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MULTIPLE POSITIVE SOLUTIONS FOR A
KIRCHHOFF TYPE PROBLEM

WENLI ZHANG

Abstract. In this article, we study the existence and multiplicity of positive
solutions of a Kirchhoff type equation on a smooth bounded domain Ω ⊂ R3,

and we show that the number of positive solutions of the equation depends on

the topological properties of the domain. The technique is based on Ljusternik-
Schnirelmann category and Morse theory.

1. Introduction

This article concerns the multiplicity of positive solutions to the elliptic problem

−
(
ε2a+ εb

∫
Ω

|∇u|2
)

∆u+ u = |u|p−1u, x ∈ Ω

u = 0, x ∈ ∂Ω
(1.1)

where Ω is a smooth bounded domain of R3, ε > 0, a, b > 0 are constants, 3 < p < 5.
In recent years, some mathematicians considered the problem

−
(
a+ b

∫
Ω

|∇u|2
)

∆u = f(x, u), x ∈ Ω

u = 0, x ∈ ∂Ω
(1.2)

where Ω ⊂ R3 is a smooth bounded domain. See for example[2, 9, 10, 14, 17, 18,
19, 20].

When a = 1, b = 0, R3 is replaced by RN , and |u|p−1u is replaced by f(u),
Equation (1.1) reduces to

−ε2 4 u+ u = f(u), x ∈ Ω
u = 0, x ∈ ∂Ω

(1.3)

where Ω is a bounded domain of RN . Benci and Cerami [4] used Morse theory to
estimate the number of positive solutions of the problem (1.3). They proved that
for ε sufficiently small the number of positive solutions depends on the topology of
Ω, actually on the Poincaré polynomial of Ω, Pt(Ω), defined below. Candela and
Lazzo [8] considered the same equation with mixed Dirichlet-Neumann boundary
conditions and f(t) = |t|p−2t. It was proved that the number of positive solutions is
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influenced by the topology of the part Γ1 of the boundary ∂Ω where ε is sufficiently
small. Recently, Benci, Bonanno, Ghimenti and Micheletti [3, 13] proved that the
number of solutions of (1.2) with f(t) = |t|p−2t on a smooth bounded domain Ω ⊂
R3 depends on the topological properties of the domain. More recently, Ghimenti
and Micheletti [12] extended the result in [3, 13] to the Klein-Gordon-Maxwell and
Schröedinger-Maxwell system and showed that the geometry of the 3-dimensional
Riemannian manifold has effects on the number of solutions of both systems.

Moreover, as far as we known, the existence and multiplicity of nontrivial solu-
tions to the Kirchhoff equation have not ever been studied by using Morse theory.
Motivated by the works described above and the fact, we will try to get the multi-
plicity of positive solutions to (1.1) by using Ljusternik-Schnirelmann category and
Morse theory. So in this paper we shall fill this gap.

Our main results read as follows.

Theorem 1.1. Let 3 < p < 5. For ε > 0 sufficiently small, the problem (1.1) has
at least cat(Ω) positive solutions.

Theorem 1.2. Let 3 < p < 5. Assume that for ε > 0 sufficiently small all the
solutions of the problem (1.1) are nondegenerate. Then there are at least 2P1(Ω)−1
positive solutions,

2. Notation and preliminary results

Throughout this article, we use the following norms for u ∈ H1
0 (Ω):

‖u‖ε =
( 1
ε3

∫
Ω

ε2|∇u|2dx
)1/2

, |u|ε,p =
( 1
ε3

∫
|u|pdx

)1/p

,

‖u‖ =
(∫

R3
|∇u|2dx

)1/2

, |u|p =
(∫

R3
|u|pdx

)1/p

and we denote by Hε the Hilbert space H1
0 (Ω) endowed with ‖ · ‖ε norm.

Following the work by He and Zou [15], we let U(x) be the positive ground state
solution of

−
(
a+ b

∫
R3
|∇u|2

)
∆u+ u = |u|p−1u, x ∈ R3

u ∈ H1(R3), u(x) > 0, x ∈ R3

(2.1)

and I∞(U) = m∞ = infu∈M∞ I∞(u), where

I∞(u) =
a

2
‖u‖2 +

1
2
|u|22 +

b

4
‖u‖4 − 1

p+ 1
|u+|p+1

p+1.

M∞ = {u ∈ H1(R3)\{0} : G∞(u) = 〈I ′∞(u), u〉 = 0}
For ε > 0 we set Uε(x) = U(x/ε). Obviously Uε(x) is the solution of the problem

−
(
ε2a+ εb

∫
Ω

|∇u|2
)

∆u+ u = |u|p−1u, x ∈ Ω

u ∈ H1
0 (Ω), u > 0, x ∈ Ω

Now we shall recall some topological tools.

Definition 2.1 ([16]). Let X a topological space and consider a closed subset
A ⊂ X. We say that A has category k relative to X(catX(A) = k) if A is covered by
k closed sets Ai, i = 1, 2, . . . , k, which are contractible in X, and k is the minimum
integer with this property. We simply denote cat(X) = catX(X).



EJDE-2015/291 MULTIPLE POSITIVE SOLUTIONS 3

Remark 2.2 ([5]). Let X1 and X2 be topological space. If g1 : X1 → X2 and
g2 : X2 → X1 are continuous operators such that g2 ◦ g1 is homotopic to the
identity on X1, then cat(X1) ≤ cat(X2).

Definition 2.3. Let X is a topological space and let Hk(X) denotes its k-th homol-
ogy group with coefficients in Q. The Poincaré polynomial Pt(X) of X is defined
as the following power series in t,

Pt(X) =
∑
k≥0

(dimHk(X))tk .

If X is a compact space, we have that dimHk(X) <∞ and this series is finite. In
the case Pt(X) is a polynomial and not a formal series.

Remark 2.4 ([4]). Let X and Y be topological spaces. If f : X → Y and g : Y →
X are continuous operators such that g ◦ f is homotopic to the identity on X, then
Pt(Y ) = Pt(X) + Z(t) where Z(t) is a polynomial with nonnegative coefficients.

3. Proof of main results

To prove our main results, we consider the functional Iε ∈ C2(Hε, R), defined
by

Iε(u) =
a

2
‖u‖2ε +

1
2
|u|2ε,2 +

b

4
‖u‖4ε −

1
p+ 1

|u+|p+1
ε,p+1

Obviously, there exists a one to one correspondence between the nontrivial solutions
of problem (1.1) and the nonzero critical points of Iε on Hε.

As the functional Iε is not bounded below on Hε, we introduce the manifold

Mε = {u ∈ Hε\{0} : Gε(u) = 〈I ′ε(u), u〉 = 0}
Next, we present some properties of Iε and Mε.

Lemma 3.1. (1) For any u ∈ Hε\{0}, there is a unique tε > 0 such that utε(x) =
tεu(x) ∈Mε.

(2) For any ε > 0, Mε is a C1 submanifold of Hε, and there exists σε > 0 and
Kε > 0 such that for any u ∈Mε

‖u‖ε ≥ σε, Iε(u) ≥ Kε.

(3) It holds (PS) condition for the functional Iε on Mε.

Proof. (1) For any u ∈ Hε\{0} and t > 0, set ut(x) = tu(x). Consider

Υε(t) = Iε(ut) =
a

2
t2‖u‖2ε +

1
2
t2|u|2ε,2 +

b

4
t4‖u‖4ε −

1
p+ 1

tp+1|u+|p+1
ε,p+1.

By computing, we known that Υε has a unique critical point tε > 0 corresponding
to its maximum. Then Υε(tε) = maxt>0 Υε(t) and Υ′ε(tε) = 0. So Gε(utε) = 0 and
utε ∈Mε.

(2) By lemma 3.1 (1), Mε 6= ∅. If u ∈Mε, using that Gε(u) = 0 and 3 < p < 5,
we have

〈G′ε(u), u〉 = a(2− (p+ 1))‖u‖2ε + (2− (p+ 1))|u|2ε,2 + b(4− (p+ 1))‖u‖4ε < 0.

So Mε is a C1 manifold. Using that Gε(u) = 0 and the Sobolev embedding, we
have

a‖u‖2ε + |u|2ε,2 + b‖u‖4ε = |u+|p+1
ε,p+1 ≤ C‖u‖p+1

ε ,
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a ≤ C‖u‖p−1
ε .

So the conclusion ‖u‖ε ≥ σε follows. For any u ∈Mε,

Iε(u) = a(
1
2
− 1
p+ 1

)‖u‖2ε + (
1
2
− 1
p+ 1

)|u|2ε,2 + b(
1
4
− 1
p+ 1

)‖u‖4ε.

Using 3 < p < 5 and ‖u‖ε ≥ σε, the conclusion Iε(u) ≥ Kε follows.
(3) Let {un} is (PS) sequence for Iε on Mε, that is

Iε(un)→ c, I ′ε|Mε
(un)→ 0.

Then it is easy to prove that ‖un‖ε is bounded. Going if necessary to a subsequence,
we can assume that ‖un‖2ε → A(> 0), un ⇀ u in Hε, un → u in Ls(Ω) (1 ≤ s < 6).
Obviously, we have

ρε(u) = a‖u‖2ε + |u|2ε,2 + bA‖u‖2ε − |u+|p+1
ε,p+1 = 0.

Set ωn = un − u. By Brézis-Lieb Lemma, we have ‖ωn‖2ε = ‖un‖2ε − ‖u‖2ε + on(1).
Since 〈I ′ε(un), un〉 = on(1), we obtain

(a+ bA)‖ωn‖2ε + ρε(u) = on(1).

This concludes the proof. �

By Lemma 3.1 (2), we obtain Iε|Mε
is bounded from below. By using Lagrange

multiplier method, we known that Mε contains every nonzero solution of problem
(1.1), and define the minimax mε as

mε = inf
u∈Mε

Iε(u)

Proof of Theorem 1.1. Since the functional Iε ∈ C2 is bounded below and sat-
isfies the (PS) condition on the complete manifold Mε, we have, by the classical
Ljusternik-Schnirelmann category result [7], that Iε has at least catIdε critical points
in the sublevel

Idε = {u ∈ Hε : Iε(u) ≤ d}

In the following, we will prove that, for ε and δ sufficiently small, it holds

cat(Ω) ≤ cat(Mε ∩ Im∞+δ
ε )

To prove this, we build two continuous functions

Φε : Ω− →Mε ∩ Im∞+δ
ε , (3.1)

β : Mε ∩ Im∞+δ
ε → Ω+, (3.2)

where

Ω− = {x ∈ Ω : d(x, ∂Ω) < r}, Ω+ = {x ∈ R3 : d(x, ∂Ω) < r}

with r > 0 small enough so that cat(Ω−) = cat(Ω+) = cat(Ω). Following the idea
in [6], we can find two functions Φε and β such that β ◦Φε : Ω− → Ω+ is homotopic
to the immersion i : Ω− → Ω+. By Remark 2.2 we obtain the inequality which
completes the proof. �
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Proof of Theorem 1.2. By Remark 2.4, (3.1) and (3.2), we have

Pt(Mε ∩ Im∞+δ
ε ) = Pt(Ω) + Z(t)

where Z(t) is a polynomial with nonnegative coefficients. Since infεmε = c > 0,
we have

Pt(Im∞+δ
ε , I

c
2
ε ) = tPt(Mε ∩ Im∞+δ

ε ), (3.3)

Pt(Hε, I
m∞+δ
ε ) = t(Pt(Im∞+δ

ε , I
c
2
ε )− t) . (3.4)

By Morse theory we have∑
u∈Kε

tµ(u) = Pt(Hε, I
m∞+δ
ε ) + Pt(Im∞+δ

ε , I
c
2
ε ) + (1 + t)Qε(t) (3.5)

where Kε be the set of critical points of Iε, µ(u) is the Morse index of u, Qε(t) is a
polynomial with nonnegative coefficients. Using this relation with (3.3)–(3.5), we
obtain ∑

u∈Kε

tµ(u) = tPt(Ω) + t2(Pt(Ω)− 1) + t(1 + t)Qε(t) (3.6)

Theorem 1.2 easily follows by evaluating the power series (3.6) for t = 1. �

4. The function Φε

For ξ ∈ Ω− we define the function

ωξ,ε(x) = Uε(x− ξ)χr(|x− ξ|) (4.1)

where χr is a smooth cut off function χr ≡ 1 for t ∈ [0, r2 ), χr ≡ 0 for t > r and
|χ′r(t)| ≤ 2/r.

We define Φε : Ω− →Mε by

Φε(ξ) = tε(ωξ,ε)ωξ,ε(x)

Remark 4.1. We have that the following limits hold uniformly with respect to
ξ ∈ Ω−,

‖ωξ,ε‖ε → ‖U‖, |ωξ,ε|ε,p → |U |p .

Proposition 4.2. For any ε > 0 the map Φε is continuous. Moreover for any
δ > 0 there exists ε0 > 0 such that if ε < ε0 then Iε(Φε(ξ)) < m∞ + δ.

Proof. Obviously, Φε is continuous. We claim that tε(ωξ,ε) → 1 uniformly with
respect to ξ ∈ Ω−. In fact, by Lemma 3.1 tε(ωξ,ε) is the unique solution of

at‖ωξ,ε‖2ε + t|ωξ,ε|2ε,2 + bt3‖ωξ,ε‖4ε = tp|ω+
ξ,ε|

p+1
ε,p+1

By Remark 4.1 we have the claim.
Now, by Remark 4.1 and the above claim we have

Iε(Φε(ξ))

= (
1
2
− 1
p+ 1

)at2ε‖ωξ,ε‖2ε + (
1
2
− 1
p+ 1

)t2ε|ωξ,ε|2ε,2 + (
1
4
− 1
p+ 1

)bt4ε‖ωξ,ε‖4ε

→ (
1
2
− 1
p+ 1)

)a‖U‖2 + (
1
2
− 1
p+ 1

)|U |2 + (
1
4
− 1
p+ 1

)b‖U‖4 = m∞

this completes the proof. �

Remark 4.3. Note that lim supε→0mε ≤ m∞.
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5. The map β

For u ∈Mε we can define a point β(u) ∈ R3 by

β(u) =

∫
Ω
x|u+|p+1dx∫

Ω
|u+|p+1dx

The function β is well defined in Mε since if u ∈Mε then u+ 6= 0.
We shall prove that if u ∈Mε ∩ Im∞+δ

ε then β(u) ∈ Ω+. First of all we consider
partitions of the compact manifold Ω. Given ε > 0, a finite partition Pε = {P εj }j∈Λε

is called a “good” partition if: for any j ∈ Λε the set P εj is closed; P εi ∩ P εj ⊆
∂P εi ∩ ∂P εj for i 6= j; there exist r1(ε), r2(ε) > 0 such that, for any j, there exists a
point qεj ∈ P εj such that

B(qεj , ε) ⊂ P εj ⊂ B(qεj , r2(ε)) ⊂ B(qεj , r1(ε)),

with r1(ε) ≥ r2(ε) ≥ Cε for some positive constant C; lastly, there exists a finite
number ι ∈ N such that every x ∈ Ω is contained in at most ι balls B(qεj , r1(ε)),
where ι does not depends on ε.

Lemma 5.1. There exists γ > 0 such that, for any δ > 0 and any ε ∈ (0, ε0(δ))
where ε0(δ) is as in Proposition 4.2, given any “good” partition Pε of the domain
Ω and for any u ∈Mε ∩ Im∞+δ

ε there exists a set P εj such that

1
ε3

∫
P ε

j

|u+|p+1dx ≥ γ

Proof. Taking into account that Gε(u) = 0 we have

a‖u‖2ε ≤ |u+|p+1
ε,p+1 =

∑
j

1
ε3

∫
P ε

j

|u+|p+1dx

≤
∑
j

|u+
j |
p+1
ε,p+1 =

∑
j

|u+
j |
p−1
ε,p+1|u

+
j |

2
ε,p+1

≤ max
j
{|u+

j |
p−1
ε,p+1}

∑
j

|u+
j |

2
ε,p+1

where u+
j is the restriction of the function u+ on the set P εj .

Arguing as in [3], we prove that there exists a constant C > 0 such that∑
j

|u+
j |

2
ε,p+1 ≤ Cι‖u+‖2ε,

thus
max
j
{|u+

j |
p−1
ε,p+1} ≥

a

Cι

that concludes the proof. �

Proposition 5.2. For any η ∈ (0, 1) there exists δ0 > 0 such that for any δ ∈ (0, δ0)
and any ε ∈ (0, ε0(δ)) as in Proposition 4.2, for any u ∈ Mε ∩ Im∞+δ

ε there exists
a point q = q(u) ∈ Ω such that

1
ε3

∫
B(q, r

2 )

|u+|p+1dx > (1− η)
2(p+ 1)
p− 1

(
4m∞ +

2a2 − 2a
√
a2 + 3bm∞
b

)
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Proof. We prove only the proposition for any u ∈ Mε ∩ Imε+2δ
ε . Indeed, by this

result and by Remark 4.3 we get

lim
ε→0

mε = m∞

Hence it holds Im∞+δ
ε ⊂ Imε+2δ

ε for δ, ε small enough. So the thesis holds.
We argue by contradiction. Suppose that there exists η ∈ (0, 1) such that we can

find vanishing sequences {δk}, {εk} and a sequence {uk} ⊂ Mεk
∩ Imεk

+2δk

ε such
that

mεk
≤ Iεk

(uk)

= (
1
2
− 1
p+ 1

)a‖uk‖2εk
+ (

1
2
− 1
p+ 1

)|uk|2εk,2
+ (

1
4
− 1
p+ 1

)b‖uk‖4εk

≤ mεk
+ 2δk ≤ m∞ + 3δk.

(5.1)

for k large enough, and for any q ∈ Ω,

1
ε3
k

∫
B(q, r

2 )

|u+
k |
p+1dx ≤ (1− η)

2(p+ 1)
p− 1

(4m∞ +
2a2 − 2a

√
a2 + 3bm∞
b

). (5.2)

By Ekeland variational principle and by definition of Mεk
we can assume that

I ′εk
(uk)→ 0. (5.3)

By Lemma 5.1, there exists a set P εk

k ∈ Pεk
such that

1
ε3

∫
P

εk
k

|u+
k |
p+1dx ≥ γ. (5.4)

So we can choose a point qk ∈
◦
P εk

k , and define, for z ∈ Ωεk
= 1

εk
(Ω− qk),

ωk(z) = uk(εkz + qk) = uk(x),

where x ∈ Ω. We obtain that ωk ∈ H1
0 (Ωεk

). By (5.1), we have

‖ωk‖2H1
0 (Ωεk

) ≤ C.

So we obtain ωk ⇀ ω in H1
loc(R3), ωk → ω in Lsloc(R3)(2 ≤ s < 6) and ‖ωk‖2 → A1.

Thus we prove that ω 6≡ 0 and A1 > 0 by (5.4).
Next we claim

lim
k→∞

dist(qk, ∂Ω)
εk

=∞. (5.5)

We argue by contradiction. Suppose that

lim
k→∞

dist(qk, ∂Ω)
εk

= d <∞.

It is easy to verify that ω is a solution of

−(a+ bA1)∆u+ u = |u|p−1u, x ∈ R3
+

u(x) = 0, x ∈ ∂R3
+

(5.6)

where R3
+ is a half space. We know that (5.6) has no nontrivial solution from the

work by [1, 11]. So ω ≡ 0, this contradicts with ω 6≡ 0. This concludes the claim.
By (5.5), Ωεk

converges to the whole space R3 as k →∞. Using (5.1) (5.3) and
computing, we have

I∞(ωk)→ m∞, I ′∞(ωk)→ 0. (5.7)
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This implies {ωk} ⊂M∞ is a minimizing sequences for m∞. Arguing as in [15], we
have ωk → ω, ω ∈M∞, I∞(ω) = m∞ and I ′∞(ω) = 0.

By using (5.7) and Pohozaev identity, we have

a

2
‖ωk‖2 +

1
2
|ωk|22 +

b

4
‖ωk‖4 −

1
p+ 1

|ωk|p+1
p+1 = m∞ + ok(1),

a‖ωk‖2 + |ωk|22 + b‖ωk‖4 − |ωk|p+1
p+1 = ok(1)

a

2
‖ωk‖2 +

3
2
|ωk|22 +

b

2
‖ωk‖4 −

3
p+ 1

|ωk|p+1
p+1 = ok(1)

Thus, we obtain that

|ωk|p+1
p+1 →

2(p+ 1)
p− 1

(
4m∞ +

2a2 − 2a
√
a2 + 3bm∞
b

)
So by ωk → ω, for T and k large enough, we have∫

B(0,T )

|ω+
k |
p+1dz > (1− η)

2(p+ 1)
p− 1

(
4m∞ +

2a2 − 2a
√
a2 + 3bm∞
b

)
On the other hand by (5.2) and the definition of ωk, for any T > 0 we have, for

k large enough,∫
B(0,T )

|ω+
k |
p+1dz ≤ 1

ε3
k

∫
B(qk,εkT )

|uk|p+1dx

≤ 1
ε3
k

∫
B(qk,

r
2 )

|uk|p+1dx

≤ (1− η)
2(p+ 1)
p− 1

(4m∞ +
2a2 − 2a

√
a2 + 3bm∞
b

).

This leads to a contradiction. �

Proposition 5.3. There exists δ0 > 0 such that for any δ ∈ (0, δ0) and any
ε ∈ (0, ε(δ0)) as in Proposition 5.2, for any u ∈ Mε ∩ Im∞+δ

ε it holds β(u) ∈ Ω+.
Moreover the composition

β ◦ Φε : Ω− → Ω+

is homotopic to the immersion i : Ω− → Ω+.

Proof. Arguing by contradiction, we suppose that there exist sequences {δk}, {εk} ⊂
R and {uk} ⊂ Mεk

∩ Im∞+δk
ε such that δk, εk → 0+, as k → ∞, and β(uk) 6∈ Ω+

for all k.
By Ekeland variational principle and by definition of Mεk

we can assume that
I ′εk

(uk)→ 0. So by Proposition 5.2 we can find qk ∈ Ω such that
1
ε3k

∫
B(qk,

r
2 )
|uk|p+1dx

1
ε3k

∫
Ω
|uk|p+1dx

>
(1− η) 2(p+1)

p−1

(
4m∞ + 2a2−2a

√
a2+3bm∞
b

)
2(p+1)
p−1

(
4(m∞ + δk) + 2a2−2a

√
a2+3b(m∞+δk)

b

)
Finally,

|β(uk)− qk|

≤
| 1
ε3k

∫
Ω

(x− qk)|uk|p+1dx|
1
ε3k

∫
Ω
|uk|p+1dx
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≤
| 1
ε3k

∫
B(qk,

r
2 )

(x− qk)|uk|p+1dx|
1
ε3k

∫
Ω
|uk|p+1dx

+
| 1
ε3k

∫
Ω\B(qk,

r
2 )

(x− qk)|uk|p+1dx|
1
ε3k

∫
Ω
|uk|p+1dx

≤ r

2
+ 2 diam(Ω)

(
1−

(1− η) 2(p+1)
p−1 (4m∞ + 2a2−2a

√
a2+3bm∞
b )

2(p+1)
p−1 (4(m∞ + δk) + 2a2−2a

√
a2+3b(m∞+δk)

b )

)
The above expression implies that β(uk) ∈ Ω+, which contradicts β(uk) 6∈ Ω+. �
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