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GROUND STATE SOLUTIONS FOR NON-LOCAL FRACTIONAL
SCHRÖDINGER EQUATIONS

YANG PU, JIU LIU, CHUN-LEI TANG

Abstract. In this article, we study a time-independent fractional Schrödinger
equation with non-local (regional) diffusion

(−∆)αρ u+ V (x)u = f(x, u) in RN ,
where α ∈ (0, 1), N > 2α. We establish the existence of a non-negative ground

state solution by variational methods.

1. Introduction and statement of main results

Consider the fractional Schrödinger equation

(−∆)αρu+ V (x)u = f(x, u) in RN ,

u ∈ Hα(RN ),
(1.1)

where α ∈ (0, 1), N > 2α, (−∆)αρ denotes a non-local (regional) fractional Laplacian
operator with a range of scope determined by the positive function ρ ∈ C(RN ,R+).

The fractional Schrödinger equation was firstly introduced by Laskin [1]. This
equation was of particular interest in fractional quantum mechanics in the study
of particles on stochastic fields modelled by Lévy processes that give rise to equa-
tions with the fractional Laplacian operator. Recently, the study on problems of
fractional Schrödinger equations has attracted much attention. Some existence and
nonexistence of Dirichlet problem involving the fractional Laplacian on bounded
domains have been established, see [2, 3] and their references. Using the equivalent
definition of the fractional operator, some authors introduced a variational principle
and studied the existence and multiplicity of solutions in RN . Cheng [4] considered
the equation

(−∆)αu+ V (x)u = |u|p−1u, u ∈ Hα(RN )

with unbounded potential V , he obtained the existence of ground state solution by
a Lagrange multiplier method and the Nehari manifold method. Dipierro, Palatucci
and Valdinoci in [5] proved existence and symmetry results for the solutions. In [6],
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the authors studied the same equation with a more general right-hand side f(x, u).
Secchi [7] provided a generalization of the main result to equations of the form

(−∆)αu+ V (x)u = f(x, u), u ∈ Hα(RN ). (1.2)

The existence of positive solutions was obtained using the Nehari manifold method.
Chang [8] proved the existence of a positive ground state solution of (1.2) when
f(x, t) is asymptotically linear with respect to t at infinity.

There is another definition of regional fractional Laplacian in [10] and [11], the
authors introduced the regional fractional Laplacian operator ∆α/2

G in an arbitrary
open set G of RN , which is not the one used here. More recently, Felmer and Torres
[12] studied the regional fractional Laplacian equation

ε2α(−∆)αρu+ u = f(u), u ∈ Hα(RN ),

where α ∈ (0, 1), N > 2α. The operator (−∆)αρ was defined by∫
RN

(−∆)αρu(x)v(x)dx =
∫

RN

∫
B(0,ρ(x))

[u(x+ z)− u(x)][v(x+ z)− v(x)]
|z|N+2α

dz dx

for all u, v ∈ Hα(RN ). They showed the existence of a ground state and analyzed
the behavior of the semi-classical solutions as ε→ 0. Following some ideas in [12],
Felmer and Torres [13] proved that the ground state level is achieved by a radially
symmetry solution.

Up to now, no results for non-autonomous regional fractional Laplacian equations
with potential have appeared in the literature. In this note, we investigate the
existence of a non-negative ground state solution for such equations.

Throughout this article, we assume the following conditions:
(A1) ρ ∈ C(RN ,R+), there exists a constant ρ0 > 0 such that ρ(x) ≥ ρ0.
(A2) V ∈ C(RN ,R+), infx∈RN V (x) ≥ c > 0, there exists r0 > 0 such that, for

any M > 0,

lim
|y|→∞

meas
(
{x ∈ RN : |x− y| ≤ r0, V (x) ≤M}

)
= 0.

(A3) f ∈ C(RN × R+, R) and limt→0+
f(x,t)
t = 0 uniformly in x ∈ RN .

(A4) limt→+∞
f(x,t)

t2
∗
α−1 = 0 uniformly in x ∈ RN , where 2∗α = 2N

N−2α is the fractional
critical exponent.

(A5) limt→+∞
F (x,t)
t2 = +∞ uniformly in x ∈ RN .

The main results of this article are as follows:

Theorem 1.1. Assume (A1)–(A5) and
(A6) there exists T1 > 0 such that µF (x, t) ≤ f(x, t)t for t > T1, where µ > 2 is

a constant.
Then (1.1) has a non-negative ground state solution.

Theorem 1.2. Assume (A1)–(A5) and

(A7) f(x,t)
t is increasing on (0,∞).

Then (1.1) has a non-negative ground state solution.

Theorem 1.3. Assume that (A1)–(A5) and

(A8) There exist b > 0 and ν > 2 such that lim supt→+∞
F (x,t)
tν ≤ b;

(A9) lim inft→+∞
f(x,t)t−2F (x,t)

tσ ≥ η > 0, where σ > N
2α (ν − 2).
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Then (1.1) has a non-negative ground state solution.

Remark 1.4. Note that we impose the subcritical growth condition by a general
condition (A4). Also note that (A6), (A7) and (A9) almost cover all types of
superquadratic conditions.

When ρ ≡ +∞, the regional fractional operator becomes a common fractional
operator, our results are also new under the assumptions on f . Moreover, we can
find a positive ground state solution by the strong maximum principle [14].

2. Preliminaries

Firstly we give some basic notation. The fractional Sobolev space of order α on
RN is defined by

Hα(RN ) =
{
u ∈ L2(RN ) :

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2α
dx dy <∞

}
,

endowed with the norm

‖u‖Hα(RN ) =
(∫

RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2α
dx dy +

∫
RN
|u|2dx

)1/2

.

In this article, we consider the space

E :=
{
u ∈ L2(RN ) :

∫
RN

∫
B(0,ρ(x))

|u(x+ z)− u(x)|2

|z|N+2α
dz dx

+
∫

RN
V (x)|u(x)|2dx <∞

}
,

equipped with the inner product

〈u, v〉 =
∫

RN

∫
B(0,ρ(x))

[u(x+ z)− u(x)][v(x+ z)− v(x)]
|z|N+2α

dz dx

+
∫

RN
V (x)u(x)v(x)dx

and the norm

‖u‖ =
(∫

RN

∫
B(0,ρ(x))

|u(x+ z)− u(x)|2

|z|N+2α
dz dx+

∫
RN

V (x)|u(x)|2dx
)1/2

.

We denote by ‖ · ‖p the usual Lp-norm. We define

u±(x) = max{±u(x), 0}.

Obviously, u ∈ E implies that u+, u− ∈ E.
Let I : E → R be the functional defined by

I(u) =
1
2
‖u‖2 −

∫
RN

F (x, u+)dx (2.1)

with F (x, t) being the primitive of f(x, t).
Next, we give some lemmas that play important roles in proving our main results.

Lemma 2.1. Suppose (A1) and (A2) hold. Then there exists a constant C0 > 0
such that

‖u‖22∗α ≤ C0‖u‖2.
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Proof. From [9, Theorem 6.5], there exists C > 0 such that

‖u‖22∗α ≤ C
∫

RN

∫
RN

|u(x+ z)− u(x)|2

|z|N+2α
dz dx.

As in the proof of [12, Proposition 2.1], we have

C

∫
RN

∫
RN

|u(x+ z)− u(x)|2

|z|N+2α
dz dx

= C
(∫

RN

∫
B(0,ρ0)

|u(x+ z)− u(x)|2

|z|N+2α
dz dx

+
∫

RN

∫
Bc(0,ρ0)

|u(x+ z)− u(x)|2

|z|N+2α
dz dx

)
≤ C

∫
RN

∫
B(0,ρ0)

|u(x+ z)− u(x)|2

|z|N+2α
dz dx+

2C|Sn−1|
αρ2α

0

‖u‖22

≤ C
∫

RN

∫
B(0,ρ0)

|u(x+ z)− u(x)|2

|z|N+2α
dz dx+

2C|Sn−1|
cαρ2α

0

∫
RN

V (x)|u(x)|2dx

≤ C0‖u‖2,

where C0 = max{C, 2C|Sn−1|
cαρ2α0

}. This completes the proof. �

Lemma 2.2. Suppose (A1)–(A2) hold, and that there exists a constant K > 0 such
that

‖u‖q ≤ K‖u‖,
where 2 ≤ q ≤ 2∗α. Then the embedding E ↪→ Lq(RN ) is continuous for 2 ≤ q ≤ 2∗α
and E ↪→ Lsloc(RN ) is compact for 2 ≤ s < 2∗α.

Proof. When q = 2, by the definition of ‖ · ‖, there exists C1 > 0 such that

‖u‖2 ≤ C1‖u‖.

When q = 2∗α, using Lemma 2.1, we obtain

‖u‖2∗α ≤ C
1/2
0 ‖u‖.

When 2 < q < 2∗α, according to the Hölder inequality and Lemma 2.1, we obtain

‖u‖qq ≤
(∫

RN
|u|2

∗
αdx

) q−2
2∗α−2

(∫
RN
|u|2dx

) 2∗α−q
2∗α−2

≤ C
(q−2)2∗α
2(2∗α−2)

0 ‖u‖
(q−2)2∗α
2∗α−2 C

2(2∗α−q)
2∗α−2

1 ‖u‖
2(2∗α−q)
2∗α−2

≤ Cq2‖u‖q,

where

C2 =
(
C

(q−2)2∗α
2(2∗α−2)

0 C
2(2∗α−q)
2∗α−2

1

)1/q

.

Let K = max{C1/2
0 , C1, C2}, we have

‖u‖q ≤ K‖u‖

for 2 ≤ q ≤ 2∗α. Therefore, the embedding E ↪→ Lq(RN ) is continuous for 2 ≤ q ≤
2∗α and E ↪→ Lsloc(RN ) is compact for 2 ≤ s < 2∗α. �
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Lemma 2.3. Suppose (A1)–(A2) hold. Then E ↪→ Lq(RN ) is compact for any
2 ≤ q < 2∗α.

Proof. First, we show that E ↪→ L2(RN ) is compact. Let {un} ⊂ E with {un}
bounded in E. Then un ⇀ u weakly in E, by Lemma 2.2, which implies that
un → u strongly in L2

loc(RN ).
Set δn = ‖un‖2, we may suppose that there is a subsequence of {un} and δ ∈ R

such that δn → δ. For any bounded domain Ω in RN , we have∫
Ω

|u|2dx = lim
n→∞

∫
Ω

|un|2dx ≤ lim
n→∞

∫
RN
|un|2dx = δ2,

so ‖u‖2 ≤ δ .
Let Ω1 := {x ∈ BcR|V (x) ≥ M}, Ω2 := {x ∈ BcR|V (x) < M}. On the basis of

Ω1, we obtain ∫
Ω1

|un|2dx ≤
∫

RN

V (x)
M
|un|2dx ≤

‖un‖2

M
.

Let {yi} be a sequence satisfying RN ⊂
⋃∞
i=1B(yi, r0) and each point x is contained

in at most 2N such balls B(yi, r0). By the Hölder inequality, we choose a positive
constant s ∈ (1, 2∗α

2 ) such that∫
Ω2

|un|2dx ≤
∞∑
i=1

∫
Ω2∩B(yi,r0)

|un|2dx

≤
∞∑
i=1

(∫
Ω2∩B(yi,r0)

|un|2sdx
)1/s(∫

Ω2∩B(yi,r0)

1dx
)1− 1

s

.

Define

‖un‖2B(yi,r0) =
∫
B(yi,r0)

∫
B(0,ρ(x))∩B(yi,r0)

|u(x+ z)− u(x)|2

|z|N+2α
dz dx

+
∫
B(yi,r0)

V (x)|u(x)|2dx.

Using proof similar to the one of Lemmas 2.1 and 2.2, there exists C > 0 such that(∫
Ω2∩B(yi,r0)

|un|2sdx
) 1
s ≤

(∫
B(yi,r0)

|un|2sdx
) 1
s ≤ C‖un‖2B(yi,r0).

Now, we can estimate∫
Ω2

|un|2dx ≤
∞∑
i=1

C‖un‖2B(yi,r0) meas(Ω2 ∩B(yi, r0))1− 1
s ≤ 2NCεR‖un‖2,

where εR = supyi meas (Ω2 ∩B(yi, r0))1− 1
s . Note that {un} is bounded in E, for

M large enough, we have ‖un‖
2

M → 0. Since (A2) holds, for R large enough, we
obtain εR → 0. It is easy to check that, given any ε > 0, for sufficiently large R
and M , ∫

BcR

|un|2dx =
∫

Ω1

|un|2dx+
∫

Ω2

|un|2dx ≤ ε

and

‖u‖22 =
∫
BR

|u|2dx+
∫
BcR

|u|2dx
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≥ lim
n→∞

∫
BR

|un|2dx

= lim
n→∞

(∫
RN

|un|2dx−
∫
BcR

|un|2dx
)

≥δ2 − ε.

It means that δ ≤ ‖u‖2. Therefore, δ = ‖u‖2 and it implies that E ↪→ L2(RN ) is
compact.

Next, we prove that E ↪→ Lq(RN ) is compact for 2 < q < 2∗α. Let r ∈ (0, 1) be
such that q = 2r + 2∗α(1− r). Using the Hölder inequality again, we have

‖un − u‖qq ≤ ‖un − u‖2r2 ‖un − u‖
2∗α(1−r)
2∗α

.

Since {un−u} is bounded in E, then un−u ⇀ 0, by Lemma 2.2, there exists C > 0
such that ‖un − u‖

2∗α(1−r)
2∗α

≤ C. Thus,

‖un − u‖qq → 0.

Here, we can make a result of the proof of Lemma 2.3. �

Lemma 2.4. Under the assumptions of Theorem 1.1 hold, the functional I satisfies
the (Ce)c condition for c > 0.

Proof. Assume that {un} ⊂ E is a (Ce)c sequence for c > 0,

I(un)→ c, (1 + ‖un‖)I ′(un)→ 0 asn→∞.
For any ϕ ∈ E, we obtain that

〈I ′(un), ϕ〉 =
∫

RN

∫
B(0,ρ(x))

|un(x+ z)− un(x)||ϕ(x+ z)− ϕ(x)|
|z|N+2α

dz dx

+
∫

RN
V (x)|un(x)||ϕ(x)|dx−

∫
RN

f(x, u+
n )ϕ(x)dx→ 0

(2.2)

and
〈I ′(un), un〉 =

1
2
‖un‖2 −

∫
RN

f(x, u+
n )u+

n dx→ 0. (2.3)

First we claim that {un} is bounded in E. In fact, if not, we may assume by the
contradiction that there exists a subsequence of {un} (still denoted by {un}) with
‖un‖ → +∞, and we set

wn =
un
‖un‖

.

Clearly, {wn} is bounded in E. Going if necessary to a subsequence of {wn}, we
can assume that

wn ⇀ w weakly in E,

wn → w strongly in Lq(RN ) (2 ≤ q < 2∗α),

wn → w a.e. x ∈ RN .
Similarly, we denote

w+
n =

u+
n

‖un‖
,

then

w+
n ⇀ w+ weakly in E,
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w+
n → w+ strongly in Lq(RN ) (2 ≤ q < 2∗α),

w+
n → w+ a.e. x ∈ RN .

Next we claim that w 6= 0. Otherwise, if w ≡ 0, we know that w+
n → 0 strongly in

L2(RN ). By (f1), for each ε > 0, there exists T0 > 0 such that

|f(x, t)t| < εt2,

for 0 < t < T0. Through the continuity of f , there exists C > 0 such that

|f(x, t)t| ≤ C ≤ C

T 2
0

t2

for T0 ≤ t ≤ T1. Hence, we have

|f(x, t)t| ≤ C

T 2
0

t2 (2.4)

for 0 < t ≤ T1 and

|F (x, t)| ≤ C

2T 2
0

t2 (2.5)

for 0 < t ≤ T1. By (A6), it is easy to see that
1
µ
f(x, t)t− F (x, t) ≥ 0

for t > T1. Combining (2.4) and (2.5), we have

1
µ
f(x, t)t− F (x, t) ≥ −(

1
2
− 1
µ

)
C

T 2
0

t2 (2.6)

for all (x, t) ∈ RN × R+. Under the definition of {un}, we see that

I(un)− 1
µ
〈I ′(un), un〉

=
(1

2
− 1
µ

)
‖un‖2 −

∫
RN

(
F (x, u+

n )− 1
µ
f(x, u+

n )u+
n

)
dx

= c− on(1).

It follows from the preceding step and (2.6) that

0 = lim
n→∞

I(un)− 1
µ 〈I
′(un), un〉

‖un‖2

=
1
2
− 1
µ
− lim
n→∞

∫
RN

F (x, u+
n )− 1

µf(x, u+
n )u+

n

‖un‖2
dx

≥ 1
2
− 1
µ
−
(1

2
− 1
µ

) C
T 2

0

lim
n→∞

∫
RN

(u+
n )2

‖un‖2
dx

≥ 1
2
− 1
µ
−
(1

2
− 1
µ

) C
T 2

0

lim
n→∞

‖w+
n ‖22

≥ 1
2
− 1
µ
.

Note that µ > 2, this is a contradiction, so w 6= 0.
Since {un} is (Ce)c sequence, by (2.2), we know that

〈I ′(un), u−n 〉 ≤ ‖I ′(un)‖‖u−n ‖ ≤ ‖I ′(un)‖‖un‖ → 0.
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Then w−n = u−n
‖un‖ → 0, which implies that w− = 0 for a.e. x ∈ RN . We set

h(s) = sµF (x,
t

s
),

then

h′(s) = µsµ−1F
(
x,
t

s

)
− sµf

(
x,
t

s

) t
s2

= sµ−1
(
µF
(
x,
t

s

)
− f

(
x,
t

s

) t
s

)
.

By (A5), we can find a T2 > 0 such that

inf
t≥T2, x∈RN

F (x, t) > 0.

Denote T = max{T1, T2}. For s ∈ [1, tT ], by (f4), we have

µF (x,
t

s
)− f(x,

t

s
)
t

s
≤ 0.

Hence, h′(s) ≤ 0 and h(1) ≥ h( tT ). This implies

F (x, t) ≥ 1
Tµ1

F (x, T )tµ (2.7)

for all (x, t) ∈ (RN ,R+), where

c0 =
1
Tµ

inf
t=T,x∈RN

F (x, t). (2.8)

In accordance with (2.7) that
F (x, t) ≥ c0tµ

for all (x, t) ∈ (RN ,R+). Then, one has

f(x, t)t ≥ µc0tµ

for all (x, t) ∈ RN × R+. Related to (2.3), we obtain

〈I ′(un), un〉
‖un‖µ

=
1

‖un‖µ−2
−
∫

RN

f(x, u+
n )u+

n

‖un‖µ
dx = on(1).

Therefore, we know

0 = lim
n→∞

∫
RN

f(x, u+
n )u+

n

‖un‖µ
dx

≥ lim
n→∞

µc0‖w+
n ‖µµ

≥ µc0‖w+‖µµ > 0.

However, this is a contradiction. So our assumption ‖un‖ → +∞ is false, and that
is to say, {un} is bounded in E.

Since {un} is bounded in E, there exists C1 > 0 such that

‖un‖ ≤ C1.

Moreover, there exists C2 > 0 such that

‖un − u‖2∗α ≤ C2.

By the reflexivity of E, there exists a subsequence of {un} (which we also denote
by {un}) and u ∈ E such that

un ⇀ u weakly in E,

un → u strongly in Lq(RN ) (2 ≤ q < 2∗α).
(2.9)
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At the same time,

〈I ′(un), un − u〉 → 0, 〈I ′(u), un − u〉 → 0.

Hence, we have
〈I ′(un)− I ′(u), un − u〉

= ‖un − u‖2 −
∫

Ω

(
f(x, u+

n )− f(x, u+)
)

(u+
n − u+)dx→ 0.

(2.10)

By (A3), (A4) and f ∈ C(RN × R+, R), for ε > 0, there exists Cε > 0 such that

f(x, t) ≤ Cεt+ εt2
∗
α−1 (2.11)

for all (x, t) ∈ RN × R+. By (2.11) and the Hölder inequality, we have∣∣∣ ∫
RN

f(x, u+
n )(u+

n − u+)dx
∣∣∣ ≤ ∫

RN
|f(x, u+

n )||un − u|dx

≤
∫

RN

(
Cε|u+

n ||un − u|+ ε|u+
n |2

∗
α−1|un − u|

)
dx

≤ Cε‖un‖2‖un − u‖2 + ε‖un‖
2∗α−1
2∗α
‖un − u‖2∗α

≤ CεKC1‖un − u‖2 + εK2∗α−1C
2∗α−1
1 C2.

Related to (2.9), we obtain∫
RN

f(x, u+
n )(u+

n − u+)dx→ 0.

Consequently, ∫
RN

(
f(x, u+

n )− f(x, u+)
)

(u+
n − u+)dx→ 0.

By (2.10), we have ‖un − u‖2 → 0. So we derive that un → u strongly in E, we
conclude that the (Ce)c condition is satisfied. �

Lemma 2.5. Under the assumptions of Theorem 1.2, the functional I satisfies the
(Ce)c condition for c > 0.

Proof. Assume that {un} ⊂ E is a (Ce)c sequence for c > 0,

I(un)→ c, (1 + ‖un‖)I ′(un)→ 0 (n→∞).

We first claim that the sequence {un} is bounded in E. Otherwise, there is a
subsequence, again denoted by {un}, such that ‖un‖ → +∞ as n→∞. Set

wn =
un
‖un‖

, w+
n =

u+
n

‖un‖
.

Clearly, {wn} is bounded in E. Going if necessary to a subsequence of {wn}, we
can assume that

wn ⇀ w weakly in E,

wn → w strongly in Lq(RN ) (2 ≤ q < 2∗α),

wn → w a.e. x ∈ RN .
Then we claim that w 6= 0. Otherwise, if w ≡ 0, we obtain wn → 0 strongly in
Lq(RN ). Since I(tun)(t ∈ [0, 1]) is continuous, there exist tn ∈ [0, 1] such that

I(tnun) = max
t∈[0,1]

I(tun).
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For tn ∈ (0, 1), we have

〈I ′(tnun), tnun〉 = ‖tnun‖2 −
∫

RN
f(x, tnu+

n )tnu+
n dx = tn

d

dt
|t=tnI(tun) = 0.

It is obvious for tn = 0, we obtain

〈I ′(tnun), tnun〉 = 0.

When tn = 1, we obtain

〈I ′(tnun), tnun〉 = 〈I ′(un), un〉 → 0.

Hence, we have

〈I ′(tnun), tnun〉 = ‖tnun‖2 −
∫

RN
f(x, tnu+

n )tnu+
n dx→ 0 (2.12)

for tn ∈ [0, 1]. Set
vn = 2m1/2wn

for each m > 0. By (2.11), we have

F (x, t) ≤ Cε
2
t2 +

ε

2∗α
t2
∗
α (2.13)

for all (x, t) ∈ RN × R+. Since vn → 0 strongly in L2(RN ) and vn is bounded in
E, we come to a conclusion that∫

RN
F (x, v+

n )dx→ 0.

It is apparently showed that 2m1/2

‖un‖ ∈ (0, 1) for n large enough, so

I(tnun) ≥ I(vn) = 2m−
∫

RN
F (x, v+

n ) ≥ m.

Then we have I(tnun)→ +∞. Denote H(x, t) = f(x, t)t− 2F (x, t), it follows∫
RN

H(x, u+
n )dx = 2I(un)− 〈I ′(un), un〉 → 2c. (2.14)

Assume 0 ≤ s1 ≤ s2, by (f5), we have

H(x, s2)−H(x, s1)

= 2
[1

2
(f(x, s2)s2 − f(x, s1)s1)− (F (x, s2)− F (x, s1))

]
= 2

∫ s2

s1

(f(x, s2)
s2

− f(x, v)
v

)
vdv + 2

∫ s1

T2

(f(x, s2)
s2

− f(x, s1)
s1

)
vdv

+ T 2
2

(f(x, s2)
s2

− f(x, s1)
s1

)
≥ 0.

Thus, we have∫
RN

H(x, u+
n )dx ≥

∫
RN

H(x, tnu+
n )dx

= 2I(tnun)− 〈I ′(tnun), tnun〉 → +∞.

This contradicts (2.14), so w 6= 0. Since {un} is (Ce)c sequence, we know that

〈I ′(un), u−n 〉 ≤ ‖I ′(un)‖‖u−n ‖ ≤ ‖I ′(un)‖‖un‖ → 0.
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Thus, w−n = u−n
‖un‖ → 0, which implies that w− = 0 for a.e. x ∈ RN . Then we set

Ω0 = {x ∈ RN |w(x) = 0}, Ω1 = {x ∈ RN |w(x) > 0}.
By (A5) and the Fatou Lemma, we have

lim inf
n→∞

∫
Ω1

F (x, u+
n )

u2
n

w2
ndx ≥

∫
Ω1

lim inf
n→∞

F (x, u+
n )

u2
n

w2
ndx→ +∞.

In the meantime, by (A5), there exists T0 > 0, such that

F (x, t)
t2

≥ 1

for t > T0. By the continuity of F , there exists C1 > 0 such that

|F (x, t)| ≤ C1

for 0 < t ≤ T0. Combining the preceding two inequalities, there exists C2 > 0 such
that∫

Ω0

F (x, u+
n )

u2
n

w2
ndx =

∫
Ω0(0<un(x)≤T0)

F (x, un)
‖un‖2

dx+
∫

Ω0(un(x)>T0)

F (x, un)
u2
n

w2
ndx

≥ − C3

‖un‖2
meas

(
Ω0(0 < un(x)

≤ T0)
)

+
∫

Ω0

w2
ndx > −C2.

Dividing (2.1) with ‖un‖2, we have

I(un)
‖un‖2

=
1
2
−
∫

RN

F (x, u+
n )

u2
n

(w+
n )2dx = on(1).

Hence, we obtain

1
2
− on(1) =

∫
RN

F (x, u+
n )

u2
n

w2
ndx

=
∫

Ω0

F (x, u+
n )

u2
n

w2
ndx+

∫
Ω1

F (x, u+
n )

u2
n

w2
ndx→ +∞.

It is easy to see that it is a contradiction. So {un} is bounded in E.
By the standard processes similar to Lemma 2.4, we know that un → u strongly

in E. This completes the proof. �

Lemma 2.6. Under the assumptions of Theorem 1.3, the functional I satisfies the
(Ce)c condition for c > 0.

Proof. Assume that {un} ⊂ E is a (Ce)c sequence for c > 0,

I(un)→ c, (1 + ‖un‖)I ′(un)→ 0 as n→∞.
We argue that the sequence {un} is bounded in E. Otherwise, there is a subse-
quence, again denoted by {un}, such that ‖un‖ → +∞ as n→∞. By (f6), we see
that, there exists R1 > 0 such that

f(x, t)t ≤ νbtν (2.15)

for t ≥ R1. By (A9), for 0 < δ < η, there exists R2 > 0 such that

f(x, t)t− 2F (x, t) ≥ (η − δ)tσ (2.16)
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for t ≥ R2. Set T = max{R1, R2}, let

Ω1 = {x ∈ RN : un(x) ≥ T}, Ω2 = {x ∈ RN : 0 < un(x) < T}.
Moreover, by the continuity of f and F , there exists C1 > 0 such that∣∣∣ ∫

Ω2

(f(x, un)un − 2F (x, un)) dx
∣∣∣ ≤ C1.

Since {un} ⊂ E is a (Ce)c sequence, we obtain

2c+ on(1) =
∫

RN

(
f(x, u+

n )u+
n − 2F (x, u+

n )
)
dx

≥
∫

Ω1

(f(x, un)un − 2F (x, un))dx− C1.

Thus, ∫
Ω1

(f(x, un)un − 2F (x, un))dx ≤ 2c+ C1 + on(1).

It follows from (2.16) that there exists C2 > 0 such that∫
Ω1

uσndx ≤ C2.

Using the continuity of f again, there exists C3 > 0 such that∣∣∣ ∫
Ω2

f(x, un)undx
∣∣∣ ≤ C3.

Through the definition of {un}, it reaches

‖un‖2 − on(1) =
∫

RN
f(x, u+

n )u+
n dx

=
∫

Ω1

f(x, un)undx+
∫

Ω2

f(x, un)undx

≤
∫

Ω1

f(x, un)undx+ C3.

From (2.15), we obtain ∫
Ω1

f(x, un)undx ≤ νb
∫

Ω1

uνndx.

Then, we will consider two cases.
Case 1. σ ≥ ν, there exists t ∈ (0, 1) such that 1

ν = 1−t
σ + t

2 . By the Hölder
inequality, ∫

Ω1

uνndx ≤
(∫

Ω1

uσndx
) (1−t)ν

σ
(∫

Ω1

u2
ndx

) tν
2

≤ C
(1−t)ν
σ

2 Ktν‖un‖tν .

Case 2. σ < ν, there exists t ∈ (0, 1) such that 1
ν = 1−t

σ + (N−2α)t
2N . By the Hölder

inequality, ∫
Ω1

uνndx ≤
(∫

Ω1

uσndx
) (1−t)ν

σ
(∫

Ω1

u
2N

N−2α
n dx

) tν(N−2α)
2N
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≤ C
(1−t)ν
σ

2 Ktν‖un‖tν .

Hence, one has

‖un‖2 − on(1) ≤ C3 + νbC
(1−t)ν
σ

2 Ktν‖un‖tν .
It is easily observed that σ > N

2α (ν−2) is equivalent to tν < 2, it is easy to concluce
that the assumption is false. So {un} is bounded in E.

Since (A3) and (A4) hold, we know that un → u strongly in E by the standard
processes similar to Lemma 2.4. So I satisfies the (Ce)c condition. �

Lemma 2.7. Assume that (A1)–(A4) hold. Then I satisfies the the following
conditions:

(1) There exist θ > 0, ξ > 0 such that I(u) ≥ ξ > 0 for all u ∈ E with ‖u‖ = θ;
(2) There exists e ∈ E with ‖e‖ > θ such that I(e) ≤ 0.

Proof. (1) By (A3), (A4) and f ∈ C(RN × R+, R), for 0 < ε < 1
2K2 , there exists

Cε > 0 such that
f(x, t)t ≤ εt2 + Cεt

2∗α (2.17)

for all (x, t) ∈ RN × R+. This implies that

F (x, t) =
∫ 1

0

f(x, st)tds

≤
∫ 1

0

(
εst2 + Cεs

2∗α−1t2
∗
α

)
ds

≤ ε

2
t2 +

Cε
2∗α
t2
∗
α

(2.18)

for all (x, t) ∈ RN×R+. Pay attention to the definition of I given in (2.1), it follows
from (2.18) and Lemma 2.2 that

I(u) =
1
2
‖u‖2 −

∫
RN

F (x, u+)dx

≥ 1
2
‖u‖2 −

∫
RN

ε

2
(u+)2dx−

∫
RN

Cε
2∗α

(u+)2∗αdx

≥ 1
2
(
1− εK2

)
‖u‖2 − CεK

2∗α

2∗α
‖u‖2

∗
α

≥
(1

4
− CεK

2∗α

2∗α
‖u‖2

∗
α−2
)
‖u‖2.

(2.19)

Set

θ =
( 2∗α

8CεK2∗α

) 1
2∗α−2

.

Taking ‖u‖ = θ, it follows from (2.19) that

I(u) ≥ 1
8
θ2 > 0,

then (1) is proved.
(2) By (A5), for any M > 0, there exists a T0 > 0 such that

F (x, t) ≥Mt2 > 0
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for all t ≥ T0. By the continuity of F , there exists C > 0 such that

F (x, t) ≥Mt2 − C

for all (x, t) ∈ RN × R+. We choose ϕ ∈ C∞0 (RN ) with ϕ ≥ 0, ‖ϕ‖ = 1 and
supp(ϕ) ⊂ B(0, R) for some R > 0. we have that for M

∫
B(0,R)

ϕ2dx > 1/2.
For t > 0 large enough, it follows from (A5) that F (x, tϕ) ≥ 0. Hence,

I(tϕ) =
t2

2
‖ϕ‖2 −

∫
RN

F (x, tϕ)dx

≤ t2

2
−
∫
B(0,R)

F (x, tϕ)dx

≤ t2
(1

2
−M

∫
B(0,R)

ϕ2dx
)

+ C|B(0, R)|.

Choosing ‖e‖ = ‖tϕ‖ > ρ, we have I(e) < 0, then (2) is proved. �

3. Proof of main results

Proof of Theorem 1.1. By Lemmas 2.4 and 2.7, it is easy to obtain a nontrivial
critical point u0 of I by the mountain pass theorem, which implies that

c = inf
γ∈Γ

max
t∈(0,1)

I(γ(t)) = I(u0),

where Γ = {γ ∈ C([0, 1], E), γ(0) = 0, γ(1) = e} and I(u0) ≥ θ > 0. Let

N = {u ∈ E\{0} : I ′(u) = 0},

since u0 ∈ N , N 6= ∅. Then we claim that I is bound from below on N , moreover,
there exists d > 0 such that I(u) > d for every u ∈ N . If not, there exists a
sequence {un} ⊂ N such that

I(un) <
1
n
, ∀n ∈ N+.

Using (2.18), we know that

1
n
> I(un) ≥ 1

2
(
1− εK2

)
‖un‖2 −

CεK
2∗α

2∗α
‖un‖2

∗
α .

Since un ∈ N , I ′(un) = 0, it follows from (2.17) that

‖un‖2 =
∫

RN
f(x, u+

n )u+
n dx ≤ εK2‖un‖2 + CεK

2∗α‖un‖2
∗
α . (3.1)

Thus,
1
n
>
(1

2
− 1

2∗α

)
(1− εK2)‖un‖2.

By the definition of ε < 1
2K2 , we obtain

1
n
>
(
1− 2

2∗α

)
‖un‖2.

Since 2 < 2∗α, it is easy to see that ‖un‖ → 0. From (3.1) and ε < 1
2K2 , we know

‖un‖2 <
1
2
‖un‖2 + CεK

2∗α‖un‖2
∗
α ,
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so there exists C such that ‖un‖ > C. It is a contradiction. Hence, there exists
c1 > 0 such that

c1 = inf
u∈N

I(u).

Clearly, c1 ≤ c. Let {vn} ⊂ N be a minimizing sequence for c1, so {vn} is a
(Ce)c1 sequence. By Lemma 2.4, {vn} is bounded in E and it has a convergence
subsequence {vn} such that vn → u2 in E. Since u2 ∈ N , we know that

〈I(u2), u−2 〉 = −‖u−2 ‖2 = 0,

therefore, u2 is a non-negative ground state solution. �

Proof of Theorem 1.2. Since the (Ce)c condition is satisfied by Lemma 2.5 and the
mountain geometrical structure is proved by Lemma 2.7. So we can get a ground
state solution by using the same method as that of Theorem 1.1. �

Proof of Theorem 1.3. Since the (Ce)c condition is satisfied by Lemma 2.6 and the
mountain geometrical structure is proved by Lemma 2.7. So we can get a ground
state solution by using the same method as that of Theorem 1.1. �
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