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SINGULAR LIMITING SOLUTIONS TO 4-DIMENSIONAL
ELLIPTIC PROBLEMS INVOLVING EXPONENTIALLY

DOMINATED NONLINEARITY AND NONLINEAR TERMS

SAMI BARAKET, IMEN BAZARBACHA, MARYEM TRABELSI

Abstract. Let Ω ∈ R4 be a bounded open regular set, x1, x2, . . . , xm ∈ Ω,

λ, ρ > 0 and Qλ be a non linear operator (which will be defined later). We
prove that the problem

∆2u+ Qλ(u) = ρ4eu

has a positive weak solution in Ω with u = ∆u = 0 on ∂Ω, which is singular

at each xi as the parameters λ and ρ tends to 0.

1. Introduction and statement of results

Semilinear equations involving fourth order elliptic operator and exponential
nonlinearity appear naturally in conformal geometry and in particular in the pre-
scription of the so called Q-curvature in four-dimensional Riemannian manifolds
[7, 8]

Qg =
1
12

(−∆gSg + S2
g − 3|Ricg |2),

where Ricg denotes the Ricci tensor and Sg is the scalar curvature of the metric g.
Recall that the Q-curvature changes under a conformal change of metric

gw = e2wg,

according to
Pgw + 2Qg = 2Q̃gwe

4w, (1.1)
where

Pg := ∆2
g + δ(

2
3
SgI − 2 Ricg) d,

is the Panietz operator, which is an elliptic 4-th order partial differential operator
[8] and which transforms according to

e4wPe2wg = Pg,

under a conformal change of metric gw := e2wg. In the special case where the
manifold is the Euclidean space, the Panietz operator is simply given by

Pgeucl = ∆2,
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in which case (1.1) can be written as

∆2w = Q̃e4w,

the solutions of which give rise to conformal metric gw = e2wgeucl whoseQ-curvature
is given by Q̃. There is by now an extensive literature about this problem and we
refer to [8] and [13] for references and recent developments.

Wei in [18], have studied the behavior of solutions to the following nonlinear
problem in R4. More precisely, consider the problem

∆2u = λ f(u) in Ω
u = ∆u = 0 on ∂Ω.

(1.2)

Before showing his result, we introduce some notation. Let G(x, x′) defined, over
Ω × Ω, the Green function associated to the bi-laplacian operator with a Navier
boundary conditions, which is the solution of

∆2
xG(x, x′) = 64π2δx=x′ in Ω

G(x, x′) = ∆xG(x, x′) = 0 on ∂Ω
(1.3)

and denote by H(x, x′) = G(x, x′) + 8 log |x − x′| its smooth part. Consider now
the functional

E : (x1, . . . , xm) ∈ (R4)m 7→
m∑
j=1

H(xj , xj) +
∑
j 6=l

G(xj , xl) (1.4)

and u∗ the solution of

∆2u∗ = 64π2
m∑
i=1

δxi in Ω

u∗ = ∆u∗ = 0 on ∂Ω.

(1.5)

The author proved the following result.

Theorem 1.1 ([18]). Let Ω be a smooth bounded domain in R4 and f a smooth
nonnegative increasing function such that

e−uf(u) and ε−u
∫ u

0

f(s)ds tends to 1 as u→ +∞.

For uλ solution of (1.2), denote by Σλ = λ
∫

Ω
f(uλ)dx. Then, three cases occur:

(1) Σλ → 0 therefore, ‖uλ‖L∞(Ω) → 0 as λ→ 0.
(2) Σλ → +∞ then uλ → +∞ as λ→ 0.
(3) Σλ → 64π2m, for some positive integer m. Then the limiting Function

u∗ = limλ→0 uλ has m blow-up points, {x1, . . . , xm}, where uλ(xi) → +∞
as λ→ 0. Moreover, (x1, . . . , xm) is a critical point of E.

Now, we are interested in positive solutions of the problem

∆2u = ρ4eu in Ω
u = ∆u = 0 on ∂Ω

(1.6)

when the parameter ρ tends to 0. Obviously, the application of the implicit function
theorem yields the existence of a smooth one parameter family of solutions (uρ)ρ
which converges uniformly to 0 as ρ tends to 0. This branch of solutions is usually
referred to as the branch of minimal solutions which gives the converse of the case
(1) given in the last Theorem.
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First, let us mention that in [4], Ben Ayed, El Mehdi and Grossi considered a
bi-harmonic equation with large exponent in the non linear term; that is ∆2u =
up, under Navier boundary conditions. The authors have studied the asymptotic
behavior of positive solutions obtained by minimizing suitable functionals.

In [9], the authors studied existence and qualitative properties of positives solu-
tions to the boundary-value problem

∆2u = ρ4 k(x)eu in Ω
u = ∆u = 0 on ∂Ω

(1.7)

where k ∈ C2(Ω), is a non-negative, not identically zero function, Ω a bounded
open regular domain in R4 and ρ > 0 is a small, positive parameter which tends to
0.

Recently, the existence of other branches of solutions as ρ tends to 0 is studied
in [3]. The authors construct a non-minimal solutions with singular limit as the
parameter ρ tends to 0. Their results which give the converse of the case (3) given
in the last Theorem, can be stated as follows.

Theorem 1.2 ([3]). Let Ω be a smooth open subset of R4. Assume (x1, . . . , xm) is
a nondegenerate critical point of E. Then there exist ρ0 > 0 and a one parameter
family (uρ)ρ∈(0,ρ0) of solutions of (1.6), such that

lim
ρ→0

uρ = u∗, in C4,α
loc (Ω− {x1, . . . , xm}).

To prove Theorem 1.2, the authors present, for the first time, a rather efficient
method to solve such singularly perturbed problems in the context of partial dif-
ferential equations. This method based on some nonlinear domain decomposition
has already been used successfully in geometric context (constant mean curvature
surfaces, constant scalar curvature metrics, extremal Kähler metrics, . . . ). In this
article, we adopt this method in the study of the following problem.

Let Ω ⊂ R4 be a regular bounded open domain in R4. We are interested in
positive solutions of

∆2u+ Qλ(u) = ρ4eu in Ω (1.8)

satisfying u = ∆u = 0 on ∂Ω and Qλ is the nonlinear operator given by

Qλ(u) := λ
[
(∆u)2 + ∆(|∇u|2) + 2∇u · ∇(∆u)

]
+ 2λ2

[
∆u|∇u|2 +∇u · ∇(|∇u|2)

]
+ λ3|∇u|4.

(1.9)

Using the transformation
w := (λρ4eu)λ, (1.10)

if u is a solution of (1.8) then w solves the equation

∆2w = w
λ+1
λ in Ω. (1.11)

Remark that the exponent q = λ+1
λ tends to ∞ as λ tends to 0.

We denote by ε the smallest positive parameter satisfying

ρ4 =
384ε4

(1 + ε2)4
. (1.12)

We remark that ρ ∼ ε as ε→ 0. We will suppose in the following that
(A1) λ1+δ/2ε−δ = O(1) as ε→ 0 for any δ ∈ (0, 1).
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In particular, if we take λ = O(ε2/3), then condition (A1) is satisfied. Under the
assumption (A1), we can treat equation (1.8) as a perturbation of the equation

∆2u = ρ4eu in Ω ⊂ R4.

Our question is: Does there exist uε a sequence of solutions which converges to
some singular function as the parameters ε tend to 0?

Our main result reads as follows.

Theorem 1.3. Given α ∈ (0, 1). Let Ω be an open smooth bounded set of R4, λ > 0
satisfy condition (A1), and S = {x1, . . . , xm} ⊂ Ω be a non empty set. Assume
that (x1, . . . , xm) is a nondegenerate critical point of the function

F (x1, . . . , xm) =
m∑
j=1

H(xj , xj) +
∑
i 6=j

G(xi, xj) in (Ω)m,

then there exist ρ0 > 0, λ0 > 0 and a family {uρ,λ} with 0 < ρ < ρ0, 0 < λ < λ0 of
solutions of (1.8), such that

lim
ρ→0, λ→0

uρ,λ =
m∑
j=1

G(xj , ·) in C4,α
loc (Ω− {x1, . . . , xm}).

2. Construction of the approximate solution

We first describe the rotationally symmetric approximate solutions of

∆2u− ρ4eu = 0, (2.1)

in R4, which will be crucial in the construction of the approximate solution. Given
ε > 0, we define

uε,τ (x) := 4 log(1 + ε2) + 4 log τ − 4 log(ε2 + (τ |x|)2).

which is clearly a solution of (2.1) when

ρ4 =
384ε4

(1 + ε2)4
.

For τ > 0, we remark that equation (2.1) is invariant under some dilation in the
following sense: If u is solution of (2.1), then

τ 7→ u(τ ·) + 4 log τ.

is also a solution of (2.1). So, for ε > 0 and τ > 0 we denote by uε,τ the element
of this new family of radial solutions of (2.1).

For ε = τ = 1 and we denote by u1 = u1,1 this particular solution. We also
define the following linear fourth order elliptic operator

L := ∆2 − 384
(1 + |x|2)4

,

which corresponds to the linearization of (2.1) about the solution u1.
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2.1. Radial solution on R4. For all ε, τ, λ > 0, we set

Rε,λ := τrε,λ/ε, where rε,λ := max(
√
ε,
√
λ). (2.2)

The classification of bounded solutions of Lw = 0 in R4 is well known. Some
solutions are easy to find. For example, we can define

φ0(x) := r∂ru1(x) + 4 = 4
1− r2

1 + r2
,

where r = |x|. Clearly Lφ0 = 0 and this reflects the fact that (2.1) is invariant
under the group of dilations τ 7→ u(τ ·) + 4 log τ . We also define, for i = 1, . . . , 4

φi(x) := −∂xiu1(x) =
8xi

1 + |x|2
,

which are also solutions of Lφi = 0 since these solutions correspond to the invariance
of the equation under the group of translations a 7→ u(· + a). Then, we have the
following classification.

Lemma 2.1 ([3]). Any bounded solution of Lw = 0 defined in R4 is a linear
combination of φi for i = 0, 1, . . . , 4.

Let Br denote the ball of radius r centered at the origin in R4.

Definition 2.2. Given k ∈ N, α ∈ (0, 1) and µ ∈ R, we introduce the Hölder
weighted spaces Ck,αµ (R4) as the space of functions w ∈ Ck,αloc (R4) for which the
norm

‖w‖Ck,αµ (R4) := ‖w‖Ck,α(B̄1) + sup
r>1

(
(1 + r2)−δ/2‖w(r·)‖Ck,αµ (B̄1−B1/2)

)
,

is finite.

Also, we define

Ck,αrad,µ(R4) = {f ∈ Ck,αµ (R4)textsuchthatf(x) = f(|x|),∀x ∈ R4}.
As a consequence of Lemma 2.1, we recall the surjectivity result of L .

Proposition 2.3 ([3]). (1) Assume that µ > 1 and µ 6∈ Z, then the operator
Lµ : C4,α

µ (R4)→ C0,α
µ−4(R4) defined by Lµ(w) = Lw is surjective.

(2) Assume that δ > 0 and δ 6∈ Z, then the operator Lδ : C4,α
rad,δ(R4)) →

C0,α
rad,δ−4(R4) defined by Lδ(w) = Lw is surjective.

We set B̄∗1 = B̄1 − {0}.

Definition 2.4. Given k ∈ N, α ∈ (0, 1) and µ ∈ R, we introduce the Hölder
weighted spaces Ck,αµ (B̄∗1) as the space of functions in Ck,αloc (B̄∗1) for which the norm

‖u‖Ck,αµ (B̄∗1 ) = sup
r61/2

(r−µ‖u(r·)‖Ck,α(B̄2−B1)),

is finite.

Then, we define the subspace of radial functions in Ck,αδ (B̄∗1) by

Ck,αrad,δ(B̄
∗
1) = {f ∈ Ck,αδ (R4); such that f(x) = f(|x|),∀x ∈ B̄∗1}.

Our aim now is the construction of a radial solution u of

∆2u+ Qλ(u)− ρ4eu = 0 in B̄rε,λ . (2.3)
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Thanks to the transformation

v(x) = u(
ε

τ
x) + 8 log ε− 4 log(τ(1 + ε2)/2),

Equation (2.3) can be written as

∆2v + Qλ(v)− 24ev = 0 in B̄Rε,λ . (2.4)

Now, we look for a solution of (2.4) of the form v(x) = u1(x)+h(x); this amounts
to solving

L h =
384

(1 + |x|2)4
(eh − h− 1)−Qλ(u1 + h) in B̄Rε,λ . (2.5)

We will need the following definition.

Definition 2.5. Given r̄ > 1, k ∈ N, α ∈ (0, 1) and δ ∈ R, the weighted space
Ck,αδ (Br̄) is defined to be the space of functions w ∈ Ck,α(Br̄) endowed with the
norm

‖w‖Ck,αδ (B̄r̄) := ‖w‖Ck,α(B1) + sup
16r6r̄

(r−δ‖w(r·)‖Ck,α(B̄1−B1/2)).

For σ > 1, we denote by

Eσ : C0,α
δ (B̄σ)→ C0,α

δ (R4),

the extension operator defined by

Eσ(f)(x) = χ(
|x|
σ

)f(σ
x

|x|
),

where t 7→ χ(t) is a smooth nonnegative cutoff function identically equal to 1 for
t > 2 and identically equal to 0 for t 6 1. It is easy to check that there exists a
constant c = c(δ) > 0, independent of σ > 1, such that

‖Eσ(w)‖C0,α
δ (R4) 6 c‖w‖C0,α

δ (B̄σ). (2.6)

We fix δ ∈ (0, 1), and denote by Gδ to be a right inverse of Lδ assured by
Proposition 2.3. Now, we use the result of Proposition 2.3 to rephrase the nonlinear
equation (2.5) as a fixed point problem. Hence, to obtain a solution of (2.5), it is
enough to find a fixed point h in a small ball of C4,α

rad,δ(R4) for the mapping

h 7→ N (h) := Gδ ◦ Eδ ◦R(h), (2.7)

where
R(h) :=

384
(1 + |x|2)4

(eh − h− 1)−Qλ(u1 + h).

We have

R(0) = −λ
[
(∆u)2 + ∆(|∇u|2) + 2∇u · ∇(∆u)

]
− 2λ2

[
∆u|∇u|2 +∇u · ∇(|∇u|2)

]
− λ3|∇u|4.

Recall that
u1 = 4 log(2)− 4 log(1 + r2).

Then

|∇u1|2 = 64
r2

(1 + r2)2
, ∆u1 = −16

2 + r2

(1 + r2)2
, ∆(|∇u1|2) = 512

1− 2 r2

(1 + r2)4
.

Hence,

(1 + r2)2− δ2 |(∆u1)2 + ∆(|∇u1|2) + 2∇u1 · ∇(∆u1)| 6 c(1 + r2)−
δ
2 ,
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(1 + r2)2− δ2 |∆u1|∇u1|2 +∇u1 · ∇(|∇u1|2)| 6 c(1 + r2)−1− δ2 ,

(1 + r2)2− δ2 |∇u1|4 6 c(1 + r2)−
δ
2 .

This implies that given κ > 0, there exists cκ > 0 (which can depend only on κ),
such that for δ ∈ (0, 1) and |x| = r, we have

sup
r6Rε,λ

(1 + r2)2− δ2 |R(0)| 6 cκλ .

So
‖N (0)‖C4,α

rad,δ(R4) 6 cκr
2
ε,λ. (2.8)

Using Proposition 2.3 and (2.6), we deduce that

‖h‖C4,α
rad,δ(R4) 6 2cκr2

ε,λ. (2.9)

Now let h1, h2 in B(0, 2cκ r2
ε,λ) of C4,α

rad,δ(R4) and for δ ∈ (0, 1), then

|R(h2)−R(h1)| 6 |eh2 − eh1 + h1 − h2|+ |Qλ(u1 + h2)−Qλ(u1 + h1)|.
Furthermore,

r4−δ|eh2 − eh1 + h1 − h2| 6 cr4−δ|h2 − h1||h2 + h1|

6 cκr
δr2
ε,λ‖h2 − h1‖C4,α

rad,δ(R4).

r4−δ|(∆(u1 + h1))2 − (∆(u1 + h2))2| = r4−δ|(∆(h1 − h2))(∆(2u1 + h1 + h2))|

6 cκ
(
1 + rδr2

ε,λ

)
‖h2 − h1‖C4,α

rad,δ(R4).

r4−δ|∆|∇(u1 + h2)|2 −∆|∇(u1 + h1)|2| = r4−δ|∆(∇(h1 − h2) · ∇(2u1 + h1 + h2))|

6 cκ
(
1 + rδr2

ε,λ

)
‖h2 − h1‖C4,α

rad,δ(R4).

r4−δ∣∣∇(∆(u1 + h2)) · ∇(u1 + h2)−∇(∆(u1 + h1)) · ∇(u1 + h1)
∣∣

= r4−δ∣∣∇(∆(h1 − h2)) · ∇(2u1 + h1 + h2) +∇(h2 − h1) · ∇(∆(2u1 + h1 + h2))
∣∣

× r4−δ∣∣∇(∆(u1 + h2)) · ∇(u1 + h2)−∇(∆(u1 + h1)) · ∇(u1 + h1)
∣∣

6 cκ
(
1 + rδr2

ε,λ

)
‖h2 − h1‖C4,α

rad,δ(R4).

Since

|∇(u1 + h1)|2∆(u1 + h1)− |∇(u1 + h2)|2∆(u1 + h2)

= ∆(h1 − h2)[|∇(u1 + h1)|2 + |∇(u1 + h2)|2]

+ ∆(2u1 + h1 + h2)[|∇(u1 + h1)|2 − |∇(u1 + h2)|2],

it follows that

r4−δ∣∣|∇(u1 + h1)|2∆(u1 + h1)− |∇(u1 + h2)|2∆(u1 + h2)
∣∣

6 cκ
(
1 + rδr2

ε,λ + r2δr4
ε,λ

)
‖h2 − h1‖C4,α

rad,δ(R4).

Its easy to see that

∇(|∇(u1 + h2)|2)∇(u1 + h2)−∇(|∇(u1 + h1)|2)∇(u1 + h1)

= ∇(h2 − h1)∇(|∇(u1 + h2)|2 + |∇(u1 + h1)|2)

+∇(2u1 + h1 + h2)∇(|∇(u1 + h2)|2 − |∇(u1 + h1)|2);
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hence

r4−δ∣∣∇(|∇(u1 + h2)|2)∇(u1 + h2)−∇(|∇(u1 + h1)|2)∇(u1 + h1)
∣∣∣

6 cκ
(
1 + rδr2

ε,λ + r2δr4
ε,λ

)
‖h2 − h1‖C4,α

rad,δ(R4).

Finally, since

|∇(u1 + h2)|4 − |∇(u1 + h1)|4

= ∇(h2 − h1)∇(2u1 + h2 + h1)(|∇(u1 + h2)|2 + |∇(u1 + h1)|2),

it follows that

r4−δ
∣∣∣|∇(u1 + h2)|4 − |∇(u1 + h1)|4

∣∣∣
6 cκ

(
1 + rδr2

ε,λ + r2δr4
ε,λ + r3δr6

ε,λ

)
‖h2 − h1‖C4,α

rad,δ(R4).

Thanks to condition (A1),

sup
r6Rε,λ

r4−δ |R(h2)−R(h1)| 6 cκr2
ε,λ‖h2 − h1‖C4,α

rad,δ(R4).

Similarly, by Proposition 2.3 and (2.6), we conclude that given κ > 0, then there
exist c̄κ > 0 (independent of ε and λ), λκ and εκ such that

‖N (h2)−N (h1)‖C4,α
rad,δ(R4) 6 c̄κr

2
ε,λ‖h2 − h1‖C4,α

rad,δ(R4). (2.10)

Reducing λκ > 0 and εκ > 0 if necessary, we can assume that c̄κr2
ε,λ 6 1/2 for

all λ ∈ (0, λκ) and ε ∈ (0, εκ). Then, (2.10) and (2.9) are enough to show that
h 7→ N (h) is a contraction from {h ∈ C4,α

rad,δ(R4) : ‖h‖C4,α
rad,δ(R4) 6 2cκr2

ε,λ} into
itself and hence has a unique fixed point h in this set. This fixed point is solution
of (2.7) in B̄Rε,λ . We summarize this in the following proposition.

Proposition 2.6. Given δ ∈ (0, 1) and κ > 0, then there exist εκ > 0, λκ > 0
and c̄κ > 0 (depending on κ) such that for all λ ∈ (0, λκ), and for ε ∈ (0, εκ), there
exists a unique solution h ∈ C4,α

rad,δ(R4) solution of (2.7) such that

v(x) = u1(x) + h(x)

solves (2.4) in B̄Rε,λ . In addition

‖h‖C4,α
rad,δ(R4) 6 2cκr2

ε,λ.

2.2. Analysis of the Bi-Laplace operator in weighted spaces. In this section,
we prove a surjectivity result of the bi-laplace operator in some weighted spaces
and recall some estimations concerning the bi-harmonic extensions. First, given
x1, . . . , xm ∈ Ω we define

Ω̄∗ := Ω̄− {x1, . . . xm},
and we choose r0 > 0 so that the balls Br0(xi) of center xi and radius r0 are
mutually disjoint and included in Ω. For k ∈ N, α ∈ (0, 1) and ν ∈ R, we introduce
the Hölder weighted space Ck,αν (Ω̄∗) as the space of functions w ∈ Ck,αloc (Ω̄∗) endowed
with the norm

‖w‖Ck,αν (Ω̄∗) := ‖w‖Ck,α(Ω̄−∪mj=1Br0/2(xj)) +
m∑
j=1

sup
0<r6r0/2

r−ν‖w(xj + r·)‖Ck,α(B2−B1).

When k > 2, we let [Ck,αν (Ω̄∗)]0 be the subspace of functions w ∈ Ck,αν (Ω̄∗) satisfying
w = ∆w = 0.
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In this article, we need the following mapping properties of ∆2.

Proposition 2.7 ([3]). Assume that ν < 0 and ν 6∈ Z, then

∆2 : [C4,α
ν (Ω̄∗)]0 → C0,α

ν−4(Ω̄∗)

is surjective.

Remark 2.8 ([3]). It is interesting to observe that, when ν < 0, ν /∈ Z, the right
inverse even though it is not unique can be chosen to depend smoothly on the points
x1, . . . , xm, at least locally. Once a right inverse is fixed for some choice of the points
x1, . . . , xm, a right inverse which depends smoothly on the points x̃1, . . . , x̃m close
to x1, . . . , xm can be obtained using a simple perturbation argument.

Proof of Proposition 2.7. Given (x̃i) close enough to (xi), we define a family of
diffeomorphism D : Ω→ Ω depending smoothly on (x̃i) by

D(x) = x+
m∑
j=1

χr0(x− xj)(xj − x̃j),

where χr0 is a cut-off function identically equal to 1 in Br0/2 and identically equal
to 0 outside Br0 . Hence D(x̃j) = xj for each j. Then the equation ∆2w̃ = f̃ where
f̃ ∈ C0,α

ν−4(Ω̄− {x̃i, 1 6 i 6 m}) can be solved by considering w̃ = w ◦D where w is
a solution of the problem

∆2w +
[
∆2(w ◦D)−∆2w ◦D

]
◦D−1 = f̃ ◦D−1 (2.11)

and this time f̃ ◦D−1 ∈ C0,α
ν (Ω̄− {x1, . . . , xm}). It should be clear that∥∥[∆2(w ◦D)−∆2w ◦D
]
◦D−1

∥∥
C0,α
ν−4(Ω̄∗)

6 C‖w‖C4,α
ν (Ω̄∗) sup

j=1,...,m
|x̃j − xj |.

Since we have a fixed right inverse for ∆2 : C4,α
ν (Ω̄∗) → C0,α

ν−4(Ω̄∗), a perturbation
argument shows that (2.11) is solvable provided the x̃j are close enough to the xj .
This provides a right inverse which depends smoothly on the choice of the points
x̃i. �

2.3. Bi-harmonic extensions. Now, we give some estimates. More precisely,
given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3), we define Hi(= Hi

ϕ,ψ) to be the solution of

∆2Hi = 0 in B1

Hi = ϕ on ∂B1

∆Hi = ψ on ∂B1,

where, as already mentioned, B1 denotes the unit ball in R4. Given k ∈ N, α ∈ (0, 1)
and ν ∈ R, we introduce the Hölder weighted spaces Ck,αν (B̄∗1) as the space of
function in Ck,αloc (B̄∗1) for which the following norm

‖u‖Ck,αν (B̄∗1 ) = sup
r61/2

r−ν‖u(r·)‖Ck,α(B̄2−B1)

is finite. Here B̄∗1 = B̄1−{0}, therefore, this norm corresponds to the norm already
defined in the previous section when Ω = B1, m = 1 and x1 = 0. We denote by
e1, . . . , e4 the coordinate functions on S3.
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Lemma 2.9 ([3]). Assume that∫
S3

(8ϕ− ψ) dσ = 0 and
∫
S3

(12ϕ− ψ)e` dσ = 0, (2.12)

for ` = 1, . . . , 4. Then there exists c > 0 such that

‖Hi
ϕ,ψ‖C4,α

2 (B̄∗1 ) 6 c(‖ϕ‖C4,α(S3) + ‖ψ‖C2,α(S3)).

Given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3) we define (when it exists!) He(= He
ϕ,ψ)

to be a solution of

∆2He = 0 in R4 −B1

He = ϕ on ∂B1

∆He = ψ on ∂B1.

which decays at infinity. Given k ∈ N, α ∈ (0, 1) and µ ∈ R, we introduce the
Hölder weighted spaces Ck,αµ (R4 −B1) as the space of function w ∈ Ck,αloc (R4 −B1)
for which the norm

‖w‖Ck,αµ (R4−B1) = sup
r≥1

r−µ‖w(r·)‖Ck,αµ (B̄2−B1),

is finite.

Lemma 2.10 ([3]). Assume that ∫
S3
ψ dσ = 0. (2.13)

Then there exists c > 0 such that

‖He
ϕ,ψ‖C4,α

−1 (R4−B1) 6 c(‖ϕ‖C4,α(S3) + ‖ψ‖C2,α(S3)).

Observe that, under the hypothesis of the Lemma, there is uniqueness of the
bi-harmonic extension of the boundary data which decays at infinity.

If E ⊂ L2(S3) is a space of functions defined on S3, we define the space E⊥ to
be the subspace of functions which are L2-orthogonal to the functions 1, e1, . . . , e4.

Lemma 2.11 ([3]). The mapping

P : C4,α(S3)⊥ × C2,α(S3)⊥ → C3,α(S3)⊥ × C1,α(S3)⊥

(ϕ,ψ) 7→ (∂r(Hi
ϕ,ψ −He

ϕ,ψ), ∂r(∆Hi
ϕ,ψ −∆He

ϕ,ψ))

is an isomorphism.

3. Nonlinear interior problem

We are interested in studying equations of type

∆2w + Qλ(w)− 24ew = 0 (3.1)

in B̄Rε,λ . Given ϕ ∈ C4,α(S3) and ψ ∈ C2,α(S3). Let κ > 0 (whose value will be
fixed later on), we further assume that the functions ϕ, ψ satisfy

‖ϕ‖C4,α 6 κr2
ε,λ and ‖ψ‖C2,α 6 κr2

ε,λ. (3.2)

Define
v := u1 +Hi(ϕ,ψ, ·/Rε,λ) + h,
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then we look for a solution of (3.1) of the form w = v + v and using the fact that
Hi is biharmonic, this amounts to solving

L v =
384

(1 + |x|2)4
eh(eH

i(ϕ,ψ,·/Rε,λ)+v − v − 1) +
384

(1 + |x|2)4
(eh − 1)v

+ Qλ(u1 + h)−Qλ

(
u1 +Hi(ϕ,ψ, ·/Rε,λ) + h+ v

)
.

(3.3)

We fix µ ∈ (1, 2) and denote by Gµ the right inverse of Lµ provided by Proposi-
tion 2.3. To obtain a solution of (3.3) it is sufficient to find v ∈ C4,α

µ (R4) solution
of

v = N (v) := Gµ ◦ Eµ ◦S (v), (3.4)
where

S (v) :=
384

(1 + |x|2)4
eh(eH

i(ϕ,ψ,·/Rε,λ)+v − v − 1) +
384

(1 + |x|2)4
(eh − 1)v

+ Qλ(u1 + h)−Qλ

(
u1 +Hi(ϕ,ψ, ·/Rε,λ) + h+ v

)
.

(3.5)

We denote by N (= Nε,λ,ϕ,ψ) the nonlinear operator appearing on the right-hand
side of(3.4); then we have the following result.

Lemma 3.1. For µ ∈ (1, 2) and κ > 0, then there exist λκ > 0, εκ > 0, cκ > 0
and c̄κ > 0 (depending on κ) such that for all λ ∈ (0, λκ) and ε ∈ (0, εκ),

‖N (0)‖C4,α
µ (R4) 6 cκr

2
ε,λ. (3.6)

Moreover,
‖N (v2)−N (v1)‖C4,α

µ (R4) 6 c̄κr
2
ε,λ‖v2 − v1‖C4,α

µ (R4), (3.7)

provided that v1, v2 ∈ C4,α
µ (R4), satisfy

‖vi‖C4,α
µ (R4) 6 2cκr2

ε,λ.

Proof. The proof of the first estimate follows from the asymptotic behavior of Hi

together with the assumption on the norm of boundary data ϕ and ψ given by
(3.2). Indeed, let cκ be a constant depending only on κ (provided ε and λ are
chosen small enough) it follows from the estimate of Hi, given by Lemma 2.9, that

‖Hi(ϕ,ψ, ·/Rε,λ)‖C4,α
2 (B̄Rε,λ ) 6 cR

−2
ε,λ(‖ϕ‖C4,α(S3) + ‖ψ‖C2,α(S3)) 6 cκε2.

Since for each x ∈ B̄Rε,λ , we have

|h(x)| 6 cκr2+δ
ε,λ ε

−δ 6

{
ε1−δ/2 for ε > λ
λ1+δ/2ε−δ for λ > ε.

Then, using condition (A1) , we prove that |h(x)| → 0 as ε and λ tend to 0. Given
κ > 0, there exist cκ > 0 such that

‖(1 + | · |2)−2eh
(
eH

i(ϕ,ψ,·/Rε,λ) − 1
)
‖C0,α

µ−2(B̄Rε,λ ) 6 cκε
2.

On the other hand, using condition (A1), we obtain

sup
r6Rε,λ

(1 + r2)2−µ2 |Qλ(u1 + h)−Qλ

(
u1 +Hi(ϕ,ψ, ·/Rε,λ) + h

)
| 6 cκr2

ε,λ.

By Proposition 2.3 and (2.6), for µ ∈ (1, 2), we obtain

‖N (0)‖C4,α
µ (R4) 6 cκr

2
ε,λ.
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To derive the second estimate, let vi ∈ C4,α
µ (R4) satisfy ‖vi‖C4,α

µ (R4) 6 2cκr2
ε,λ,

i = 1, 2, µ ∈ (1, 2) and condition (A1). Hence there exist cκ > 0 such that

‖(1 + | · |2)−4eH
i(ϕ,ψ,·/Rε,λ)(ev2 − ev1 − (v2 − v1))‖C0,α

µ−4(B̄Rε,λ )

6 cκε
2‖v2 − v1‖C4,α

µ (R4) ,

‖(eh − 1)(v2 − v1)‖C0,α
µ−4(B̄Rε,λ ) 6 cκr

2
ε,λ‖v2 − v1‖C4,α

µ (R4),∥∥Qλ

(
u1 +Hi(ϕ,ψ, ·/Rε,λ) + h+ v2

)
−Qλ

(
u1 +Hi(ϕ,ψ, ·/Rε,λ) + h+ v1

)∥∥
C0,α
µ−4(B̄Rε,λ )

6 cκr
2
ε,λ

∥∥v2 − v1

∥∥
C4,α
µ (R4)

.

So
sup

r6Rε,λ
(1 + r2)2−µ2 |S (v2)−S (v1)| 6 cκr2

ε,λ‖v2 − v1‖C4,α
rad,µ(R4).

Similarly, using Proposition 2.3 and (2.6), we conclude that there exist c̄κ > 0
such that

‖N (v2)−N (v1)‖C4,α
µ (R4) 6 c̄κr

2
ε,λ‖v2 − v1‖C4,α

µ (R4).

�

Reducing λκ > 0 and εκ > 0 if necessary, we can assume that

c̄κr
2
ε,λ 6

1
2
, (3.8)

for all λ ∈ (0, λκ) and ε ∈ (0, εκ). Then, (3.6) and (3.7) in Lemma 3.1 are sufficient
to show that v 7→ N (v) is a contraction from{

v ∈ C4,α
µ (R4) : ‖v‖C4,α

µ (R4) 6 2cκε2
}

into itself and hence has a unique fixed point v = v(ε, τ, ϕ, ψ; ·) in this set. This fixed
point is a solution of (3.4) in R4. We summarize this in the following proposition.

Proposition 3.2. For µ ∈ (1, 2) and κ > 0 there exist εκ > 0, λκ > 0 and cκ > 0
(depending on κ) such that for all ε ∈ (0, εκ), λ ∈ (0, λκ) satisfying (A1), for all τ
in some fixed compact subset of [τ−, τ+] ⊂ (0,∞) and for a given ϕ and ψ satisfying
(2.12)-(3.2), then there exists a unique v(:= v̄ε,τ,ϕ,ψ) solution of (3.4) such that

w := u1 +Hi(ϕ,ψ, ·/Rε,λ) + h+ v̄ε,τ,ϕ,ψ

solve (3.1) in B̄Rε,λ . In addition

‖v‖C4,α
µ (R4) 6 2cκr2

ε,λ.

4. Nonlinear exterior problem

Denote Gx̃ = G(x, x̃) where G is the Green function given by (1.3) and H(x, x̃)
its regular part. Clearly x 7→ H(x, x̃) is a smooth function.

Let x̃ = (x̃j) ∈ Ωm close to x = (xj), η̃ = (η̃j) ∈ Rm close to 0. Let ϕ̃ = (ϕ̃j) ∈
(C4,α(S3))m and ψ̃ = (ψ̃j) ∈ (C2,α(S3))m satisfy (2.13). We define

ũ = ũε,η̃,x̃,ϕ̃,ψ̃ :=
m∑
j=1

(1 + η̃j)Gx̃j +
m∑
j=1

χr0(x− x̃j)He
ϕ̃j ,ψ̃j

(
x− x̃j

rε,λ
),
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where χr0 is a cut-off function identically equal to 1 in Br0/2 and identically equal
to 0 outside Br0 . We would like to solve the equation

∆2u+ Qλ(u)− ρ4eu = 0, in Ω− ∪16j6mBrε,λ(x̃j), (4.1)

with u = ũ + ṽ is a perturbation of ũ. This amounts to solve

∆2ṽ = ρ4eũ eṽ −Qλ(ũ + ṽ)−∆2ũ = S̃ (ṽ).

Denote ΩR,x̃ = Ω− ∪16j6mBR(x̃j) for any R > 0. We denote by ξ̃R : C0,α
ν (Ω̄R,x̃)→

C0,α
ν (Ω̄∗) the extension operator defined by

ξ̃R(f) ≡ f in ΩR,x̃,

ξ̃R(f)(xi + x) =
2|x| −R

R
f(xi +

Rx

|x|
) in BR(x̃j)\BR/2(x̃j), ∀1 6 j 6 m,

ξ̃R(f) ≡ 0 in ∪jBR/2(x̃j).

It easy to check that there exist a constant c = c(ν) > 0, only depending on ν such
that

‖ξ̃R(w)‖C0,α
ν (Ω̄∗) 6 c‖w‖C0,α

ν (Ω̄R,x̃). (4.2)

We fix ν ∈ (−1, 0), and denote by G̃ν the right inverse provided by Proposi-
tion 2.7. Clearly, it is enough to find ṽ ∈ C4,α

ν (Ω∗) solution of

ṽ = G̃ν ◦ ξ̃rε,λ ◦ S̃ (ṽ). (4.3)

We denote by Ñ (ṽ) (= Ñε,η,x̃,ϕ̃,ψ̃(ṽ)) = G̃ν ◦ ξ̃rε,λ ◦ S̃ (ṽ), the nonlinear operator
on the right-hand side. Even though this is not notified in the notation, G̃ν :
C0,α
ν−4(Ω̄∗) → C4,α

ν (Ω̄∗) is the right inverse defined in Remark 2.8 with Ω̄∗ = Ω̄ −
{x̃1, . . . , x̃m}.

Given κ > 0 (whose value will be fixed later on), we further assume that, the
functions ϕ̃j and ψ̃j satisfy

‖ϕ̃j‖C4,α 6 κr2
ε,λ and ‖ψ̃j‖C2,α 6 κr2

ε,λ, ∀j = 1, . . . ,m. (4.4)

Moreover, we assume that the parameters η̃j and the points x̃j are chosen to verify

|η̃j | 6 κr2
ε,λ and rε,λ|x̃j − xj | 6 κr2

ε,λ. (4.5)

Then the following result holds.

Lemma 4.1. Given ν ∈ (−1, 0) and κ > 0, there exist εκ > 0 and cκ > 0 (depend-
ing on κ) such that for all ε ∈ (0, εκ) and under the assumptions (4.4) and (4.5),
we have

‖Ñ (0)‖C4,α
ν (Ω̄∗) 6 cκr

2
ε,λ,

‖Ñ (ṽ2)− Ñ (ṽ1)‖C4,α
ν (Ω̄∗) 6 c̄κr

2
ε,λ‖ṽ2 − ṽ1‖C4,α

ν (Ω̄∗),

provided that ṽ1, ṽ2 ∈ C4,α
ν (Ω̄∗) and ‖ṽi‖C4,α

ν (Ω̄∗) 6 2cκr2
ε,λ.

Proof. The proof of the first estimate follows from the asymptotic behavior of He

together with the assumption on the norm of boundary data ϕ̃j and ψ̃j given by
(4.4). Indeed, let cκ be a constant depending only on κ (provided ε and λ are
chosen small enough), it follows from the estimate of He, given by Lemma 2.10,
that ∣∣He

ϕ̃j ,ψ̃j

(x− x̃j
rε,λ

)∣∣ 6 cκ r3
ε,λ r

−1. (4.6)
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Recall that Ñ (ṽ) = G̃ν ◦ ξ̃rε ◦ S̃ (ṽ), we will estimate Ñ (0) in different subregions
of Ω̄∗.
• In Br0(x̃j) for 1 6 j 6 m, we have χr0(x− x̃j) = 1 and ∆2ũ = 0, so that

|S̃ (0)| 6 cε4
m∏
j=1

[
e

(1+η̃j)Gx̃j (x)+He
ϕ̃j ,ψ̃j

((x−x̃j)/rε) −Qλ(ũ)
]

6 cε4
m∏
j=1

|x− x̃j |−8(1+η̃j) + |Qλ(ũ)|.

So, by an easy computation, for ν ∈ (−1, 0) and η̃j small enough, we obtain

‖S̃ (0)‖
C4,α
ν

(
∪mj=1B(x̃j ,r0)

) 6 sup
rε,λ6r6r0/2

r4−ν |S̃ (0)| 6 cκ
(
ε4r−4

ε,λ + λ
)
.

• In Ω−Br0(x̃j), we have χr0(x− x̃j) = 0 and ∆2ũ = 0, then

|S̃ (0)| 6 c
(
ε4

m∏
j=1

e(1+η̃j)Gx̃j + |Qλ(ũ)|
)
.

Thus
‖S̃ (0)‖C4,α

ν (Ωr0,x̃) 6 cκ sup
r>r0

r4−ν |S̃ (0)| 6 cκ
(
ε4 + λ

)
.

• In Br0(x̃j)−Br0/2(x̃j), using estimate (4.6), we have

|S̃ (0)| 6 cκε4
m∏
j=1

|x− x̃j |−8−η̃j + |Qλ(ũ)|

+ cε4
m∑
j=1

|[∆2, χr0 ](x− x̃j)||Hext
ϕ̃j ,ψ̃j

((x− x̃j)/rε,λ)|.

Here

[∆2, χr0 ]w = 2∆χr0∆w+w∆2χr0 +4∇χr0 ·∇(∆w)+4∇w ·∇(∆χr0)+4∇2χr0 ·∇2w.

So,

‖S̃ (0)‖C4,α
ν (B(x̃j ,r0)−B(x̃j ,r0/2)) 6 cκ sup

r0/26r6r0
r4−ν |S̃ (0)| 6 cκ

(
r2
ε,λ + λ

)
.

Finally, using Proposition 2.7 with (4.2), we conclude that

‖Ñ (0)‖C4,α
ν (Ω̄∗) 6 cκr

2
ε,λ. (4.7)

For the proof of the second estimate, let ṽ1 and ṽ2 ∈ C4,α
ν (Ω̄∗) satisfying

‖ṽi‖C4,α
ν
6 cκr2

ε,λ, so

|
(
S̃ (ṽ2)− S̃ (ṽ1)

)
| 6 cκ|ρ4eũ(eṽ2 − eṽ1)−

(
Qλ(ũ + ṽ2)−Qλ(ũ + ṽ1)

)
|.

Then, for η̃j small enough and using estimate (4.2), there exist c̄κ > 0 (depending
on κ) such that

‖Ñ (ṽ2)− Ñ (ṽ1)‖C4,α
ν (Ω̄∗) 6 c̄κr

2
ε,λ‖ṽ2 − ṽ1‖C4,α

ν (Ω̄∗). (4.8)

Then we get the second estimate. �
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Reducing λκ > 0 and εκ > 0 if necessary, we can assume that

c̄κr
2
ε,λ 6

1
2
, (4.9)

for all λ ∈ (0, λκ) and ε ∈ (0, εκ). Then, (4.8) and (4.7) are sufficient to show that
ṽ 7→ Ñ (ṽ) is a contraction from{

ṽ ∈ C4,α
ν (R4) : ‖ṽ‖C4,α

ν (R4) 6 2cκr2
ε,λ

}
into itself and hence has a unique fixed point ṽ = ṽ(ε, τ, ϕ, ψ; ·) in this set. This fixed
point is a solution of (4.3) in R4. We summarize this in the following proposition.

Proposition 4.2. Given ν ∈ (−1, 0) and κ > 0, there exist εκ > 0, λκ > 0 and
cκ > 0 (depending on κ) such that for all ε ∈ (0, εκ) and λ ∈ (0, λκ), for all set of
parameters η̃j and points x̃j satisfying (4.5), all functions ϕ̃j, ψ̃j satisfying (2.13)
and (4.4), there exists a unique ṽ (= ṽε,η,x̃,ϕ̃,ψ̃) solution of (4.3), such that

ũε,η,x̃,ϕ̃,ψ̃ :=
m∑
j=1

(1 + η̃j)Gx̃j +
m∑
j=1

χr0(· − x̃j)He
ϕ̃j ,ψ̃j

(
x− x̃j

rε
) + ṽε,η̃,x̃,ϕ̃,ψ̃

solves (4.1) in Ω̄∗. In addition

‖ṽ‖C4,α
ν (Ω̄∗) 6 2cκr2

ε,λ.

As in the previous section, observe that the function ṽε,η̃,x̃,ϕ̃,ψ̃ being obtained as
a fixed point for contraction mapping, it depends smoothly on the parameters η̃j ,
the points x̃j and the boundary data ϕ̃j and ψ̃j , for j = 1, . . . ,m. Moreover, as in
the previous section, the mapping

(η, x̃, ϕ̃, ψ̃) 7→ ṽε,η,x̃,ϕ̃,ψ̃ ◦D
−1|Ωrε,λ,x̃ ∈ C

4,α(Ωrε,λ,x̃)

is compact (here D is the diffeomorphism defined in §2.2). Again this follows from
the fact that the equation we solve is semilinear and in (4.3) the right hand side
belongs to C8,α(Ω̄∗).

5. Nonlinear Cauchy-data matching

We will gather the results of the previous sections, keeping the notations, ap-
plying the result of § 2, § 3, as well as the results of § 4. Assume that x̃ =
(x̃i) ∈ Ωm are given close enough to x = (xi) such that it satisfies (4.5), assume
also τ = (τ i) ∈ [τ−, τ+]m ⊂ (0,∞)m (the values of τ− and τ+ will be fixed
shortly). First, we consider some set of boundary data ϕ = (ϕi) ∈ (C4,α(S3))m and
ψ = (ψi) ∈ (C2,α(S3))m satisfying (2.12) and (3.2). According to Proposition 3.2,
and provided ε ∈ (0, εκ), we can find a solution of

∆2u+ Qλ(u)− ρ4eu = 0 in Brε,λ(x̃j) ∀1 6 j 6 m.

These solutions can be decomposed (in each Brε,λ(x̃j)) as

uint,j(x) = uε,τj (x− x̃j) + h
(Rjε,λ(x− x̃j)

rε,λ

)
+Hi

ϕj ,ψj

(x− x̃j
rε,λ

)
+ vε,τj ,ϕj ,ψj

(Rjε,λ(x− x̃j)
rε,λ

)
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where Rjε,λ = τ jrε,λ/ε and the function vj = vε,τj ,ϕj ,ψj satisfies

‖vj‖C4,α
µ (R4) 6 2 cκr2

ε,λ. (5.1)

Similarly, given some boundary data ϕ̃ := (ϕ̃i) ∈ (C4,α(S3))m and ψ̃ = (ψ̃i) ∈
(C2,α(S3))m satisfying (2.13) and (4.4), some parameters η̃ := (η̃i) ∈ Rm satisfying
(4.5), we can use Proposition 4.2 to find a solution uext (provided ε ∈ (0, εκ)) of

∆2u+ Qλ(u)− ρ4eu = 0, in Brε,λ(x̃j), ∀1 6 j 6 m.
Here the solution can be decomposed as

uext(x) =
m∑
j=1

(1 + η̃j)Gx̃j (x) +
m∑
j=1

χr0(x− x̃j)He
ϕ̃j ,ψ̃j

(x− x̃j
rε,λ

)
+ ṽε,η̃,x̃,ϕ̃,ψ̃(x),

where the function ṽj := ṽε,η̃,x̃,ϕ̃,ψ̃ ∈ C4,α
ν (Ω̄∗) satisfies

‖ṽj‖C4,α
ν (Ω̄∗) 6 cκr

2
ε,λ. (5.2)

It remains to determine the parameters and the functions is such a way that the
function which is equal to uint,j in Brε,λ(x̃j) and which is equal to uext in Ωrε,λ,x̃
will become a smooth function. This amounts to find the boundary data and the
parameters so that, for each j = 1, . . . ,m

uint,j = uext, ∂ruint,j = ∂ruext, ∆uint,j = ∆uext, ∂r∆uint,j = ∂r∆uext
(5.3)

on ∂Brε,λ(x̃j). Assuming we have already (5.3) (for all ε small enough), the function
uε ∈ C4,α obtained by patching together the functions uint,j and the function uext,
is a solution of our equation. Then the elliptic regularity theory implies that this
solution is in fact smooth. This will complete the proof of our result. Because
when as ε tends to 0, the sequence of solutions constructed will satisfy the required
properties, namely, away from the points xj the sequence uε converges to

∑
j Gxj .

Before we proceed, the following remarks are important. It will be convenient to
observe that the functions uε,τj can be expanded as

uε,τj (x) = −8 log |x| − 4 log τ j +O(r2
ε,λ) (5.4)

near ∂Brε,λ . Moreover, the function∑
16j6m

(1 + η̃j)Gx̃j (x)

which appears in the expression of uext can be expanded as
m∑
`=1

(1 + η̃`)Gx̃`(x̃
j + x) = −8(1 + η̃j) log |x|+Ej(x̃j , x̃) +∇xEj(x̃j , x̃) · x+O(r2

ε,λ)

(5.5)
near ∂Brε,λ , where we define

Ej(x, x̃) := H(x, x̃j) +
∑
6̀=j

G(x, x̃`).

Next, in (5.3), all functions are defined on ∂Brε,λ(x̃j), nevertheless, it will be
convenient to solve, instead of (5.3) the following set of equations

(uint,j − uext)(x̃j + rε,λy) = 0, ∂r(uint,j − uext)(x̃j + rε,λy) = 0,

∆(uint,j − uext)(x̃j + rε,λy) = 0, ∂r∆(uint,j − uext)(x̃j + rε,λy) = 0,
(5.6)
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on S3.
Also we decompose

ϕj = ϕj0 +ϕj1 +ϕj⊥, ψj = 8ϕj0 + 12ϕj1 +ψj⊥, ϕ̃j = ϕ̃j0 + ϕ̃j1 + ϕ̃j⊥ ψ̃j = ψ̃j1 + ψ̃j⊥

where ϕj0, ϕ̃0 ∈ E0 = R, ϕj1, ϕ̃
j
1, ψ̃

j
1 ∈ E1 = span{e1, . . . , e4} and ϕj⊥, ψ

j
⊥, ϕ̃

j
⊥, ψ̃

j
⊥ ∈

L2(S3)⊥, the subspace of functions which are orthogonal to E0 and E1.
Projecting the set of equations (5.6) over E0 will yield the system

−4 log τ j − 8 log rε,λ + ϕj0 + 8(1 + η̃j) log rε,λ − ϕ̃j0 − Ej(x̃j , x̃) +O(r2
ε,λ) = 0

−8 + 2ϕj0 + 8(1 + η̃j) + 2ϕ̃j0 +O(r2
ε,λ) = 0

−16 + 8ϕj0 + 16(1 + η̃j) +O(r2
ε,λ) = 0

32− 32(1 + η̃j) +O(r2
ε,λ) = 0.

(5.7)
For the rest of this article, the terms O(r2

ε,λ) depend nonlinearly on the variables
τ `, x̃`, ϕ`, ψ`, ϕ̃`, ψ̃`, but it is bounded (in the appropriate norm) by a constant
(independent of ε and κ) time r2

ε,λ. Let us comment briefly on how these equations
are obtained. These equations simply come from (5.6) when expansions (5.4) and
(5.5) are used, together with the expression of Hi and He given in Lemma 2.9 and
Lemma 2.10, and also the estimates (5.1) and (5.2).

Observe that the projection of the term ∇xEj(x̃j , x̃) · y arising in (5.5), as well
as the projection of its partial derivative with respect to r, over the set of constant
function is equal to 0, while its Laplacian vanishes identically. The system (5.7)
can be readily simplified to

1
log rε,λ

[4 log τ j + Ej(x̃j , x̃)] = O(r2
ε,λ), η̃j = O(r2

ε,λ),

ϕj0 = O(r2
ε,λ), ϕ̃j0 = O(r2

ε,λ).

We are now in a position to define τ− and τ+ since, according to the above, as ε
tends to 0 we expect that x̃j will converge to xj and that τ j will converge to τ j∗
satisfying

4 log τ j∗ = −Ej(xj ,x)
and hence it is enough to choose τ− and τ+ in such a way that

4 log(τ−) < − sup
j
Ej(xj ,x) 6 − inf

j
Ej(xj ,x) < 4 log(τ+).

We now consider the L2-projection of (5.6) over E1. Given a smooth function f
defined in Ω, we identify its gradient ∇f = (∂x1f, . . . , ∂x4f) with the element of E1

∇̄f =
4∑
i=1

∂xifei.

With these notation in mind, we obtain the system of equations

ϕj1 − ϕ̃
j
1 − ∇̄Ej(x̃j , x̃) +O(r2

ε,λ) = 0

3ϕj1 + 3ϕ̃j1 +
1
2
ψ̃j1 − ∇̄Ej(x̃j , x̃) +O(r2

ε,λ) = 0

12ϕj1 − ϕ̃
j
1 +O(r2

ε,λ) = 0

12ϕj1 + 3ϕ̃j1 +O(r2
ε,λ) = 0.

(5.8)
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Again, let us comment briefly on how these equations are obtained. This time, the
only important observation is that the term ∇xEj(x̃j , x̃) ·y projects identically over
E1 as well as its derivative with respect to r.

The system (5.8) simplifies to

ϕj1 = O(r2
ε,λ), ψj1 = O(r2

ε,λ), ψ̃j1 = O(r2
ε,λ), ∇̄Ej(x̃j , x̃) = O(r2

ε,λ).

Finally, we consider the L2-projection onto L2(S3)⊥. This yields the system

ϕj⊥ − ϕ̃
j
⊥ +O(r2

ε,λ) = 0

∂r
(
Hi
ϕj⊥,ψ

j
⊥
−He

ϕ̃j⊥,ψ̃
j
⊥

)
+O(r2

ε,λ) = 0

ψj⊥ − ψ̃
j
⊥ +O(r2

ε,λ) = 0

∂r∆
(
Hi
ϕj⊥,ψ

j
⊥
−He

ϕ̃j⊥,ψ̃
j
⊥

)
+O(r2

ε,λ) = 0.

(5.9)

Thanks the Lemma 2.11, this last system can be re-written as

ϕj⊥ = O(r2
ε,λ), ψj⊥ = O(r2

ε,λ).

If we define the parameters t = (tj) ∈ Rm by

tj =
1

log rε,λ

[
4 log τ j + Ej(x̃j , x̃)

]
, ∀1 6 j 6 m.

Then the system we have to solve reads(
t, η̃,ϕ0, ϕ̃0,ϕ1, ϕ̃1, ψ̃1, ∇̄E(x̃), ϕ⊥, ϕ̃⊥, ψ⊥, ψ̃⊥

)
= O(r2

ε,λ), (5.10)

where as usual, the terms O(r2
ε,λ) depend nonlinearly on all the variables on the

left side, but is bounded (in the appropriate norm) by a constant (independent of
ε and κ) time r2

ε,λ, provided ε ∈ (0, εκ).
We claim, provided that the degree of the mapping

∇̄E : x̃ 7→ (∇̄E1(x̃1; x̃), . . . , ∇̄Em(x̃m; x̃)), (5.11)

from a neighborhood of x ∈ Ωm to a neighborhood of 0 in Em1 is equal to 1, this
nonlinear system can be solve using Schauder’s fixed point theorem in the ball of
radius κr2

ε,λ in the product space where the entries live, namely

t,η ∈ Rm; rε,λ(x̃− x) ∈ (R4)m; ϕ0, ϕ̃0 ∈ Rm

ϕ1, ϕ̃1, ψ̃1 ∈ Em1 ; ϕ⊥, ϕ̃⊥,ψ⊥, ϕ̃⊥ ∈ (C2,α(S3)⊥)m.

Indeed, the nonlinear mapping which appears on the right hand side of (5.10) is
continuous, compact. In addition, this nonlinear mapping sends the ball of radius
κr2
ε,λ (for the natural product norm) into itself, provided κ is fixed large enough.
To obtain the precise statement of our Theorem, we simply observe that

2∇xEj(x̃j , x̃) = ∇x̃jE(x̃).

where E is the functional defined by (1.4), then a sufficient condition for the map-
ping (5.11) to have degree 1 is just that the point x = (x1, . . . , xm) is a nondegen-
erate critical point of the functional E. This completes the proof of our Theorem.
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Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire,

2092 Tunis, University Tunis El Manar, Tunisia
E-mail address: imen.bazarbacha@gmail.com

Maryem Trabelsi
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