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MULTIPLE SOLUTIONS FOR KIRCHHOFF TYPE PROBLEM
NEAR RESONANCE

SHU-ZHI SONG, CHUN-LEI TANG, SHANG-JIE CHEN

Abstract. Based on Ekeland’s variational principle and the mountain pass
theorem, we show the existence of three solutions to the Kirchhoff type problem

−
“
a+ b

Z
Ω
|∇u|2dx

”
∆u = bµu3 + f(x, u) + h(x), in Ω,

u = 0, on ∂Ω.

Where the parameter µ is sufficiently close, from the left, to the first nonlinear
eigenvalue.

1. Introduction and statement of main result

The articles shows the existence of multiple solutions for the Kirchhoff type
problem with Dirichlet boundary condition,

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = bµu3 + f(x, u) + h(x), in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is a bounded domain in RN (N = 1, 2, 3) with a smooth boundary ∂Ω,
a ≥ 0, b > 0 are real constants and µ is a nonnegative parameter. Assume that
f ∈ C(Ω̄× R,R) satisfies the sublinear growth condition:

(F1) lim|t|→∞
f(x,t)
bt3 = 0, uniformly for x ∈ Ω.

Problem (1.1) can be looked on as a perturbed problem which was first studied
by Mawhin and Schmit[6], related to the two-point boundary value equation

− u′′ − λu = f(x, u) + h, u(0) = u(π) = 0. (1.2)

Specifically, on the assumption: λ < λ1 is sufficiently near to λ1 (λ1 is the first
eigenvalue of the corresponding linear problem) and f is bounded and satisfies a
sign condition, the existence of three solutions to equation (1.2) was proved in [6].
Later, various papers related to the result appeared. We mention for example,
[1, 3, 4, 5, 8]. Ma, Ramos and Sanchez [3] considered the boundary-value problem
for

∆u+ λu+ f(x, u) = h(x)
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defined on a bounded open set Ω ⊂ RN . As the parameter λ is sufficiently close to λ1

from the left, there exist three solutions on both Dirchlet boundary conditions and
Neumann boundary conditions. In addition, similar to the results in the linear case,
the existence of three solutions was proved to the perturbed p-Laplacian equation
in a bounded domain. Further consideration to the perturbed p-Laplacian equation
in a bounded domain can be found in [4]. As for extension to the the perturbed
p-Laplacian equation in the whole space RN , we refer to [5]. These results were also
extended to some elliptic systems with the Dirichlet boundary conditions, refer to
[8]. More recently, the authors in [1] extended these conclusions to some degenerate
quasilinear elliptic systems with the Dirichlet boundary conditions. By analogy
to the results mentioned above, we expect that problem (1.1) has at least three
solutions as the parameter µ < µ1 is sufficiently close to µ1. Here µ1 is the first
eigenvalue of the eigenvalue problem

−‖u‖2∆u = µu3, in Ω,
u = 0, on ∂Ω.

LetH = H1
0 (Ω) be the Hilbert space equipped with the norm ‖u‖ = (

∫
Ω
|∇u|2dx)1/2

and ‖u‖Ls = (
∫

Ω
|u|sdx)

1
s denote the norm of Ls(Ω). As shown in [9] and [13], the

first nonlinear eigenvalue µ1 > 0 is simple and has a eigenfunction ψ1 > 0 with
‖ψ1‖L4 = 1. Specifically, µ1 can be characterized by

µ1 = inf
{
‖u‖4 : u ∈ H,

∫
Ω

|u|4dx = 1
}
. (1.3)

Now we are in a position to state our result.

Theorem 1.1. Suppose f satisfies (F1) and the following conditions:
(F2)

lim
|t|→∞

∫
Ω

F (x, tψ1)− a

2
√
µ1t

2 = +∞, uniformly for x ∈ Ω,

where F (x, t) =
∫ t

0
f(x, s)ds.

(H1) h ∈ L2(Ω) and
∫

Ω
h(x)ψ1(x)dx = 0.

Then (1.1) has at least three solutions if µ < µ1 is sufficiently close to µ1.

Many authors have studied the Kirchhoff type equation in a bounded domain by
applying variational methods. For example, they consider Kirchhoff type problem

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = g(x, u), in Ω,

u = 0, on ∂Ω,
(1.4)

assuming that

lim
|t|→∞

4G(x, t)
bt4

= µ, uniformly in x ∈ Ω (1.5)

where G(x, t) =
∫ t

0
g(x, s)ds. For the case µ < µ1 in (1.5), the Euler func-

tional corresponding to (1.4) is coercive. For the case µ = µ1 in (1.5), that is,
problem (1.4) is resonance at the first nonlinear eigenvalue µ1, the Euler func-
tional corresponding to (1.4) is still coercive, together with the assumption that
lim|t|→∞[g(x, t)t − 4G(x, t)] = +∞. So, the existence of weak solution for equa-
tion (1.4) is obtained based on the Least Action Principle (refer to [11, 12, 13]).
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Furthermore, provided g with some conditions at zero, positive solution was ob-
tained based on the topological degree argument (refer to [2]), multiple solutions
are found by means of invariant sets of descent flow method (refer to [11, 13]), or
the Local Linking Theorem (refer to [12]). Our result is different from the results
in [2, 11, 12, 13] since we deal with the perturbation problem near to µ1 and all
hypotheses on f are just at infinity.

2. Proof of main result

We begin with some standard facts upon the variational formulation of problem
(1.1). Let Iµ : H 7→ R be the functional defined by

Iµ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − bµ

4

∫
Ω

|u|4dx−
∫

Ω

F (x, u)dx−
∫

Ω

hudx.

Since f satisfies the sublinear growth condition (F1), it is not difficult to verify
that Iµ ∈ C1(H,R). Furthermore, finding weak solutions of (1.1) is equivalent to
finding critical points of functional Iµ in H.

Since Ω is a bounded domain in RN (N = 1, 2, 3), the embedding H ↪→ Ls(Ω) is
continuous for s ∈ [1, 2∗], compact for s ∈ [1, 2∗),

2∗ =

{
2N
N−2 , N = 3,
+∞, N = 1, 2.

Hence, for s ∈ [1, 2∗], there exists τs > 0 such that

‖u‖Ls ≤ τs‖u‖, ∀u ∈ H. (2.1)

We will prove the result by using Ekeland’s variational principle [7, Theorem
4.1] and a mountain pass theorem [10]. For the convenience of readers, we state
the mountain pass theorem as follows.

Theorem 2.1 ([10, Corollary 1]). Consider a real Banach space X and a function
I ∈ C1(X,R). If the (PS) condition holds and if I has two different local mininum
points, then I possesses a third critical point.

To prove our theorem, using critical point theory, we need the Palais-Smale
compactness.

Lemma 2.2. Assume that (F1) holds. Then any bounded (PS) sequence of Iµ has
a convergent subsequence in H.

Proof. Let {un} ⊂ H be a bounded (PS) sequence of Iµ; that is,

‖un‖ ≤ c, |Iµ(un)| ≤ c, ‖I ′µ(un)‖ → 0, (2.2)

where c denotes positive constant. By the reflexivity of H, we can assume that
there exists u ∈ H such that

un ⇀ u weakly in H, (2.3)

un → u strongly in Lp(Ω) (1 ≤ p < 2∗). (2.4)

It follows from (F1) that for any ε > 0, there exits Mε > 0 such that

|f(x, t)| ≤ bε|t|3 +Mε, ∀(x, t) ∈ Ω× R. (2.5)
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We can now put together the results in (2.1), (2.2), (2.4) and (2.5) to conclude that∣∣ ∫
Ω

f(x, un)(u− un)dx
∣∣ ≤ ∫

Ω

|f(x, un)||u− un|dx

≤
∫

Ω

(bε|un|3 +Mε)|u− un|dx

≤ bε‖un‖3L4‖u− un‖L4 +Mε|Ω|1/2‖u− un‖L2

≤ bτ3
4 ε‖un‖3‖u− un‖L4 +Mε|Ω|1/2‖u− un‖L2

≤ c(‖u− un‖L4 + ‖u− un‖L2)→ 0, as n→∞,

(2.6)

where c = max{bτ3
4 ε,Mε|Ω|1/2}, and |Ω| is the measure of Ω. Similarly, we may

deduce that ∫
Ω

(|un|2un(u− un)− |u|2u(u− un))dx→ 0, as n→∞. (2.7)

From (2.2) and (2.4), we have

〈I ′µ(un)− I ′µ(u), u− un〉 → 0, as n→∞,
which combining with (2.6), (2.7), implies ‖un‖ → ‖u‖ as n → ∞. It follows from
(2.3) that un → u in H. �

Set
V =

{
v ∈ H :

∫
Ω

ψ3
1vdx = 0

}
.

From the simplicity of µ1 we have H = span{ψ1} ⊕ V . We introduce the quantity

µV = inf
{
‖u‖4 : u ∈ V, ‖u‖4L4 = 1

}
.

Then
‖u‖4 ≥ µV ‖u‖4L4 , ∀u ∈ V, (2.8)

and we have the following result.

Lemma 2.3. µ1 < µV .

Proof. It is evident from (1.3) that µ1 ≤ µV . Assume, by contradiction, that
µ1 = µV . Then there exists a sequence {un} ⊆ V such that ‖un‖L4 = 1 for all
n ≥ 1, and ‖un‖4 → µV = µ1. Since the sequence {un} is bounded in H, we may
assume that

un ⇀ u weakly in H, un → u strongly in L4(Ω). (2.9)

Thus, one has

‖u‖L4 = lim
n→+∞

‖un‖L4 = 1,

µ1 ≤ ‖u‖4 ≤ lim inf
n→∞

‖un‖4 = lim
n→∞

‖un‖4 = µ1.

So, ‖u‖L4 = 1 and ‖u‖4 = µ1. This implies u = ±ψ1.
On the other hand, from {un} ⊆ V it follows that

∫
Ω
ψ3

1un = 0 for all n ≥ 1.
Combining this with (2.9) and Hölder’s inequality, we have∣∣ ∫

Ω

ψ3
1udx

∣∣ =
∣∣ ∫

Ω

ψ3
1udx−

∫
Ω

ψ3
1undx

∣∣ =
∣∣ ∫

Ω

ψ3
1(u− un)dx

∣∣
≤
∫

Ω

∣∣ψ3
1(u− un)

∣∣ dx
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≤ ‖ψ1‖3L4‖un − u‖L4 → 0, as n→∞.
This is in direct contradiction to the fact u = ±ψ1. Hence µ1 < µV . �

Proof of Theorem 1.1. We shall divide the proof into four steps.
Step 1. The functional Iµ is bounded below in H and V and even coercive in
H and V . More specifically, there is a constant α, independent of µ, such that
infV Iµ ≥ α. From (2.5), we obtain

|F (x, t)| ≤ bε

4
|t|4 +Mε|t|, ∀(x, t) ∈ Ω× R. (2.10)

It follows from (2.1), (2.10) and Hölder inequality that

Iµ(u) ≥ a

2
‖u‖2 +

b

4
‖u‖4 − b(µ+ ε)

4

∫
Ω

u4dx− (Mε|Ω|1/2 + ‖h‖L2)‖u‖L2

≥ b

4
(1− µ+ ε

µ1
)‖u‖4 − τ2(Mε|Ω|1/2 + ‖h‖L2)‖u‖, ∀u ∈ H .

Note that µ < µ1. Then, for 0 < ε < µ1−µ, Iµ is bounded below and even coercive
in H. Similarly, for 0 < ε < µV −µ1, (2.1), (2.8), (2.10) and Hölder inequality lead
to

Iµ1(v) ≥ a

2
‖v‖2 +

b

4
‖v‖4 − b(µ1 + ε)

4

∫
Ω

v4dx− (Mε|Ω|1/2 + ‖h‖L2)‖v‖L2

≥ b

4
(1− µ1 + ε

µV
)‖v‖4 − τ2(Mε|Ω|1/2 + ‖h‖L2)‖v‖, ∀v ∈ V,

which implies that Iµ1 is bounded below and coercive in V . Noting that Iµ ≥ Iµ1

for all µ < µ1, we deduce Iµ is coercive in V and

inf
V
Iµ ≥ α := inf

V
Iµ1 .

Step 2. If µ < µ1 is sufficiently close to µ1, there exist two constants t−, t+ with
t− < 0 < t+ such that Iµ(t±ψ1) < α. Noting ‖ψ1‖L4 = 1, ‖ψ1‖4 = µ1 and then
combining this with (H1), for t ∈ R, we have

Iµ(tψ1) =
at2

2
‖ψ1‖2 +

bt4

4
‖ψ1‖4 −

bµt4

4

∫
Ω

ψ4
1dx−

∫
Ω

F (x, tψ1)dx

=
b(µ1 − µ)

4
t4 −

(∫
Ω

F (x, tψ1)dx− a

2
√
µ1t

2
)
.

From (F2), taking a constant t+ with t+ > 0 large enough, we obtain∫
Ω

F (x, t+ψ1)dx− a

2
√
µ1(t+)2 > −α+ 1.

The above inequality reduces to

Iµ(t+ψ1) ≤ b(µ1 − µ)
4

(t+)4 + α− 1.

Consequently, for − 4µ1

b(t+)4
< µ < µ1, we obtain Iµ(t+ψ1) < α. The same conclusion

holds for a constant t− with t− < 0.
Step 3. Two solutions are obtained based on the coerciveness of Iµ and Ekeland’s
variational principle. Set

Θ± = {u ∈ H : u = ±tψ1 + v with t > 0, v ∈ V }.
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When µ < µ1 is sufficiently close to µ1, from step 1 and step 2, Iµ is bounded below
in Θ+ with

−∞ < c+ := inf
Θ+

Iµ < α.

In Θ+, if we apply Ekeland’s variational principle to Iµ, there exists a sequence
{un} ⊂ Θ+ such that Iµ(un)→ c+ and I ′µ(un)→ 0 as n→∞. By the coerciveness
of Iµ in H, we deduce that {un} is bounded. So, {un} is a sequence satisfying (2.2)
so that Lemma 2.2 implies {un} has a convergent subsequence, say {un} itself.
Noting that V = ∂Θ+ and infV Iµ ≥ α (step 1), we conclude that {un} converges
to an interior point u+ ∈ Θ+, that is, the infimum is attained in Θ+. Therefore, Iµ
has a critical point u+ as a local minimum in Θ+. Similarly, we obtain a critical
point u− of Iµ as a local minimum in Θ−. Note that Θ+ ∩ Θ− = ∅ which implies
u+ 6= u−, that is, Iµ has two different local minimum points.

Step 4. It follows from Theorem 2.1 that Iµ has a third solution. By Lemma
2.2, we see Iµ satisfies (PS) condition. It follows from step 3 that u+, u− are two
different local minimum points. Consequently, Theorem 2.1 shows that Iµ has a
third critical point. �
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