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LIMIT OF NONLINEAR ELLIPTIC EQUATIONS WITH
CONCENTRATED TERMS AND VARYING DOMAINS: THE

NON UNIFORMLY LIPSCHITZ CASE

GLEICIANE DA SILVA ARAGÃO, SIMONE MAZZINI BRUSCHI

Abstract. In this article, we analyze the limit of the solutions of nonlinear

elliptic equations with Neumann boundary conditions, when nonlinear terms

are concentrated in a region which neighbors the boundary of domain and this
boundary presents a highly oscillatory behavior which is non uniformly Lips-

chitz. More precisely, if the Neumann boundary conditions are nonlinear and

the nonlinearity in the boundary is dissipative, then we obtain a limit equation
with homogeneous Dirichlet boundary conditions. Moreover, if the Neumann

boundary conditions are homogeneous, then we obtain a limit equation with

nonlinear Neumann boundary conditions, which captures the behavior of the
concentration’s region. We also prove the upper semicontinuity of the families

of solutions for both cases.

1. Introduction

In this article we analyze the limit of the solutions of nonlinear elliptic equa-
tions with terms concentrating on the boundary and Neumann boundary con-
ditions for a family of domains Ωε when the boundary ∂Ωε presents a behavior
which is not uniformly Lipschitz, as the parameter ε → 0, although Ωε → Ω and
∂Ωε → ∂Ω. This fact can be understood considering that in each point x ∈ ∂Ω
the measure |∂Ωε ∩ B(x, r)| → ∞ when ε → 0, where B(x, r) is an open ball
centre in x with radius r and | · | is the (N − 1)-dimensional measure. For in-
stance, our case can treat the family Ωε such that part of ∂Ωε is parameterized by
ψε(θ) = (rε(θ) cos(θ), rε(θ) sin(θ)) and rε(θ) = r0(θ)ερ( θεα ), for θ ∈ [0, 2π], where
α > 1, r0(·) is a continuous function and ρ(·) is a periodic function. In this example,
the period of oscillations is much smaller than its amplitude.

We consider two types of boundary conditions. In the first case, we study the be-
havior of the solutions of a concentrated elliptic equation with nonlinear Neumann
boundary conditions of the type

−∆uε + uε =
1
ε
Xωεf(x, uε) + h(x, uε), in Ωε

∂uε
∂n

+ g(x, uε) = 0, on ∂Ωε
(1.1)
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and after the case that g ≡ 0, that is, the case with homogeneous Neumann bound-
ary conditions of the type

−∆uε + uε =
1
ε
Xωεf(x, uε) + h(x, uε), in Ωε

∂uε
∂n

= 0, on ∂Ωε.
(1.2)

To describe the problem, we consider a family of bounded smooth domains Ωε ⊂
RN , with N ≥ 2 and 0 ≤ ε ≤ ε0, for some ε0 > 0 fixed. We assume that Ω ≡
Ω0 ⊂ Ωε and we refer to Ω as the unperturbed domain and Ωε as the perturbed
domains. We also assume that the nonlinearities f, g, h : U×R→ R are continuous
in both variables and C2 in the second one, where U is a fixed and smooth bounded
domain containing all Ωε, for all 0 ≤ ε ≤ ε0. For sufficiently small ε, ωε is the region
between the boundaries of ∂Ω and ∂Ωε. Note that ωε shrinks to ∂Ω as ε → 0 and
we use the characteristic function Xωε of the region ωε to express the concentration
in ωε. Figure 1 illustrates the oscillating set ωε ⊂ Ωε.

Figure 1. The set ωε.

The existing literature analyses separately concentrated terms and non uniformly
Lipschitz deformation. We consider a problem where these two issues interact. In
[5] the authors consider non uniformly Lipschitz deformation without concentrated
terms. It is proved that the interaction’s effect of non uniformly Lipschitz defor-
mation with a strongly dissipative nonlinear Neumann boundary condition results
in a limit problem with homogeneous Dirichlet boundary condition. On the other
hand, the behavior of the solutions of elliptic and parabolic problems with reaction
and potential terms concentrated in a neighborhood of the boundary of the domain
was initially studied in [7, 9], when the neighborhood is a strip of width ε and has
a base in the boundary, without oscillatory behavior and inside of Ω. In [7, 9] the
domain Ω is C2 in RN .

Also, considering only perturbation of domain, in [6] it was proved that the
homogeneous Neumann boundary condition is preserved in the limit problem for
a large class of perturbations of domains in which the non uniformly Lipschitz
deformation is included.

In [2] some results of [7] were adapted to a nonlinear elliptic problem posed on
an open square Ω in R2, considering ωε ⊂ Ω and with highly oscillatory behavior
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in the boundary inside of Ω. Later, [3] it proved the continuity of attractors for a
nonlinear parabolic problem posed on a C2 domain Ω in R2, when some terms are
concentrated in a neighborhood of the boundary and the “inner boundary” of this
neighborhood presents a highly oscillatory behavior.

It is important to note that these previous works with terms concentrating in a
neighborhood of the boundary treat with non varying domain and since ωε is inside
of Ω then all the equations are defined in the same domain.

We consider the concentration and varying domains simultaneously, therefore it
is necessary to investigate how these two effects interact and what is the combined
result. In this line, in [1] we consider varying domains and the region of concentra-
tion ωε is outside of Ω in which the main assumption was that ∂Ωε is expressed in
local charts as a Lipschitz deformation of ∂Ω with the Lipschitz constant uniformly
bounded in ε. In [1] it was proved that the limiting equation of (1.1), with h ≡ 0,
is given by

−∆u+ u = 0, in Ω
∂u

∂n
+ γ(x)g(x, u) = β(x)f(x, u), on ∂Ω

where the function γ ∈ L∞(∂Ω) is related to the behavior of the measure (N − 1)-
dimensional of the ∂Ωε and β ∈ L∞(∂Ω) is related to the behavior of the measure
N -dimensional of the region of concentration ωε. Since ωε shrinks to ∂Ω as ε→ 0,
it is reasonable to expect that the family of solutions of (1.1) will converge to a
solution of an equation with a nonlinear boundary condition on ∂Ω that inherits
the information about the region ωε. Moreover, the oscillations at the boundary
amplify the effect of the nonlinearity g(x, u) at the point x ∈ ∂Ω by a factor γ(x).
Hence, if g(x, u) is strongly dissipative so that energy is lost through the boundary,
then the oscillations increase the energy loss. While if the effect of the nonlinearity
is to drive energy into the system through the boundary, the oscillations increase
the intake of energy.

In this work, we continue the analysis initiated in [1] when ∂Ωε is expressed in
local charts as a Lipschitz deformation of ∂Ω with the Lipschitz constant non uni-
formly bounded in ε. In this case, if the nonlinearity g(x, u) is strongly dissipative,
we prove that the family of solutions of (1.1) will converge to a solution of an equa-
tion with most dissipative boundary condition, which is the homogeneous Dirichlet
boundary condition u = 0, and that it does not inherit information about the re-
gion of concentration ωε. More precisely, we will show that the limiting equation
of (1.1) is given by

−∆u+ u = h(x, u), in Ω
u = 0, on ∂Ω.

(1.3)

Also, we show that the limiting equation of (1.2) is an equation with nonlinear
Neumann boundary condition that inherits the information about the region ωε
which is given by

−∆u+ u = h(x, u), in Ω
∂u

∂n
= β(x)f(x, u), on ∂Ω

(1.4)

where β ∈ L∞(∂Ω) is related to the behavior of the measure N -dimensional of the
region ωε. In both cases, we will prove the upper semicontinuity of the families of
solutions of (1.1) and (1.2) in H1(Ωε).



4 G. S. ARAGÃO, S. M. BRUSCHI EJDE-2015/217

This paper is organized as follows: in Section 2, we define the domain perturba-
tion and state our main results (Theorems 2.4 and 2.5). In Section 3, we analyze
the limit of concentrated integrals and interior integrals. In Section 4, we prove
the upper semicontinuity of the family of solutions of (1.1) in H1(Ωε). In Section
5, we prove the upper semicontinuity of the family of solutions of (1.2) in H1(Ωε).
In the last section, we state additional results. We leave out some the proofs, but
they can be obtained upon request to the authors.

2. Setting of the problem and main results

We consider a family of smooth bounded domains Ωε ⊂ RN , with N ≥ 2 and
0 ≤ ε ≤ ε0, for some ε0 > 0 fixed, and we regard Ωε as a perturbation of the fixed
domain Ω ≡ Ω0. We consider the following hypothesis on the domains

(H1) There exists a finite open cover {Ui}mi=0 of Ω such that U0 ⊂ Ω, ∂Ω ⊂
∪mi=1Ui and for each i = 1, . . . ,m, there exists a Lipschitz diffeomorphism
Φi : QN → Ui, where QN = (−1, 1)N ⊂ RN , such that

Φi(QN−1 × (−1, 0)) = Ui ∩ Ω and Φi(QN−1 × {0}) = Ui ∩ ∂Ω.

We assume that Ωε ⊂ ∪mi=0Ui ≡ U . For each i = 1, . . . ,m, there exists a
Lipschitz function ρi,ε : QN−1 → (−1, 1) such that ρi,ε(x′) → 0 as ε → 0,
uniformly in QN−1. Moreover, we assume that Φ−1

i (Ui ∩ ∂Ωε) is the graph
of ρi,ε this means

Ui ∩ ∂Ωε = Φi({(x′, ρi,ε(x′)) : x′ = (x1, ..., xN−1) ∈ QN−1}).

We consider the following mappings: Ti,ε : QN → QN defined by

Ti,ε(x′, s) =

{
(x′, s+ sρi,ε(x′) + ρi,ε(x′)), for s ∈ (−1, 0)
(x′, s− sρi,ε(x′) + ρi,ε(x′)), for s ∈ [0, 1).

Also,

Φi,ε := Φi ◦ Ti,ε : QN → Ui;

Ψi,ε := Φi ◦ Ti,ε ◦ Φ−1
i : Ui ∩ ∂Ω→ Ui ∩ ∂Ωε.

We also denote

ψi,ε : QN−1 → Ui ∩ ∂Ωε
x′ 7→ Φi,ε(x′, 0) and

ψi : QN−1 → Ui ∩ ∂Ω
x′ 7→ Φi(x′, 0).

Notice that ψi,ε and ψi are local parameterizations of ∂Ωε and ∂Ω, respectively.
Furthermore, observe that all the maps above are Lipschitz, although the Lipschitz
constant may not be bounded as ε→ 0. Figure 2 illustrates the parameterizations.

With the notation above, we define

ωε = ∪mi=1Φi
({

(x′, xN ) ∈ RN : 0 ≤ xN < ρi,ε(x′) and x′ ∈ QN−1

})
,

for 0 < ε ≤ ε0.
To state the hypothesis to deal with the concentration in ωε, and to analyze

the behavior of the solutions of (1.1) and (1.2), as ε → 0, we need the following
definition
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Figure 2. The parameterizations.

Definition 2.1. Let η : A ⊂ RN−1 → RN almost everywhere differentiable, we
define the (N − 1)-dimensional Jacobian of η as

JN−1η ≡
∣∣∣ ∂η
∂x1
∧ . . . ∧ ∂η

∂xN−1

∣∣∣ =

√√√√ N∑
j=1

(det(Jac η)j)2,

where v1∧. . .∧vN−1 is the exterior product of the (N−1) vectors v1, . . . , vN−1 ∈ RN
and (Jac η)j is the (N − 1)-dimensional matrix obtained by deleting the j-th row
of the Jacobian matrix of η.

We use JN for the absolute value of the N -dimensional Jacobian determinant.
Now, we are ready to give the hypothesis.

(H2) For each i = 1, . . . ,m, ρi,ε(x′) is O(ε) as ε → 0, uniformly in QN−1, that
means ‖ρi,εε ‖L∞(QN−1) ≤ C, with C > 0 independent of ε, i = 1, . . . ,m.
And there exists a function β̃i ∈ L∞(QN−1) such that

ρi,ε
ε

⇀ β̃i in L1(QN−1), as ε→ 0.

Definition 2.2. For x ∈ Ui∩∂Ω, let (x′, 0) = Φ−1
i (x) ∈ QN , we define β : ∂Ω→ R

as

β(x) =
β̃i(x′)(JNΦi)(x′, 0)

JN−1ψi(x′)
.

The function β is independent of the charts Ui and the maps Φi and ρi,ε. This
was proved in [1, Corollary 3.7].

Now we give an example of the function ρi,ε satisfying the hypothesis (H2) and
its correspondent function β̃i.

Example 2.3. For each i = 1, . . . ,m, let ρi : RN−1 → R+ be a Y -periodic Lipschitz
function, where Y = (0, l1) × · · · × (0, lN−1) ∈ RN−1 with l1, . . . , lN−1 ∈ R+ (a
function ρi is called Y -periodic if and only if ρi(x′ + kljej) = ρi(x′) on QN−1,
for all k ∈ Z and all j ∈ {1, . . . , N − 1}, where x′ = (x1, . . . , xN−1) ∈ RN−1 and
{e1, . . . , eN−1} is the canonical basis of RN−1), and we define ρi,ε : QN−1 → [0, 1)
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by

ρi,ε(x′) = εϕ(x′)ρi
( x′
εα

)
,

for x′ ∈ QN−1 and sufficiently small ε, say 0 < ε ≤ ε0, where α > 0 and ϕ : QN−1 →
R is a continuous function. From [8, Theorem 2.6], we obtain

ρi,ε
ε

⇀ ϕMY (ρi) = β̃i in L1(QN−1), as ε→ 0,

where MY (ρi) is the mean value of ρi over Y given by

MY (ρi) =
1
|Y |

∫
Y

ρi(x′)dx′.

The behavior of JN−1ψi,ε, as ε→ 0, will be very important to decide the behavior
of the solutions of (1.1), as ε→ 0. Then, we will consider the hypothesis

(H3) For each t > 1, the set {x′ ∈ QN−1 : JN−1ψi,ε(x′) ≤ t} satisfies that its
(N − 1)-dimensional measure goes to zero as ε→ 0, for all i = 1, . . . ,m.

Now, with respect to the equations, we will be interested in studying the behavior
of the solutions of the elliptic equations (1.1) and (1.2) where, as we mentioned in
the introduction, the nonlinearities f, g, h : U × R → R are continuous in both
variables and C2 in the second one, where U is a bounded domain containing Ωε,
for all 0 ≤ ε ≤ ε0.

Consider the family of spaces H1(Ωε) and H1(Ω) with their usual norms. Since
we will need to compare functions defined in Ωε with functions defined in the
unperturbed domain Ω ≡ Ω0, we will need a tool to compare functions which are
defined in different spaces. The appropriate notion for this is the concept of E-
convergence and a key ingredient for this will be the use of the extension operator
Eε : H1(Ω) → H1(Ωε), which is defined as Eε = Rε ◦ P , where P : H1(Ω) →
H1(RN ) is an extension operator and Rε is the restriction operator from functions
defined in RN to functions defined in Ωε, Rεw = w|Ωε . Observe that we also
have Eε : Lp(Ω) → Lp(Ωε) and Eε : W 1,p(Ω) → W 1,p(Ωε), for all 1 ≤ p ≤ ∞.
Considering Xε = H1(Ωε) or Lp(Ωε) or W 1,p(Ωε), for ε ≥ 0, from [4] we have

‖Eεu‖Xε → ‖u‖X0 .

The concept of E-convergence is defined as follows: uε
E−→u if ‖uε−Eεu‖H1(Ωε) → 0,

as ε → 0. We also have a notion of weak E-convergence, which is defined as
follows: uε

E
⇀u, if (uε, wε)H1(Ωε) → (u,w)H1(Ω), as ε→ 0, for any sequence wε

E−→w,
where (·, ·)H1(Ωε) and (·, ·)H1(Ω) denote the inner product in H1(Ωε) and H1(Ω),
respectively. More details about E-convergence can be found in [4, Subsection 3.2].

Since Ω ⊂ Ωε, Ωε is an exterior perturbation of Ω, we consider the restriction
operator RΩ : H1(Ωε)→ H1(Ω) given by RΩ(u) = u|Ω.

Our main results are stated in the following theorems

Theorem 2.4. Assume that (H1)–(H3) are satisfied and that the nonlinearity g
satisfies a dissipative condition:

∃ b > 0, d ≥ 1, s.t. g(x, s)s ≥ b|s|d+1, ∀|s| ≤ R+ 1 and ∀x ∈ U. (2.1)

Let {u∗ε}, 0 < ε ≤ ε0, be a family of the solutions of problem (1.1) satisfying
‖u∗ε‖L∞(Ωε) ≤ R, for some constant R > 0 independent of ε. Then, there exist a
subsequence {u∗εk} and a function u∗0 ∈ H1

0 (Ω), with ‖u∗0‖L∞(Ω) ≤ R, solution of

(1.3) satisfying u∗εk
E−→u∗0.
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Theorem 2.5. Assume that (H1)–(H2) are satisfied. Let {u∗ε}, 0 < ε ≤ ε0, be
a family of the solutions of problem (1.2) satisfying ‖u∗ε‖L∞(Ωε) ≤ R, for some
constant R > 0 independent of ε. Then, there exist a subsequence {u∗εk} and a

function u∗0 ∈ H1(Ω), with ‖u∗0‖L∞(Ω) ≤ R, solution of (1.4) satisfying u∗εk
E−→u∗0.

Remark 2.6. Since in Theorems 2.4 and 2.5 we are concerned with solutions that
are uniformly bounded in L∞(Ωε), we may perform a cut-off in the nonlinearities
f, g and h outside the region |u| ≤ R, without modifying any of these solutions, in
such a way that

|f(x, u)|+ |∂uf(x, u)| ≤M, ∀x ∈ U, ∀u ∈ R
|g(x, u)|+ |∂ug(x, u)| ≤M, ∀x ∈ U, ∀u ∈ R
|h(x, u)|+ |∂uh(x, u)| ≤M, ∀x ∈ U, ∀u ∈ R

(2.2)

and we may also assume that the cut-off is performed so that the following also
holds

g(x, s)s ≥ b|s|, ∀|s| ≥ R+ 1, ∀x ∈ U. (2.3)

3. Concentrated integrals and interior integrals

In this section, we will analyze how the concentrated integrals converge to bound-
ary integrals and the convergence of the interior integrals, as ε→ 0. These conver-
gence results will be needed to analyze the limit of the solutions of (1.1) and (1.2),
as ε→ 0. Initially, we have

Lemma 3.1. Assume that (H1)–(H2) are satisfied. Suppose that vε ∈ W 1,q(Ωε)
with 1

q < s ≤ 1. Then, for small ε0, there exist constants L, L̃ > 0 independents of
ε and vε such that for any 0 < ε ≤ ε0, we have

1
ε

∫
ωε

|vε|qdξ ≤ Lεq/q
′
‖vε‖qW 1,q(Ωε)

+ L̃‖vε‖qHs,q(Ω), where
1
q

+
1
q′

= 1. (3.1)

Proof. Consider the finite cover {Ui}mi=0 such that Ωε ⊂ ∪mi=0Ui ≡ U given in (H1).
We have

1
ε

∫
ωε∩Ui

|vε|qdξ =
1
ε

∫
QN−1

∫ ρi,ε(x
′)

0

|vε(Φi(x′, xN ))|qJNΦi(x′, xN )dxN dx′

≤
∥∥JNΦi

∥∥
L∞(QN )

∫
QN−1

∫ 1

0

|vε(Φi(x′, sρi,ε(x′)))|q
ρi,ε(x′)

ε
ds dx′

≤ 2q
∥∥JNΦi

∥∥
L∞(QN )

∥∥ρi,ε
ε

∥∥
L∞(QN−1)

×
[ ∫

QN−1

∫ 1

0

|vε(Φi(x′, sρi,ε(x′)))− vε(Φi(x′, 0))|qds dx′

+
∫
QN−1

∫ 1

0

|vε(Φi(x′, 0))|qds dx′
]
,

where we changed the variable using xN = sρi,ε(x′) and, by hypothesis (H2),
‖ρi,εε ‖L∞(QN−1) ≤ C, with C > 0 independent of ε, i = 1, . . . ,m.
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Using the trace Theorem for a fixed domain, we obtain∫
QN−1

∫ 1

0

|vε(Φi(x′, 0))|qds dx′

=
∫
QN−1

|vε(ψi(x′))|qdx′

≤ 1
infz∈QN−1 JN−1ψi(z)

∫
QN−1

|vε(ψi(x′))|qJN−1ψi(x′) dx′

≤ C̃‖vε‖qLq(∂Ω) ≤ Ĉ‖vε‖
q
Hs,q(Ω).

(3.2)

Now, we estimate∫
QN−1

∫ 1

0

|vε(Φi(x′, sρi,ε(x′)))− vε(Φi(x′, 0))|qds dx′

=
∫
QN−1

∫ 1

0

∣∣∣ ∫ sρi,ε(x
′)

0

∂(vε ◦ Φi)
∂x̃N

(x′, x̃N ) dx̃N
∣∣∣qds dx′

≤
∫
QN−1

∫ 1

0

|sρi,ε(x′)|q/q
′
∫ sρi,ε(x

′)

0

∣∣∣∂(vε ◦ Φi)
∂x̃N

(x′, x̃N )
∣∣∣qdx̃N ds dx′

≤ εq/q
′
Cq/q

′
∫
QN−1

∫ 1

0

∫ ρi,ε(x
′)

0

|∇(vε ◦ Φi)(x′, x̃N )|qdx̃N ds dx′

≤ εq/q
′
Nq+1Cq/q

′
‖DΦi‖qL∞(QN )

∫
QN−1

∫ ρi,ε(x
′)

0

|∇vε(Φi(x′, x̃N ))|qdx̃N dx′

≤
εq/q

′
Nq+1Cq/q

′‖DΦi‖qL∞(QN )

infz∈QN JNΦi(z)

×
∫
QN−1

∫ ρi,ε(x
′)

0

|∇vε(Φi(x′, x̃N ))|qJNΦi(x′, x̃N ) dx̃N dx′

=
εq/q

′
Nq+1Cq/q

′‖DΦi‖qL∞(QN )

infz∈QN JNΦi(z)

∫
ωε∩Ui

|∇vε|q dξ

≤
Nq+1Cq/q

′‖DΦi‖qL∞(QN )

infz∈QN JNΦi(z)
εq/q

′
‖vε‖qW 1,q(Ωε)

.

From the above inequality and (3.2) we obtain (3.1). �

In [1, Lemma 3.6] we proved that concentrated integrals converge to boundary
integrals, as ε → 0. We note that this result of convergence is still true in the
case of non uniformly Lipschitz deformation since we did not use the hypothesis of
‖∇ρi,ε‖L∞(QN−1) is uniformly bounded for ε. This result is stated in the following
lemma

Lemma 3.2. Assume that (H1)–(H2) are satisfied. Then, for any functions h, ϕ ∈
Hs(U) with 1

2 < s ≤ 1, we obtain

lim
ε→0

1
ε

∫
ωε

hϕdξ =
∫
∂Ω

βhϕdS.

Proceeding as in [1, Proposition 4.3], we have the following lemma.
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Lemma 3.3. Assume that (H1)–(H2) are satisfied. Let {uε} and {zε} be bounded

sequences in H1(Ωε) such that uε
E
−⇀u and zε

E
−⇀z. Then

1
ε

∫
ωε

f(x, uε)zε →
∫
∂Ω

βf(x, u)z,
∫

Ωε

h(x, uε)zε →
∫

Ω

h(x, u)z,

as ε→ 0.

Proof. From [5, Lemma 3.1 (iii)] we obtain the convergence of the interior integrals.
Now, using (2.2), Cauchy-Schwarz and Lemma 3.1, we have∣∣∣1

ε

∫
ωε

f(x, uε)zε −
∫
∂Ω

βf(x, u)z
∣∣∣

≤ C̃
(1
ε

∫
ωε

|uε − Eεu|2
)1/2(1

ε

∫
ωε

|zε|2
)1/2

+ C
(1
ε

∫
ωε

|zε − Eεz|2
)1/2

+
∣∣∣1
ε

∫
ωε

f(x,Eεu)Eεz −
∫
∂Ω

βf(x, u)z
∣∣∣

≤ K̃
(
ε‖uε − Eεu‖2H1(Ωε)

+ ‖uε − Eεu‖2Hs(Ω)

)1/2

‖zε‖H1(Ωε)

+K
(
ε‖zε − Eεz‖2H1(Ωε)

+ ‖zε − Eεz‖2Hs(Ω)

)1/2

+
∣∣∣1
ε

∫
ωε

f(x,Eεu)Eεz −
∫
∂Ω

βf(x, u)z
∣∣∣→ 0, as ε→ 0,

where s ∈ R such that 1
2 < s < 1. Using Lemma 3.2, we obtain that the last term

goes to 0. Since {uε} and {zε} are bounded sequences in H1(Ωε) such that uε
E
−⇀u

and zε
E
−⇀z, considering subsequences if necessary, we have that RΩ(uε)

ε→0
−⇀ u and

RΩ(zε)
ε→0
−⇀ z in H1(Ω). Hence, using compact embedding for a fixed domain, we

have that ‖uε − Eεu‖Hs(Ω) → 0 and ‖zε − Eεz‖Hs(Ω) → 0 and we complete the
proof. �

4. Upper semicontinuity of solutions for the nonlinear boundary
conditions problem (1.1)

In this section, we will provide a proof of Theorem 2.4. Initially, we prove a
result that implies boundedness of the solutions of (1.1) and will be used to obtain
the homogeneous Dirichlet boundary condition in the limiting equation of (1.1).

Lemma 4.1. Assume that (H1)–(H2) are satisfied. If {zε}, 0 < ε ≤ ε0, is a
family of the solutions of (1.1) satisfying ‖zε‖L∞(Ωε) ≤ R, for some constant R > 0
independent of ε, then there exists C > 0 independent of ε such that

‖∇zε‖2L2(Ωε)
+ ‖zε‖2L2(Ωε)

+
∫
∂Ωε

|zε|d(zε(x)) ≤ C, 0 < ε ≤ ε0, (4.1)

for some sufficiently small ε0, where

d(s) =

{
d+ 1, if |s| ≤ R+ 1
1, if |s| ≥ R+ 1

(4.2)

where d and R are defined in (2.1).
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Proof. Multiplying the equation (1.1) by zε and integrating by parts, we obtain∫
Ωε

|∇zε|2 +
∫

Ωε

|zε|2 +
∫
∂Ωε

g(x, zε)zε =
1
ε

∫
ωε

f(x, zε)zε +
∫

Ωε

h(x, zε)zε.

By Cauchy-Schwarz and Young inequalities, (2.2) and Lemma 3.1 with s = 1, we
have

1
ε

∫
ωε

f(x, zε)zε ≤
δ

ε
‖zε‖2L2(ωε)

+
Cδ
ε
‖f(·, zε(·))‖2L2(ωε)

≤ δK2‖zε‖2H1(Ωε)
+ CδK1,

(4.3)

where K1 and K2 are independent of ε, with 0 < ε ≤ ε0 for some sufficiently small
ε0. Again, using Cauchy-Schwarz and Young inequalities and (2.2), we obtain∫

Ωε

h(x, zε)zε ≤ δ‖zε‖2L2(Ωε)
+ Cδ‖h(·, zε(·))‖2L2(Ωε)

≤ δ‖zε‖2H1(Ωε)
+ CδK3. (4.4)

Now, using (2.1), (2.3) and (4.2), we obtain∫
∂Ωε

g(x, zε)zε ≥ b
∫
∂Ωε

|zε|d(zε(x)). (4.5)

Therefore, using (4.3), (4.4) and (4.5) and taking δ such that δ(K2 + 1) < 1, we
obtain

min{1− δ(K2 + 1), b}
(
‖∇zε‖2L2(Ωε)

+ ‖zε‖2L2(Ωε)
+
∫
∂Ωε

|zε|d(zε(x))
)
≤ Cδ(K1 +K3).

This shows (4.1). �

Now, we can prove the upper semicontinuity of the solutions of (1.1).

Proof of Theorem 2.4. Let {u∗ε}, 0 < ε ≤ ε0, be a family of the solutions of (1.1)
satisfying ‖u∗ε‖L∞(Ωε) ≤ R, for some constant R > 0 independent of ε. Applying
Lemma 4.1, the sequence {u∗ε} is bounded in H1(Ωε). By [5, Lemma 3.1 (i)], there

exist a subsequence {u∗εk} and a function u∗0 ∈ H1(Ω) such that u∗εk
E
−⇀u∗0 and

‖u∗εk − Eεku
∗
0‖L2(Ωεk ) → 0.

We give a brief proof of u∗0 ∈ H1
0 (Ω) in the case Ω ⊂ Ωε for 0 < ε ≤ ε0. The

complete proof is in [5, Proposition 4.2].
The trace operator from H1(Ω) to L2(Ui∩∂Ω), i = 1, 2, . . . , n, is continuous and

compact, then u∗εk |Ui∩∂Ω
converges to u∗0|Ui∩∂Ω in L2(Ui ∩ ∂Ω). Hence, given β > 0

small, there exists ε0 such that∫
Ui∩∂Ω

|u∗εk − u
∗
0| ≤ β, for 0 < ε ≤ ε0. (4.6)

Using [5, Lemma 3.2] for η = 0, we obtain that for each β > 0 fixed, we can
choose an even smaller ε0 such that∫

Ui∩∂Ω

|u∗εk ◦Ψi,εk − u∗εk | ≤ β, for 0 < ε ≤ ε0. (4.7)

Putting together (4.6) and (4.7), we obtain that for 0 < ε ≤ ε0,∫
Ui∩∂Ω

|u∗0| ≤ 2β +
∫
Ui∩∂Ω

|u∗εk ◦Ψi,εk |. (4.8)
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For each t > 1, we consider the sets Aεkt = {x′ ∈ QN−1 : JN−1ψi,εk(x′) ≤ t} and
Bεkt = {x′ ∈ QN−1 : JN−1ψi,εk(x′) > t} so that QN−1 = Aεkt ∪B

εk
t , Aεkt ∩B

εk
t = ∅

and, by (H3), |Aεkt | → 0 as εk → 0. Moreover,∫
Ui∩∂Ω

|u∗εk ◦Ψi,εk | =
∫
ψi(A

εk
t )

|u∗εk ◦Ψi,εk |+
∫
ψi(B

εk
t )

|u∗εk ◦Ψi,εk |. (4.9)

We analyze separately the two integrals in (4.9). Initially, for all 1 < p < ∞, we
have ∫

ψi(A
εk
t )

|u∗εk ◦Ψi,εk | ≤
(∫

Ui∩∂Ω

|u∗εk ◦Ψi,εk |p
)1/p

[HN−1(ψi(Aεkt ))]1/p
′
,

where 1
p + 1

p′ = 1 and HN−1 is the (N − 1)-dimensional Hausdorff measure.
Taking into account that ‖u∗εk‖H1(Ω) ≤ C and using [5, Lemma 3.2] for η = 0

and trace Theorems, we have for 1 < p small,(∫
Ui∩∂Ω

|u∗εk ◦Ψi,εk |p
)1/p

≤
(∫

Ui∩∂Ω

|u∗εk ◦Ψi,εk − u∗εk |
p
)1/p

+
(∫

Ui∩∂Ω

|u∗εk |
p
)1/p

≤ C.

Since HN−1(ψi(Aεkt )) ≤ C|Aεkt | → 0 as εk → 0 by (H3), we have∫
ψi(A

εk
t )

|u∗εk ◦Ψi,εk | → 0, as εk → 0. (4.10)

Now, using JN−1ψi ≤ C, we observe that∫
ψi(B

εk
t )

|u∗εk ◦Ψi,εk | =
∫
B
εk
t

|u∗εk ◦Ψi,εk ◦ ψi(x′)|JN−1ψi(x′)dx′

≤ C
∫
B
εk
t

|u∗εk ◦ ψi,εk(x′)|dx′.

Consider the decomposition of the set Bεkt = Cεkt ∪D
εk
t where Cεkt = {x′ ∈ Bεkt :

|u∗εk(ψi,εk(x′))| ≤ R + 1} and Dεk
t = {x′ ∈ Bεkt : |u∗εk(ψi,εk(x′))| > R + 1}, with R

given as in the Lemma 4.1, so that∫
B
εk
t

|u∗εk ◦ ψi,εk(x′)|dx′ =
∫
C
εk
t

|u∗εk ◦ ψi,εk(x′)|dx′ +
∫
D
εk
t

|u∗εk ◦ ψi,εk(x′)|dx′.

Using Holder inequality, JN−1ψi,εk
t > 1 on Bεkt and (4.1), we obtain∫

C
εk
t

|u∗εk ◦ ψi,εk(x′)|dx′

≤ |C
εk
t |

d
d+1

t
1
d+1

(∫
C
εk
t

|u∗εk ◦ ψi,εk(x′)|d+1JN−1ψi,εk(x′)dx′
) 1
d+1

≤ |C
εk
t |

d
d+1

t
1
d+1

(∫
Ui∩∂Ωεk

|u∗εk |
d(u∗εk

)
) 1
d+1 ≤ Ct−

1
d+1

and ∫
D
εk
t

|u∗εk ◦ ψi,εk(x′)|dx′ ≤ 1
t

∫
D
εk
t

|u∗εk ◦ ψi,εk(x′)|JN−1ψi,εk(x′)dx′

≤ 1
t

∫
Ui∩∂Ωεk

|u∗εk |
d(u∗εk

)
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≤ Ct−1 ≤ Ct−
1
d+1 .

Since t can be chosen arbitrarily large in the inequalities above and using (4.8),
(4.9) and (4.10), we obtain∫

∂Ω∩Ui
|u∗0| = 0, i = 1, 2, . . . , n,

which implies that u∗0 ∈ H1
0 (Ω).

To show that u∗0 is a weak solution of (1.3), we consider θ ∈ C∞c (Ω). Multiplying
(1.1) by Eεkθ and integrating by parts, we obtain∫

Ωεk

∇u∗εk∇Eεkθ +
∫

Ωεk

u∗εkEεkθ =
∫

Ωεk

h(x, u∗εk)Eεkθ.

Taking the limit as εk → 0 and using that u∗εk
E
−⇀u∗0 in H1(Ωεk) and Lemma 3.3,

we obtain that u∗0 satisfies∫
Ω

∇u∗0∇θ +
∫

Ω

u∗0θ =
∫

Ω

h(x, u∗0)θ.

Therefore, u∗0 is a weak solution of (1.3).
Now, we prove that u∗εk

E−→u∗0. In order to do this, we prove the convergence of
the norms ‖u∗εk‖H1(Ωεk ) → ‖u∗0‖H1(Ω). In fact, multiplying the equation (1.1) by
u∗εk and integrating by parts, we obtain

‖u∗εk‖
2
H1(Ωεk ) =

1
εk

∫
ωεk

f(x, u∗εk)u∗εk +
∫

Ωεk

h(x, u∗εk)u∗εk −
∫
∂Ωεk

g(x, u∗εk)u∗εk

≤ 1
εk

∫
ωεk

f(x, u∗εk)u∗εk +
∫

Ωεk

h(x, u∗εk)u∗εk ,

where we have used that g(x, u)u ≥ 0. Using Lemma 3.3 and u∗0 ∈ H1
0 (Ω), we

obtain that limεk→0 ‖u∗εk‖
2
H1(Ωεk ) ≤ ‖u

∗
0‖2H1(Ω). By [4, Proposition 3.2], we obtain

u∗εk
E−→u∗0. This completes the proof. �

Remark 4.2. If h(x, u) = 0 in (1.1) then the limit problem of (1.1) is given by

−∆u+ u = 0, in Ω
u = 0, on ∂Ω.

(4.11)

By Lax-Milgram Theorem, the unique solution in H1(Ω) of (4.11) is given by u ≡ 0.
Hence, in Theorem 2.4, u∗εk

E−→0. Moreover, by uniqueness of solutions of (4.11),
we obtain the E-convergence for the whole family {u∗ε} of solution of (1.1), that is,
u∗ε

E−→0.

5. Upper semicontinuity of solutions for the homogeneous boundary
conditions (1.2)

In this section, we provide a proof of Theorem 2.5. Initially, we prove bounded-
ness of the solutions of (1.2).
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Lemma 5.1. Assume that (H1)–(H2) are satisfied. If {zε}, 0 < ε ≤ ε0, is a
family of the solutions of (1.2) satisfying ‖zε‖L∞(Ωε) ≤ R, for some constant R > 0
independent of ε, then there exists C > 0 independent of ε such that

‖zε‖H1(Ωε) ≤ C, 0 < ε ≤ ε0, (5.1)

for some sufficiently small ε0.

Proof. Multiplying (1.2) by zε and integrating by parts, we obtain

‖zε‖2H1(Ωε)
=
∫

Ωε

|∇zε|2 +
∫

Ωε

|zε|2 =
1
ε

∫
ωε

f(x, zε)zε +
∫

Ωε

h(x, zε)zε.

Therefore, using (4.3) and (4.4), we obtain

[1− δ(K2 + 1)]‖zε‖2H1(Ωε)
≤ Cδ(K1 +K3).

Now, taking δ such that δ(K2 + 1) < 1, we obtain (5.1). �

Now, we can prove the upper semicontinuity of the solutions of (1.2).

Proof of Theorem 2.5. Let {u∗ε}, 0 < ε ≤ ε0, be a family of the solutions of (1.2)
satisfying ‖u∗ε‖L∞(Ωε) ≤ R, for some constant R > 0 independent of ε. Applying
Lemma 5.1, the sequence {u∗ε} is bounded in H1(Ωε). By [5, Lemma 3.1 (i)], there

exist a subsequence {u∗εk} and a function u∗0 ∈ H1(Ω) such that u∗εk
E
−⇀u∗0 and

‖u∗εk − Eεku
∗
0‖L2(Ωεk ) → 0.

To show that u∗0 is a weak solution of (1.4), we consider θ ∈ H1(Ω). Multiplying
(1.2) by Eεkθ and integrating by parts, we obtain∫

Ωεk

∇u∗εk∇Eεkθ +
∫

Ωεk

u∗εEεkθ =
1
εk

∫
ωεk

f(x, u∗εk)Eεkθ +
∫

Ωεk

h(x, u∗εk)Eεkθ.

Taking the limit as εk → 0 and using that u∗εk
E
−⇀u∗0 in H1(Ωεk) and Lemma 3.3,

we obtain that u∗0 is a weak solution of (1.4).
Now, we prove that u∗εk

E−→u∗0. To do this, we prove the convergence of the
norms ‖u∗εk‖H1(Ωεk ) → ‖u∗0‖H1(Ω). In fact, multiplying the equation (1.2) by u∗εk ,
integrating by parts and again using Lemma 3.3, we obtain

‖u∗εk‖
2
H1(Ωεk ) =

1
εk

∫
ωεk

f(x, u∗εk)u∗εk +
∫

Ωεk

h(x, u∗εk)u∗εk

→
∫
∂Ω

βf(x, u∗0)u∗0 +
∫

Ω

h(x, u∗0)u∗0 = ‖u∗0‖2H1(Ω), as εk → 0.

Hence, we obtain that limεk→0 ‖u∗εk‖
2
H1(Ωεk ) ≤ ‖u

∗
0‖2H1(Ω). By [4, Proposition 3.2],

we obtain u∗εk
E−→u∗0. �

Conclusion. With the results obtained in this work and proceeding analogously
to [5] and [6], we can prove the lower semicontinuity of the families of solutions of
(1.1) and (1.2) in H1(Ωε), in the case where the solutions of the limit problems (1.3)
and (1.4) are hyperbolic, and then the convergence of the eigenvalues and eigen-
functions of the linearizations around the solutions. These results are important for
understanding the behavior of the dynamics of the parabolic equations associated
to the problems (1.1) and (1.2).



14 G. S. ARAGÃO, S. M. BRUSCHI EJDE-2015/217

Acknowledgments. G. S. Aragão is partially supported by CNPq 475146/2013-1,
Brazil. S. M. Bruschi is partially supported by FEMAT, Brazil.

References

[1] G. S. Aragão, S. M. Bruschi; Concentrated terms and varying domains in elliptic equations:
Lipschitz case, Submitted for publication, arXiv:1412.5850.

[2] G. S. Aragão, A. L. Pereira, M. C. Pereira; A nonlinear elliptic problem with terms concen-

trating in the boundary, Mathematical Methods in the Applied Sciences 35 (2012), no. 9,
1110-1116.

[3] G. S. Aragão, A. L. Pereira, M. C. Pereira; Attractors for a nonlinear parabolic problem with
terms concentrating on the boundary, Journal of Dynamics and Differential Equations 26

(2014), no. 4, 871-888.

[4] J. M. Arrieta, S. M. Bruschi; Rapidly varying boundaries in equations with nonlinear bound-
ary conditions. The case of a Lipschitz deformation, Mathematical Models and Methods in

Applied Sciences 17 (2007), no. 10, 1555-1585.

[5] J. M. Arrieta, S. M. Bruschi; Very rapidly varying boundaries in equations with nonlinear
boundary conditions. The case of a non uniformly Lipschitz deformation, Discrete and Con-

tinuous Dynamical Systems Series B 14 (2010), no. 2, 327-351.

[6] J. M. Arrieta, A. N. Carvalho; Spectral convergence and nonlinear dynamics of reaction-
diffusion equations under perturbations of domain, Journal of Differential Equations 199

(2004), no. 1, 143-178.
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