda}^{-}(\Omega)$, by (F2), we conclude that there is a global maximum on u for $I_{\lambda}(u)$, then $I_{\lambda}(u)>I_{\lambda}\left(t_{\max } u\right)>0$.

Lemma 2.7. If $u \in H_{0}^{1}(\Omega) \backslash\{0\}$, there exists a constant $\lambda_{4}>0$ such that $\psi_{\lambda}(t u)=$ $\left\langle I_{\lambda}^{\prime}(t u), t u\right\rangle>0$ when $\lambda<\lambda_{4}$.
Proof. For every $u \in H_{0}^{1}(\Omega), u \neq 0$, if $H(u) \leq 0$, by 2.5 , we get $\psi_{\lambda}(t u)>0$ when t is large enough. Assume $H(u)>0$, and let

$$
\psi_{1}(t)=a t^{2}\|u\|^{2}-t^{p+1} H(u) .
$$

Through calculations, we obtain that $\psi_{1}(t)$ takes on a maximum at

$$
\tilde{t}_{\max }=\left(\frac{2 a\|u\|^{2}}{(p+1) H(u)}\right)^{\frac{1}{p-1}}
$$

It follows that

$$
\begin{aligned}
\psi_{1}\left(\tilde{t}_{\max }\right) & =\left(\frac{2 a}{p+1}\right)^{\frac{2}{p-1}}\left(\frac{p-1}{p+1}\right)\left(\frac{\left(\|u\|^{2}\right)^{p+1}}{\left(\int_{\Omega} h(x)|u|^{p+1} d x\right)^{2}}\right)^{\frac{1}{p-1}} \\
& \geq\left(\frac{2 a}{p+1}\right)^{\frac{2}{p-1}}\left(\frac{p-1}{p+1}\right)\left(\frac{1}{\left\|h^{+}\right\|_{\infty}^{2} S_{p+1}^{2(p+1)}}\right)^{\frac{1}{p-1}}:=\delta_{2}
\end{aligned}
$$

Similar to the proof of Lemma 2.5, when $1 \leq r<6$, one obtains

$$
\begin{equation*}
\left(\tilde{t}_{\max }\right)^{r} \int_{\Omega}|u|^{r} d x \leq \tilde{c}\left(\psi_{1}\left(\tilde{t}_{\max }\right)\right)^{r / 2} \tag{2.12}
\end{equation*}
$$

According to (F1), we deduce that

$$
\begin{align*}
\int_{\Omega} f\left(x, \tilde{t}_{\max }|u|\right)\left|\tilde{t}_{\max } u\right| d x & \leq c_{1} \int_{\Omega}\left(\left|\tilde{t}_{\max } u\right|+\left|\tilde{t}_{\max } u\right|^{q+1}\right) d x \tag{2.13}\\
& \leq b_{0}\left(\psi_{1}\left(\tilde{t}_{\max }\right)\right)^{1 / 2}+b_{1}\left(\psi_{1}\left(\tilde{t}_{\max }\right)\right)^{\frac{q+1}{2}}
\end{align*}
$$

then, by $2.5,2.12$ and 2.13 , it follows that

$$
\begin{aligned}
\psi_{\lambda}\left(\tilde{t}_{\max } u\right) & \geq \psi_{1}\left(\tilde{t}_{\max }\right)-\lambda \int_{\Omega} f\left(x, \tilde{t}_{\max }|u|\right)\left|\tilde{t}_{\max } u\right| d x \\
& \left.\geq\left(\psi_{1}\left(\tilde{t}_{\max }\right)\right)^{\frac{1+q}{2}}\left(\psi_{1}\left(\tilde{t}_{\max }\right)\right)^{\frac{1-q}{2}}-\lambda\left(b_{0}\left(\psi_{1}\left(\tilde{t}_{\max }\right)\right)^{-\frac{q}{2}}+b_{1}\right)\right) \\
& \geq \delta_{2}^{\frac{1+q}{2}}\left(\delta_{2}^{\frac{1-q}{2}}-\lambda\left(b_{0} \delta_{2}^{-\frac{q}{2}}+b_{1}\right)\right)
\end{aligned}
$$

consequently, when $\lambda<\lambda_{4}=\delta_{2}^{\frac{1-q}{2}} / 2\left(b_{0} \delta_{2}^{-\frac{q}{2}}+b_{1}\right)$, we obtain $\psi_{\lambda}\left(\tilde{t}_{\max } u\right)>0$.
Remark 2.8. We claim that: (1) If $H(u) \leq 0$ for every $u \in H_{0}^{1}(\Omega) \backslash\{0\}$, there exists t_{1} such that $I_{\lambda}\left(t_{1} u\right)<0$ for $t_{1} u \in \mathcal{N}_{\lambda}^{+}(\Omega)$. Indeed, obviously, in this condition, $\psi_{\lambda}(0)<0$ and $\lim _{t \rightarrow \infty} \psi_{\lambda}(t u)=+\infty$, therefore, there exists $t_{1}>0$ such that $\psi_{\lambda}(t u)=0$. Because of $\psi_{\lambda}(t u)<0$ for $0<t<t_{1}$ and $\psi_{\lambda}(t u)>0$ for $t>t_{1}$, we obtain that $t_{1} u \in \mathcal{N}_{\lambda}^{+}(\Omega)$ and $I_{\lambda}\left(t_{1} u\right)<I_{\lambda}(0)=0$.
(2) If $H(u)>0$ for $0<\lambda<\lambda_{1}$, there exists $t_{1}<t_{2}$, such that $t_{1} u \in \mathcal{N}_{\lambda}^{+}(\Omega)$, $t_{2} u \in \mathcal{N}_{\lambda}^{-}(\Omega)$ and $I_{\lambda}\left(t_{1} u\right)<0$. Indeed, in this condition, one gets $\psi_{\lambda}(0)<0$ and $\lim _{t \rightarrow \infty} \psi_{\lambda}(t u)=-\infty$. By Lemma 2.7, there exists $T>0$ such that $\psi_{\lambda}(T u)>0$, therefore, we could obtain there exists $0<t_{1}<T<t_{2}$, such that $\psi_{\lambda}\left(t_{1} u\right)=$ $\psi_{\lambda}\left(t_{2} u\right)=0, t_{1} u \in \mathcal{N}_{\lambda}^{+}(\Omega), t_{2} u \in \mathcal{N}_{\lambda}^{-}(\Omega)$ and $I_{\lambda}\left(t_{1} u\right)<I_{\lambda}(0)=0$.
Lemma 2.9. Suppose $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ is a $(P S)_{c}$ sequence for $I_{\lambda}(u)$, then $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$.

Proof. Let $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ be such that

$$
I_{\lambda}\left(u_{n}\right) \rightarrow c, \quad I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

We claim that $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$. Otherwise, we can suppose that $\left\|u_{n}\right\| \rightarrow$ ∞ as $n \rightarrow \infty$. It follows from (2.1), (2.4), (2.5) and (F4) that

$$
\begin{aligned}
& 1+c+o(1)\left\|u_{n}\right\| \\
& \geq I_{\lambda}\left(u_{n}\right)-\frac{1}{p+1}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& \geq a\left(\frac{1}{2}-\frac{1}{p+1}\right)\left\|u_{n}\right\|^{2}+b\left(\frac{1}{4}-\frac{1}{p+1}\right)\left\|u_{n}\right\|^{4} \\
& \quad-\lambda \int_{\Omega}\left[F\left(x,\left|u_{n}\right|\right)-\frac{1}{p+1} f\left(x,\left|u_{n}\right|\right)\left|u_{n}\right|\right] d x \\
& \geq a\left(\frac{1}{2}-\frac{1}{p+1}\right)\left\|u_{n}\right\|^{2}+b\left(\frac{1}{4}-\frac{1}{p+1}\right)\left\|u_{n}\right\|^{4}-\lambda c_{3} \int_{\Omega}\left(1+\left|u_{n}\right|^{2}\right) d x \\
& \geq a\left(\frac{1}{2}-\frac{1}{p+1}\right)\left\|u_{n}\right\|^{2}+b\left(\frac{1}{4}-\frac{1}{p+1}\right)\left\|u_{n}\right\|^{4}-\lambda c_{3}\left(|\Omega|+S_{2}^{2}\left\|u_{n}\right\|^{2}\right) \\
& \geq\left(\frac{a(p-1)}{2(p+1)}-\lambda c_{3} S_{2}^{2}\right)\left\|u_{n}\right\|^{2}+b\left(\frac{1}{4}-\frac{1}{p+1}\right)\left\|u_{n}\right\|^{4}-\lambda c_{3}|\Omega|
\end{aligned}
$$

Since $3<p<5$, it follows that the last inequality is an absurd. Therefore, $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$. So Lemma 2.9 holds.

3. Proof of Theorem 1.2

Let $\lambda^{*}=\min \left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$, then Lemmas 2.12 .9 hold for every $\lambda \in\left(0, \lambda^{*}\right)$. We prove Theorem 1.2 by three steps.

Step 1. We claim that $I_{\lambda}(u)$ has a minimizer on $\mathcal{N}_{\lambda}^{+}(\Omega)$. Indeed, from Remark 2.8 , there exists $u \in \mathcal{N}_{\lambda}^{+}(\Omega)$ such that $I_{\lambda}(u)<0$, so it follows that $\inf _{u \in \mathcal{N}_{\lambda}^{+}(\Omega)} I_{\lambda}(u)<0$. By Lemma 2.3. let $\left\{u_{n}\right\}$ be a sequence minimizing for $I_{\lambda}(u)$ on $\mathcal{N}_{\lambda}^{+}(\Omega)$. Clearly, this minimizing sequence is of course bounded, up to a subsequence (still denoted $\left.\left\{u_{n}\right\}\right)$, there exists $u_{1} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{gathered}
u_{n} \rightharpoonup u_{1}, \quad \text { weakly in } H_{0}^{1}(\Omega) \\
u_{n} \rightarrow u_{1}, \quad \text { strongly in } L^{p}(\Omega)(1 \leq p<6), \\
u_{n}(x) \rightarrow u_{1}, \quad \text { a.e. in } \Omega
\end{gathered}
$$

Now we claim that $u_{n} \rightarrow u_{1}$ in $H_{0}^{1}(\Omega)$. In fact, set $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|^{2}=l^{2}$. By the Ekeland's variational principle [7], it follows that

$$
\begin{aligned}
o(1)= & \left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{1}\right\rangle \\
= & \left(a+b l^{2}\right) \int_{\Omega}\left(\nabla u_{n} \cdot \nabla u_{1}+v(x) u_{n} u_{1}\right) d x \\
& -\int_{\Omega} h(x)\left|u_{n}\right|^{p} u_{1} d x-\lambda \int_{\Omega} f\left(x,\left|u_{n}\right|\right)\left|u_{1}\right| d x
\end{aligned}
$$

thus one obtains

$$
\begin{equation*}
0=\left(a+b l^{2}\right)\left\|u_{1}\right\|^{2}-\int_{\Omega} h(x)\left|u_{1}\right|^{p+1} d x-\lambda \int_{\Omega} f\left(x,\left|u_{1}\right|\right)\left|u_{1}\right| d x \tag{3.1}
\end{equation*}
$$

Replacing u_{1} with u_{n}, we obtain

$$
\begin{aligned}
o(1) & =\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& =\left(a+b l^{2}\right) l^{2}-\int_{\Omega} h(x)\left|u_{n}\right|^{p+1} d x-\lambda \int_{\Omega} f\left(x,\left|u_{n}\right|\right)\left|u_{n}\right| d x
\end{aligned}
$$

consequently, one obtains

$$
\begin{equation*}
0=\left(a+b l^{2}\right) l^{2}-\int_{\Omega} h(x)\left|u_{1}\right|^{p+1} d x-\lambda \int_{\Omega} f\left(x,\left|u_{1}\right|\right)\left|u_{1}\right| d x \tag{3.2}
\end{equation*}
$$

According to (3.1) and (3.2), we obtain $\left\|u_{1}\right\|^{2}=l^{2}=\lim _{n \rightarrow \infty}\left\|u_{n}\right\|^{2}$, which suggests that $u_{n} \rightarrow u_{1}$ in $H_{0}^{1}(\Omega)$. Therefore, by Remark 2.8 , one obtains

$$
I_{\lambda}\left(u_{1}\right)=\alpha_{\lambda}^{+}=\lim _{n \rightarrow \infty} I_{\lambda}\left(u_{n}\right)=\inf _{u \in \mathcal{N}_{\lambda}^{+}(\Omega)} I_{\lambda}(u)<0
$$

So we proved the claim.
Step 2. $I_{\lambda}(u)$ has a minimizer on $\mathcal{N}_{\lambda}^{-}(\Omega)$. As a matter of fact, from Remark 2.6. we have $I_{\lambda}(u)>0$ for $u \in \mathcal{N}_{\lambda}^{-}(\Omega)$, so it follows that $\inf _{u \in \mathcal{N}_{\lambda}^{-}(\Omega)} I_{\lambda}(u)>0$. Similarly to step 1 , we define a sequence $\left\{u_{n}\right\}$ as a minimizing for $I_{\lambda}(u)$ on $\mathcal{N}_{\lambda}^{-}(\Omega)$, and there exists $u_{2} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{gathered}
u_{n} \rightharpoonup u_{2}, \quad \text { weakly in } H_{0}^{1}(\Omega) \\
u_{n} \rightarrow u_{2}, \quad \text { strongly in } L^{p}(\Omega)(1 \leq p<6), \\
u_{n}(x) \rightarrow u_{2}, \quad \text { a.e. in } \Omega
\end{gathered}
$$

We claim that $H\left(u_{n}\right)>0$. By contradiction, assume $H\left(u_{n}\right) \leq 0$, then $-p H\left(u_{n}\right) \geq$ 0 , from $u_{n} \in \mathcal{N}_{\lambda}^{-}(\Omega)$, by (2.1), 2.4, 2.5 and (F2), it follows that

$$
a\left\|u_{n}\right\|^{2}<a\left\|u_{n}\right\|^{2}+3 b\left\|u_{n}\right\|^{4}-p H\left(u_{n}\right)
$$

$$
\begin{aligned}
& <\lambda \int_{\Omega} f_{u}\left(x,\left|u_{n}\right|\right)\left|u_{n}\right|^{2} d x \\
& \leq \lambda\left\|f_{u}\left(x,\left|u_{n}\right|\right)\right\|_{L^{\infty}} S_{2}^{2}\left\|u_{n}\right\|^{2}
\end{aligned}
$$

which is a contradiction when λ is small enough. We get $H\left(u_{n}\right)>0$. Therefore $H\left(u_{2}\right)>0$ as $n \rightarrow \infty$. Similar to the proof of step 1 , one can get $u_{n} \rightarrow u_{2}$ in $H_{0}^{1}(\Omega)$. Therefore,

$$
I_{\lambda}\left(u_{2}\right)=\alpha_{\lambda}^{-}=\lim _{n \rightarrow \infty} I_{\lambda}\left(u_{n}\right)=\inf _{u \in \mathcal{N}_{\lambda}^{-}(\Omega)} I_{\lambda}(u)>0
$$

From above discussion, we obtain that $I_{\lambda}(u)$ has a minimizer on $\mathcal{N}_{\lambda}^{-}(\Omega)$.
By Step 1 and Step 2, there exist $u_{1} \in \mathcal{N}_{\lambda}^{+}(\Omega)$ and $u_{2} \in \mathcal{N}_{\lambda}^{-}(\Omega)$ such that $I_{\lambda}\left(u_{1}\right)=\alpha_{\lambda}^{+}<0$ and $I_{\lambda}\left(u_{2}\right)=\alpha_{\lambda}^{-}>0$. It follows that u_{1} and u_{2} are nonzero solutions of (1.1). Because of $I_{\lambda}(u)=I_{\lambda}(|u|)$, one gets $u_{1}, u_{2} \geq 0$. Therefore, by the Harnack inequality (see [6, Theorem 8.20]), we have $u_{1}, u_{2}>0$ a.e. in Ω. Consequently the proof of Theorem 1.2 is complete.

Acknowledgments. This research was supported by the Research Foundation of Guizhou Minzu University (No. 15XJS013; No. 15XJS012).

References

[1] A. M. Mao, S. X. Luan; Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems, J. Math. Anal. Appl. 383 (2011), 239-243.
[2] A. M. Mao, Z. T. Zhang; Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009), 1275-1287.
[3] C. O. Alves, F. J. S. A. Corréa, T. F. Ma; Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.
[4] C. Chen, Y. Kuo, T. Wu; The Nehari manifold for a Kirchhoff type problem involving signchanging weight functions, J. Differential Equations. 250 (2011), 1876-1908.
[5] C. T. Cheng, X. Wu; Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71 (2009), 4883-4892.
[6] D. Gilbarg, N. S. Trudinger; Elliptic Partial Differential Equations of Second Order, SpringerVerlag, Berlin, 2001.
[7] I. Ekeland; On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
[8] G. B. Li, H. Y. Ye; Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \mathbb{R}^{3}, J. Differential Equations. 257 (2014), 566-600.
[9] G. M. Figueiredo, J. R. Santos Junior; Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Diff. Integral Equations. 25 (2012), 853-868.
[10] J. J. Nie, X. Wu; Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Anal. 75 (2012), 3470-3479.
[11] J. H. Jin, X. Wu; Infinitely many radial solutions for Kirchhoff-type problems in \mathbb{R}^{N}, J. Math. Annal. Appl. 369 (2010), 564-574.
[12] L. Wei, X. M. He; Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput. 39 (2012), 473-487.
[13] T. F. Ma, J. E. M. Rivera; Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett. 16 (2003), 243-248.
[14] X. M. He, W. M. Zou; Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Analysis. 70 (2009), 1407-1414.
[15] Y. H. Li, F. Y. Li, J. P. Shi; Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations. 253 (2012), 2285-2294.

Gao-Sheng Liu
School of Science, Guizhou Minzu University, Guiyang 550025, China
E-mail address: 772936104@qq.com

Chun-Yu Lei (Corresponding author)
School of Science, Guizhou Minzu University, Guiyang 550025, China
E-mail address: leichygzu@sina.cn, Phone +86 15985163534
Liu-TaO Guo
School of Science, Guizhou Minzu University, Guiyang 550025, China
E-mail address: 350630542@qq.com
Hong Rong
School of Science, Guizhou Minzu University, Guiyang 550025, China
E-mail address: 402453552@qq.com

[^0]: 2010 Mathematics Subject Classification. 35D05, 35J60, 58J32.
 Key words and phrases. Kirchhoff type equation; sign-changing potential; Nehari manifold. (C) 2015 Texas State University - San Marcos.

 Submitted June 22, 2015. Published August 4, 2015.

