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PERIODIC ORBITS FOR SEASONAL SIRS MODELS WITH
NON-LINEAR INCIDENCE RATES

LAURA ROCIO GONZÁLEZ-RAMÍREZ, OSVALDO OSUNA,
RUBEN SANTAELLA-FORERO

Abstract. In this work, we prove the existence of periodic solutions for a

seasonally-dependent SIRS model using Leray-Schauder degree theory. We ob-
tain criteria for the uniqueness and asymptotic stability of the periodic solution

of the system. We also present suitable examples of a seasonal epidemiological

disease.

1. Introduction

We consider a Susceptible-Infectious-Recovered-Susceptible (SIRS) compartmen-
tal epidemiological model with a periodically forced transmission rate. For simplic-
ity, we assume that the population size is constant, N = 1, and that the pop-
ulation is divided into three disjoint classes which change with time. Let S(t),
R(t) and I(t) be the fractions of the populations that are susceptible, recovered
and infectious, respectively. Then the differential equations of a SIRS model with
seasonally-dependent incidence rates are

S′ = ηR+ µ(1− S)− f(t, S, I),

I ′ = f(t, S, I)− (γ + µ)I,

R′ = γI − (µ+ η)R.

(1.1)

The parameters of this model are positive constants. The natural death rate
and birth rate are assumed to be equal, denoted by µ. It is assumed that the
infected population recovers at a rate of γ and joins the recovered class. Also,
the recovered class can lose immunity and rejoin the susceptible class (at a rate of
η). The interaction between susceptible and infected population will produce new
infected individuals. These contagious processes are characterized by the incidence
function f(t, S, I). In particular, the use of a periodic incidence function accounts
for the variability of diseases according to climate seasons, school calendars, etc.

In the study of epidemiological models the analysis of periodic solutions is seen as
an important goal as this periodicity reveals the recurrence of an epidemic in a pop-
ulation. Hence, determining existence of such solutions under different parameter
configurations and incidence functions is crucial.
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Different types of incidence functions have been used to analyze SIR and SIRS
models in the literature. Katriel [3] proved the existence of periodic orbits of an
epidemiological SIR model with periodic linear incidence rates, i.e., f(t, S, I) =
β(t)SI, by using Leray-Schauder degree theory. Jódar and coworkers [2] studied
the existence of periodic solutions in a class of epidemic SIRS models with the same
incidence rate, β(t)SI, by using Mawhin’s continuation theorem. In this work we
consider models with nonlinear incidence rates of type

f(t, S, I) = β(t)I(1 + αIn)Sk, n, k ∈ N, α ≥ 0. (1.2)

where β(t) is a continuous T -periodic function, such that:

−∞ < βl := min
t∈R

β(t) ≤ β(t) ≤ βu := max
t∈R

β(t) <∞.

Note that if α = 0 and k = 1 we recover the linear incidence function.
Several incidence rates of type (1.2) (with β constant) have been proposed by

authors, for example: Liu and coworkers studied the SEIRS and SIRS models with
the incidence rate βSrIk in [4, 5]. Van den Driessche and Watmough [6] studied
an incidence rate of the form βI(1 + αIn)S. For low I, bilinear term dominates,
but if α > 1, then for large I the higher order term dominates.

In this article, we consider a class of infectious disease models of SIRS type with
periodic nonlinear incidence rate and give conditions which ensure the existence of
periodic solutions. We show the global asymptotical stability of such solutions by
constructing a Lyapunov function. We also present two examples related to the
transmission of respiratory syncytial virus.

2. Results

The infectious disease models which we consider involve nonlinear incidence rates
of type (1.2), given by

S′ = ηR+ µ(1− S)− β(t)I(1 + αIn)Sk,

I ′ = β(t)I(1 + αIn)Sk − (γ + µ)I,

R′ = γI − (µ+ η)R.

(2.1)

Given that S′ + I ′ + R′ = 0, we obtain that S + R + I = 1 for all time t for
initial conditions that satisfy S(0) + I(0) + R(0) = 1. Also, it is easy to see that
if the per capita contact rate β is constant, the system (2.1) has an infection-free
equilibrium state (S0, I0) = (1, 0).

The basic reproductive numberR0 of model (1.1), i.e. the average number of sec-
ondary cases produced by a single infective introduced into an entirely susceptible
population is given (see [7]) by

R0 :=
1

γ + µ

∂f

∂I
(S0, I0).

When β is constant, a direct calculation for the system (2.1) yields R0 = β
γ+µ .

Motivated by this, we define R0 for system (2.1) as follows

R0 :=
β

γ + µ
,

where β := 1
T

∫ T
0
β(t)dt.
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To analyze the existence of periodic solutions, we reduce model (2.1) to a two-
dimensional system as follows. We replace R = 1 − S − I in the first equation of
system (2.1), so we can eliminate R from this equation. This observation gives the
simpler system

S′ = η(1− S − I) + µ(1− S)− β(t)I(1 + αIn)Sk,

I ′ = β(t)I(1 + αIn)Sk − (γ + µ)I.
(2.2)

Note that the existence of periodic orbits for (2.2) implies the existence of pe-
riodic solutions for system (2.1). The proof of the existence of periodic orbits
for systems of type (2.2) will be done in two steps. First, we consider the case
α = 0, and prove the existence of solutions on this system. Then, we construct an
homotopy to a convenient system and carry on one of the solutions through the
homotopy. In our methods, we are following the approach used in [3], but we also
develop proper adjustments for the non-linear incidence case.

Considering the case α = 0, we obtain the system

S′ = −ηI + (µ+ η)(1− S)− β(t)ISk,

I ′ = β(t)ISk − (γ + µ)I.
(2.3)

We write

β(t) = β + β0(t), where
∫ T

0

β0(t)dt = 0.

For λ ∈ [0, 1] we define the homotopy

S′ = −ηI + (µ+ η)(1− S)− βλISk,

I ′ = βλIS
k − (γ + µ)I,

(2.4)

where βλ := β + λβ0(t). We note that when λ = 0, we recover system (2.3). We
now state our first result.

Theorem 2.1. If R0 > 1, then there is at least one T -periodic orbit of (2.3) whose
components are positive.

To prove this Theorem, we use the Leray-Schauder degree theory [1]. To do
so, we need to reformulate the homotopy defined by system (2.4) as a functional
problem defined on an adequate Banach space where periodic solutions correspond
to the zeroes of convenient operators. Then, we need to find an open bounded
subset on the Banach space such that the family of operators does not support
zeroes on the boundary of such open set. After that, we can proceed to determine
the Leray-Schauder degree and, if applicable, establish the existence of solutions.

We start the proof by introducing the Banach spaces

Cl :=
{

(S, I) : S, I ∈ Cl(R,R), S(t+ T ) = S(t), I(t+ T ) = I(t)
}
, l = 0, 1.

Motivated by (2.4) we define the operators L : C1 → C0 and Nλ : C0 → C0 by

L(S, I) := (S′+(µ+η)S, I ′+(γ+µ)I), Nλ(S, I) := (−ηI+(µ+η)−βλISk, βλISk).

This way, system (2.4) becomes L(S, I) = Nλ(S, I) and since L is invertible the
above equation can be rewritten as

Fλ(S, I) := (S, I)− L−1 ◦Nλ(S, I) = 0. (2.5)

Since C1 is compactly embedded in C0, we can think of L−1 to go from C0 to
C0. Therefore L−1 ◦ Nλ : C0 → C0 is a compact operator. In a similar fashion,
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we consider Fλ : C0 → C0. Thus, equation (2.5) is a functional reformulation of
problem (2.4).

We consider the open sets D := {(S, I) ∈ C0 : S > 0, I > 0, S + I < 1} and
U := {(S, I) ∈ D : min[0,T ] S

k(t) < δ}.
When λ = 0, system (2.4) has exactly two periodic orbits in C1 being these:

S0 = 1, I0 = 0, and

S1 =
(γ + µ

β

)1/k

, I1 =
µ+ η

γ + µ+ η

(
1−

(µ+ γ

β

)1/k)
.

which in fact are critical points.

Lemma 2.2. The critical point (S0, I0) is the only solution of (2.4) on ∂D.

For a proof of the above lemma see [3, Lemma 1].

Lemma 2.3. If R0 > 1 and 1/R0 < δ < 1, then for any λ ∈ [0, 1] there are no
solutions (S, I) of (2.4) on ∂U .

Proof. Assume that (S, I) ∈ ∂U ; by Lemma 2.2, (S, I) /∈ ∂D, so (S, I) ∈ D and
Sk(t) ≥ δ for all t. Integrating the second equation in (2.4) and using the previous
inequality we obtain

γ + µ =
1
T

∫ T

0

βλ(t)Sk(t)dt ≥ δβ. (2.6)

Now from our hypothesis

1
T

∫ T

0

βλ(t)Sk(t)dt ≥ δβ > γ + µ (2.7)

which is a contradiction. �

Now, to establish the existence of periodic solutions of (2.4) we need to determine
deg(F0, U). For this we have the following lemma.

Lemma 2.4. For the above open set U we have that deg(F0, U) 6= 0.

Proof. Since (S1, I1) is the unique solution of F0(S, I) = 0 in U , we need to
prove that DF0(S1, I1) is invertible. We have that F0 is a compact perturba-
tion of the identity, by the Fredholm alternative it is enough to prove that the
ker(DF0(S1, I1)) = {0}.

Consider (V,W ) ∈ C0 so that (V,W ) ∈ ker(DF0(S1, I1)), by the definition of F0,
we obtain that L(V,W ) = DN0(S1, I1)(V,W ) and thus N0(S1, I1) = (−ηI + (µ +
η)− β̄Sk1 I1, β̄Sk1 I1). Then, we obtain

DN0(S1, I1)(V,W ) =
(
− ηW − β̄(kSk−1

1 I1V + Sk1W ), β̄(kSk−1
1 I1V + Sk1W )

)
.

Using the definition of L(V,W ) and from the above equation we obtain

(V ′+(µ+η)V,W ′+(γ+µ)W ) =
(
−ηW−β̄(kSk−1

1 I1V+Sk1W ), β̄(kSk−1
1 I1V+Sk1W )

)
If we substitute S1, I1 into the previous equation, and isolate V ′ and W ′, we obtain

(V ′,W ′) =
(
− ηW − β̄(kSk−1

1 I1V + Sk1W )− (µ+ η)V, β̄(kSk−1
1 I1V

+ Sk1W )− (γ + µ)W
)

=
(
− (µ+ η)

( γ + µ

γ + µ+ η
k( k
√
R0 − 1) + 1

)
V
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− (γ + µ+ η)W,
(γ + µ)(µ+ η)
γ + µ+ η

k( k
√
R0 − 1)V

)
.

Setting

φ =
γ + µ

γ + µ+ η
k( k
√
R0 − 1),

we obtain (
V
W

)′
=
(
−(µ+ η)(φ+ 1) −(γ + µ+ η)

(µ+ η)φ 0

)(
V
W

)
. (2.8)

The characteristic polynomial of the above matrix is

p(λ) = λ2 + (µ+ η)(φ+ 1)λ+ (µ+ η)(γ + µ+ η)φ,

which is a Hurwitz polynomial. Therefore the linear system (2.8) has no periodic
orbits different to the trivial solution. �

Since the Leray-Schauder degree is invariant under homotopy and given the
result obtained in Lemma 2.3, we obtain that Theorem 2.1 follows from Lemma
2.4. We now establish the existence of periodic solutions of system (2.4).

Theorem 2.5. If R0 > 1, then there is at least one T -periodic orbit of (2.4) whose
components are positive.

For τ ∈ [0, 1] we consider the family

S′ = −ηI + (µ+ η)(1− S)− β(t)I(1 + ταIn)Sk,

I ′ = β(t)I(1 + ταIn)Sk − (γ + µ)I.
(2.9)

We introduce the operator Kτ : C0 → C0 by

Kτ (S, I) = (µ− β(t)I(1 + ταIn)Sk, β(t)I(1 + ταIn)Sk).

System (2.9) becomes L(S, I) = Kτ (S, I); which can be rewritten as

Gτ (S, I) := (S, I)− L−1 ◦Kτ (S, I) = 0. (2.10)

Note that deg(G0, U) = deg(F1, U) 6= 0, so to use the Leray-Schauder degree it
remains to prove that there are no solutions of (2.10) on the boundary of U . For
this we present the following lemma.

Lemma 2.6. If 1/R0 < δ < 1, then for any τ ∈ [0, 1] there are no solutions (S, I)
of (2.9) on ∂U .

Proof. Assume that (S, I) ∈ ∂U ; again the critical point (S0, I0) is the only solution
of (2.9) on ∂D, therefore (S, I) /∈ ∂D, so (S, I) ∈ D and Sk(t) ≥ δ for all t.
Integrating the second equation in (2.9), and by the above inequality when δ ∈
(1/R0, 1) we obtain

γ + µ =
1
T

∫ T

0

β(t)(1 + ταIn)Sk(t)dt ≥ δβ > γ + µ. (2.11)

which is a contradiction. Therefore there are no solutions (S, I) of (2.9) on ∂U . �

Using the invariance of the Leray-Schauder degree under homotopy, Lemma 2.6
and since deg(G1, U) 6= 0, we obtain that system (2.4) admits a periodic solution,
which proves Theorem 2.5.

We now establish the uniqueness and global stability of the periodic solutions.
To do so, we construct a Lyapunov function. We also present examples of SIRS
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models with non-linear incidence rate modeling the transmission of Respiratory
Syncytial Virus (RSV) for the countries of Gambia and Singapore and exhibit the
existence and stability of periodic solutions. Before we start the stability analysis
we establish the following definition.

Definition 2.7. A bounded positive solution (S∗(t), T ∗(t))T of (2.2) is globally
asymptotically stable if, for any other solution (S(t), T (t))T of (2.2) with positive
initial conditions we have

lim
t→∞

(|S(t)− S∗(t)|+ |I(t)− I∗(t)|) = 0 (2.12)

If property (2.12) holds for any two solutions with positive initial conditions, it
is said that (2.2) is globally asymptotically stable. It can be proven that if (2.2)
has a bounded positive solution that is globally asymptotically stable, then (2.2) is
globally asymptotically stable with the converse also holding true.

Lemma 2.8. If βu > 0, k ≥ 1, η > 0 and µ > 0 there exist positive constants
t∗, mS, and MI such that mS < S(t) and I(t) < MI for all t > t∗. Moreover, if
mk
S > µ, then there exist constants mI and MS such that MS > S(t) and I(t) > mI ,

for a sufficiently large t.

We can bound the first equation of system (2.2) as:

S′ > η(1− S)− nI + µ(1− S)− β(t)I(1 + α)S2

> (η + µ)(1− S)S − β(t)I(1 + α)S2

> S(µ+ η − (µ+ η + βu(1 + α))S)

> S(µ+ η − (µ+ η + βu(1 + α))S)

hence
S(t) >

µ+ η

2(µ+ η + βu(1 + α))
:= mS ,

for t > t1, for some t1.
We can also bound the equation of the infected individuals as:

I(t) < 1− S(t) < 1−mS := MI ,

for a sufficiently large t.
We obtain an upper bound of the second equation of (2.2) in the following way:

I ′ > βlI1(1 + αIn)Sk − µI

> βlI(1− I)mk
S − µI

> I((mk
S − µ)−mk

SI)

Assuming mk
S > µ we obtain

I(t) >
βlmk

S − µ
2βlmk

S

:= mI ,

for a sufficiently large t > t3.
We also obtain an upper bound for the susceptible population:

S(t) < 1− I = 1−mI = 1−
(βlmk

S − µ
βl2mk

S

)
:= MS ,

for a sufficiently large t. Finally, we set t∗ = max{t1, t2, t3}.
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Theorem 2.9. With the hypothesis of Theorem 2.5 and Lemma 2.8, if η + µ >
2βu(MI(1+2αnMS)) and γ+µ+η > 2βu(MS(1+2αnMI), then (2.2) has a unique
globally asymptotically stable positive T0-periodic solution, for a given positive initial
condition.

Proof. Let (S∗(t), I∗(t))T be a positive T0-periodic solution of system (2.2). Let
(S(t), I(t))T be a positive solution of system (2.2) with positive initial conditions.
Define the Lyapunov function

V (t) =
(
|S(t)− S∗(t)|+ |I(t)− I∗(t)|

)
.

We compute the upper right derivative of V (t) along the solutions of (2.2) and
we obtain

D+V (t) = sgn (S(t)− S∗(t))
(
S′(t)− S∗′(t)

)
+ sgn (I(t)− I∗(t))

(
I ′(t)− I∗′(t)

)
= sgn(S(t)− S∗(t))

[
− (η + µ)(S(t)− S∗(t))− γ(I(t)− I∗(t))

+ β(t)(I(t)Sk(t)(1 + αIn(t))− I∗(t)S∗k(t)(1 + αI∗n(t)))
]

+ sgn(I(t)− I∗(t))
[
− (γ + µ)(I(t)− I∗(t))

+ β(t)(I(t)Sk(t)(1 + αIn(t))− I∗(t)S∗k(t)(1 + αI∗n(t))
]

≤ −(η + µ)|S(t)− S∗(t)| − (γ + µ)|I(t)− I∗(t)|
− η sgn(S(t)− S∗(t))(I(t)− I∗(t))

− sgn(S(t)− S∗(t))
[
β(t)(I(t)Sk(t)(1 + αIn(t))

− I∗(t)S∗k(t)(1 + αI∗n(t)))
]

+ sgn(I(t)− I∗(t))

×
[
β(t)(I(t)Sk(t)(1 + αIn(t))− I∗(t)S∗k(t)(1 + αI∗n(t)))

]
We can bound the following terms:

sgn(S(t)− S∗(t))β(t)
[(
− I(t)Sk(t)(1 + αIn(t))

+ I∗(t)Sk
∗
(t)(1 + αI∗n+1(t)S∗k(t))

)]
= sgn(S(t)− S∗(t))β(t)

[
I∗(t)S∗(t)− I(t)S(t) + α(I∗n+1(t)(S∗k(t)− Sk(t))

+ Sk(t)(I∗n+1(t)− In+1(t))
]

= sgn(S(t)− S∗(t))β(t)
[
S∗k(t)(I∗(t)− I(t))

+ I(t)(S∗(t)− S(t))(Sk−1(t) + · · ·+ Sk−1(t))

+ α(I∗n+1(t)(S∗(t)− S(t))(S∗k−1(t) + · · ·+ Sk−1(t))

+ Sk(t)(I∗(t)− I(t))(I∗n(t) + · · ·+ In(t))
]

≤ βu
[
|I(t)− I∗(t)|MS(1 + 2αnMI) + |S(t)− S∗(t)|MI(1 + 2αnMS)

]
Similarly, we obtain:

sgn(I(t)− I∗(t))β(t)
[(
I(t)Sk(t)(1 + αIn(t))

− I∗(t)Sk
∗
(t)(1 + αI∗n+1(t)S∗k(t))

)]
≤ βu

[
|I(t)− I∗(t)|MS(1 + 2αnMI) + |S(t)− S∗(t)|MI(1 + 2αnMS)

]
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Therefore,

D+V (t) ≤ −(η + µ− 2βu(MI(1 + 2αnMS)))|S(t)− S∗(t)|
− (γ + µ+ η − 2βu(MS(1 + 2αnMI)))|I(t)− I∗(t)|
≤ −φ

[
|S(t)− S∗(t)|+ |I(t)− I∗(t)|

]
Hence, D+V (t) ≤ −φ

[
|S(t)− S∗(t)|+ |I(t)− I∗(t)|

]
, where

0 < φ = min{η + µ− 2βu(MI(1 + 2αnMS)), γ + µ+ η − 2βu(MS(1 + 2αnMI)}.

Integrating the previous equation on the interval [0, t] for t ≥ 0 we obtain:

V (t)− V (0) = −φ
∫ t

0

|S(t)− S∗(t)|+ |I(t)− I∗(t)|dt,

V (t) + φ

∫ t

0

|S(t)− S∗(t)|dt+ φ

∫ t

0

|I(t)− I∗(t)|dt

= |S(0)− S∗(0)|+ |I(0)− I∗(0)| <∞

Thus, V (t) is bounded on [0, t] and
∫∞

0
|S(t)− S∗(t)|+ |I(t)− I∗(t)|dt <∞.

From this we obtain that |S(t)− S∗(t)| and |I(t)− I∗(t)| are in L1[0,∞). Since
(S(t), I(t))T and (S∗(t), I∗(t))T as well as their derivatives are bounded on

[
T,∞),

hence |S(t)−S∗(t)| and |I(t)−I∗(t)| are uniformly continuous on [T,∞). Then, we
can use Barbalat’s lemma to determine that the solution is globally asymptotically
stable; that is,

lim
t→∞

|S(t)− S∗(t)| = 0, lim
t→∞

|I(t)− I∗(t)| = 0.

The proof is complete. �

We now present two examples to exhibit the existence and stability of T -periodic
solutions. To do so, we consider the system (2.3) with parameters fitted from data
to model the transmission of respiratory syncytial virus (RSV) for the countries of
Gambia and Singapore using a SIRS model. We consider parameter choices based
on the estimation developed in [8]. RSV virus is known to be the most common
cause of acute lower respiratory tract infection in children. As so, it can be modeled
as having a seasonal pattern of increased infection due, in a determinant way, to the
increased contact among children during school terms. To model the transmission
rate of this infection the term β(t) can be approximated by:

β(t) = β0(1 + ε cos(2π(t− φ))),

where β0 is the baseline transmission rate, ε is the relative seasonal forcing and φ
accounts for the time when the transmission rate is maximal. This transmission rate
assumes that the period of transmission is one year. In [8] the authors obtained
parameter estimates for the corresponding transmission rate for the countries of
Gambia and Singapore.

Example 2.10. Consider the SIRS model for the transmission of RSV in the
country of Gambia determined by

S′ = 52R+ 0.041(1− S)− (35(1 + 0.04 cos(2πt+ 0.15)))I(1 + 0.06I7)S2,

I ′ = (35(1 + 0.04 cos(2πt+ 0.15))I(1 + 0.04I7)S2 − 30.041I,

R′ = 30I − 52.041R.

(2.13)
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Figure 1. Existence of 1-periodic globally asymptotically stable
solutions. (A) SIRS model for the transmission of RSV virus for the
country of Gambia. The initial conditions are S0 = 0.7, I0 = 0.3
and R0 = 0.0. (B) SIRS model for the transmission of RSV virus
in the country of Singapore. The initial conditions are S0 = 0.7,
I0 = 0.2 and R0 = 0.1.

For this model we consider the parameter estimates: η = 52, µ = 0.041, γ = 30,
β0 = 35, β1 = 0.04 and φ = 0.15 some of them based on what is developed in [8].
We set α = 0.0003, n = 7 and k = 2 to explore the existence of periodic orbits
using a non-linear incidence rate. See Figure 1.

Example 2.11. Consider the SIRS model for the transmission of RSV for the
country of Singapore given by

S′ = 4.9R+ 0.016(1− S)− (70(1 + 0.12 cos(2πt+ 0.28)))I(1 + 0.4I2)S1,

I ′ = (70(1 + 0.12 cos(2πt+ 0.28))I(1 + 0.4I2)S1 − 36.016I,

R′ = 36I − 4.916R.

(2.14)

For this model we consider the parameters: η = 50, µ = 0.016, γ = 20, β0 = 33,
β1 = 0.06 and φ = 0.28 some of them based on [8]. We set α = 0.00005, n = 3 and
k = 1 to explore the existence of periodic orbits. See Figure 1.
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