Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 301, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

A VARIATIONAL PRINCIPLE FOR BOUNDARY-VALUE PROBLEMS WITH NON-LINEAR BOUNDARY CONDITIONS

DIANWU YANG

Abstract

In this article, we establish a variational principle for a class of boundary-value problems with a suitable non-linear boundary conditions. As an application of the variational principle, we study the existence of classical solutions for boundary-value problems.

1. Introduction

By using the variational principle, boundary-value problems have been studied by numerous mathematicians (see [1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, and references therein). In [1, 2], the authors studied equations with the boundary condition $u(0)=u(1)=0$. In [4, 5, 6], the authors studied Sturm-Liouville boundary-value problems. In [3, 7], the authors studied Neumann boundary-value problems. In [8], Han studied the periodic boundary-value problems. In [9, 10, 11, 12, 13, the authors applied variational methods to impulsive differential equations. In all the references above, the boundary conditions are linear. In this article, we consider a boundary-value problem with non-linear boundary conditions:

$$
\begin{gather*}
x^{\prime \prime}=f(t, x), \quad t \in[0,1] \\
H(x(0), x(1))=0 \tag{1.1}\\
\nabla H(x(0), x(1)) J\left[\left(x^{\prime}(0),-x^{\prime}(1)\right)-\nabla I(x(0), x(1))\right]^{T}=0
\end{gather*}
$$

Here, H and $I: R^{2} \rightarrow R$ are continuously differentiable, and

$$
J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

is the standard symplectic matrix. Also, we assume that the set $\mathcal{A}=\{(x, y)$: $H(x, y)=0\}$ is nonempty. If $H(x, y)=x^{2}+y^{2}$ and $I(x, y)=0$, problem 1.1) becomes a Dirichlet boundary value problem. If $H(x, y)=x-y$ and $I(x, y)=0$, problem (1.1) becomes a periodic boundary value problem. If $H(x, y)=x+y$ and $I(x, y)=0$, then problem 1.1 becomes a antiperiodic boundary value problem.

[^0]This article is organized as follows: in section 2, we construct a variational functional for 1.1). In section 3, we obtain sufficient conditions for 1.1 to have a solution.

2. Variational structure

Let W be the Sobolev space of functions $x:[0,1] \rightarrow R$ with a weak derivative $x^{\prime} \in L^{2}(0,1 ; R)$. The inner product on W is

$$
\begin{equation*}
(x, y)=\int_{0}^{1}\left[x^{\prime}(t) y^{\prime}(t)+x(t) y(t)\right] d t \tag{2.1}
\end{equation*}
$$

and the corresponding norm is $\|\cdot\|$. For each $x \in W$, there exists a real number $\xi \in(0,1)$ such that

$$
x(\xi)=\int_{0}^{1} x(t) d t
$$

Then

$$
\begin{align*}
|x(t)| & =\left|x(\xi)+\int_{\xi}^{t} x^{\prime}(s) d s\right| \\
& \leq\left(\int_{0}^{1} x^{2}(t) d t\right)^{1 / 2}+\left(\int_{0}^{1}\left(x^{\prime}(t)\right)^{2} d t\right)^{1 / 2} \leq \sqrt{2}\|x\| \tag{2.2}
\end{align*}
$$

To establish a variational principle for 1.1, we assume that f satisfies the condition
(H1) $f(t, x)$ is measurable in t for each $x \in \mathbb{R}$, continuous in x for almost every $t \in[0,1]$, and there exists $h_{k} \in L^{1}(0,1)$ for any $k>0$ such that

$$
|f(t, x)| \leq h_{k}(t)
$$

for almost every $t \in[0,1]$ and all $|x| \leq k$.
Under this condition, we define the functional ϕ on W by

$$
\begin{equation*}
\phi(x)=\int_{0}^{1}\left[\frac{1}{2}\left(x^{\prime}(t)\right)^{2}+F(t, x(t))\right] d t+I(x(0), x(1)) \tag{2.3}
\end{equation*}
$$

where $F(t, x)=\int_{0}^{x} f(t, u) d u$. Then ϕ is continuously differentiable, weakly lower semi-continuous and

$$
\begin{equation*}
\left(\phi^{\prime}(x), y\right)=\int_{0}^{1}\left[x^{\prime}(t) y^{\prime}(t)+f(t, x(t)) y(t)\right] d t+\nabla I(x(0), x(1))(y(0), y(1)) \tag{2.4}
\end{equation*}
$$

for all $y \in W$, see [14]. Let Y be a C^{1}-manifold defined by

$$
Y=\{x \in W: H(x(0), x(1))=0\} .
$$

Then, Y is weakly closed since W can be compactly imbedded in $C[0,1]$. The following theorem is our main result.

Theorem 2.1. Assume that f satisfies (H1) and that the following condition is satisfied,
(H2) $\nabla H(x, y) \neq 0$ for each (x, y) satisfying $H(x, y)=0$, or \mathcal{A} is a discrete set. If x is a critical point of the functional ϕ defined by (2.3) on Y, then $x(t)$ is a solution of 1.1 .

Proof. For a given u in Y, let $D Y(u)$ denote the tangent space to Y at u. If x is a critical point of the functional ϕ on Y, then for any $y \in D Y(x)$ we have $\left(\phi^{\prime}(x), y\right)=0$. It follows from (2.4) that

$$
\begin{equation*}
\int_{0}^{1}\left[x^{\prime}(t) y^{\prime}(t)+f(t, x(t)) y(t)\right] d t+\nabla I(x(0), x(1)) \cdot(y(0), y(1))=0 \tag{2.5}
\end{equation*}
$$

We define $\omega \in C(0,1 ; R)$ by

$$
\begin{equation*}
\omega(t)=\int_{0}^{t} f(s, x(s)) d s \tag{2.6}
\end{equation*}
$$

By Fubini's theorem and 2.5, we obtain that for any $y \in D Y(x)$,

$$
\begin{align*}
& \int_{0}^{1}\left[x^{\prime}(t)-\omega(t)\right] y^{\prime}(t) d t \\
& =-\int_{0}^{1} f(t, x(t)) y(t) d t-\nabla I(x(0), x(1)) \cdot(y(0), y(1)) \\
& \quad-\int_{0}^{1} y^{\prime}(t) \int_{0}^{t} f(s, x(s)) d s d t \tag{2.7}\\
& =-y(1) \int_{0}^{1} f(t, x(t)) d t-\nabla I(x(0), x(1)) \cdot(y(0), y(1))
\end{align*}
$$

We complete this proof by considering two cases. When $\nabla H(x(0), x(1)) \neq 0$, we have

$$
\begin{equation*}
D Y(x)=\{y \in W: \nabla H(x(0), x(1)) \cdot(y(0), y(1))=0\} \tag{2.8}
\end{equation*}
$$

In 2.7), we can choose

$$
y(t)=\sin (2 n \pi t), \quad n=1,2, \ldots
$$

and

$$
y(t)=1-\cos (2 n \pi t), \quad n=1,2, \ldots
$$

It follows from 2.7 that

$$
\int_{0}^{1}\left[x^{\prime}(t)-\omega(t)\right] \sin (2 n \pi t) d t=\int_{0}^{1}\left[x^{\prime}(t)-\omega(t)\right] \cos (2 n \pi t) d t=0, \quad n=1,2, \ldots
$$

A theorem for Fourier series implies that

$$
\begin{equation*}
x^{\prime}(t)-\omega(t)=x^{\prime}(0) \tag{2.9}
\end{equation*}
$$

on $[0,1]$. Thus, we have $x^{\prime \prime}(t)=f(t, x(t))$ and

$$
\begin{equation*}
\int_{0}^{1} f(t, x(t)) d t=x^{\prime}(1)-x^{\prime}(0) \tag{2.10}
\end{equation*}
$$

Integrating both sides of (2.9) over $[0,1]$, we have

$$
\begin{equation*}
x(1)-x(0)-\int_{0}^{1}(1-t) f(t, x(t)) d t=x^{\prime}(0) \tag{2.11}
\end{equation*}
$$

Set $y(t)=\nabla H(x(0), x(1)) \cdot(t, t-1)$. It is easy to show that $y \in D Y(x)$ as $(y(0), y(1))=J \nabla H(x(0), x(1))$. Inserting $y(t)$ into 2.5 we obtain

$$
\left[x(1)-x(0)-\int_{0}^{1}(1-t) f(t, x(t)) d t\right] \nabla H(x(0), x(1)) \cdot(1,1)
$$

$+\nabla I(x(0), x(1)) J \nabla H(x(0), x(1))+\int_{0}^{1} f(t, x(t)) d t \nabla H(x(0), x(1)) \cdot(1,0)=0$.
From 2.10 and 2.11, the above equality implies

$$
\nabla H(x(0), x(1)) J\left[\left(x^{\prime}(0),-x^{\prime}(1)\right)-\nabla I(x(0), x(1))\right]^{T}=0 .
$$

When the \mathcal{A} is a discrete set, $(x(0), x(1))$ is a isolated point of \mathcal{A}. Applying the implicit function theorem we obtain $\nabla H(x(0), x(1))=0$, so that

$$
D Y(x)=\{y \in W: y(0)=y(1)=0\} .
$$

It is easy to show that $x(t)$ is a solution of problem 1.1. This completes the proof.

3. Solutions to boundary-value problems

As an application of Theorem 2.1. we consider the existence of solutions for problem 1.1).
Theorem 3.1. Assume that (H1), (H2) hold, and that the following conditions are satisfied:
(H3) The set \mathcal{A} is bounded.
(H4) There is a positive constant l with $l<2$, and a positive function $c \in L^{1}(0,1)$ such that

$$
F(t, x) \geq-c(t)\left(1+|x|^{l}\right)
$$

for almost every $t \in[0,1]$ and all $x \in \mathbb{R}$.
Then 1.1 has at least one solution.
Proof. Let y be in Y. By (H3), there exists a positive number M such that

$$
y^{2}(0)+y^{2}(1) \leq M^{2}
$$

This implies

$$
\begin{equation*}
|y(t)|=\left|y(0)+\int_{0}^{t} y^{\prime}(t) d t\right| \leq M+\int_{0}^{1}\left|y^{\prime}(t)\right| d t \leq M+\left(\int_{0}^{1}\left[y^{\prime}(t)\right]^{2} d t\right)^{1 / 2} \tag{3.1}
\end{equation*}
$$

Set

$$
M_{1}=\min _{x^{2}+y^{2} \leq M^{2}} I(x, y) .
$$

Then, from (H4), 2.3) and (3.1), we have

$$
\begin{aligned}
\phi(y) & \geq \frac{1}{2} \int_{0}^{1}\left[y^{\prime}(t)\right]^{2} d t-\int_{0}^{1} c(t)\left(1+|y(t)|^{l}\right) d t+M_{1} \\
& \geq \frac{1}{2} \int_{0}^{1}\left[y^{\prime}(t)\right]^{2} d t+M_{2}\left(\int_{0}^{1}\left[y^{\prime}(t)\right]^{2} d t\right)^{\frac{l}{2}}+M_{3}
\end{aligned}
$$

for some M_{2} and M_{3}. It follows that

$$
\lim _{\|y\| \rightarrow \infty} \phi(y)=+\infty
$$

since $\|y\| \rightarrow \infty$ if and only if $\int_{0}^{1}\left[y^{\prime}(t)\right]^{2} d t \rightarrow \infty$. Hence, $\phi \mid Y$ is bounded from blow. Therefore, there exists a critical point of ϕ on Y. By Theorem 2.1, problem 1.1 has at least one solution.

Theorem 3.2. Assume that (H1)-(H3) hold, and that the following conditions are satisfied:
(H5) There is a positive function $c \in L^{1}(0,1)$ such that

$$
F(t, x) \geq-c(t)\left(1+x^{2}\right)
$$

for almost every $t \in[0,1]$ and all $x \in \mathbb{R}$.
(H6) $2 \int_{0}^{1} c(t) d t<1$.
Then 1.1 has at least one solution.
Proof. For each $y \in Y$, from (H5), (2.3) and (3.1), we obtain

$$
\begin{aligned}
\phi(y) & \geq \frac{1}{2} \int_{0}^{1}\left[y^{\prime}(t)\right]^{2} d t-\int_{0}^{1} c(t)\left(1+y^{2}(t)\right) d t+M_{1} \\
& \geq\left(\frac{1}{2}-\int_{0}^{1} c(t) d t\right) \int_{0}^{1}\left[y^{\prime}(t)\right]^{2} d t+M_{4}\left(\int_{0}^{1}\left[y^{\prime}(t)\right]^{2} d t\right)^{1 / 2}+M_{5}
\end{aligned}
$$

for some M_{4} and M_{5}. Assumption (H6) implies

$$
\lim _{\|y\| \rightarrow \infty} \phi(y)=+\infty
$$

Therefore, problem 1.1 has at least one solution.

Theorem 3.3. Assume that (H1), (H2) hold, and that the following conditions are satisfied:
(H7) There is a positive function $c \in L^{1}(0,1)$ and positive constants k_{1}, l with $l<2$ such that

$$
F(t, x) \geq k_{1} x^{2}-c(t)\left(1+|x|^{l}\right)
$$

for almost every $t \in[0,1]$ and all $x \in \mathbb{R}$.
(H8) There are positive constants k_{2} and k_{3} such that $I(x, y) \geq-k_{2} x^{2}-k_{3} y^{2}$.
(H9) $4\left(k_{2}+k_{3}\right)<\min \left\{1,2 k_{1}\right\}$.
Then 1.1 has at least one solution.
Proof. Assumptions (H7) and (H8), and 2.3) imply

$$
\begin{aligned}
\phi(y) & \geq \frac{1}{2} \int_{0}^{1}\left[y^{\prime}(t)\right]^{2} d t+k_{1} \int_{0}^{1} y^{2}(t) d t-\int_{0}^{1} c(t)\left(1+|y(t)|^{l}\right) d t-k_{2} y^{2}(0)-k_{3} y^{2}(1) \\
& \left.\geq\left(\frac{1}{2} \min \left\{1,2 k_{1}\right\}-2 k_{2}-2 k_{3}\right)\|y\|^{2}-\int_{0}^{1} c(t)\left(1+|y(t)|^{l}\right) d t\right)
\end{aligned}
$$

for each $y \in Y$. From (H9) we obtain

$$
\lim _{\|y\| \rightarrow \infty} \phi(y)=+\infty
$$

Therefore (1.1) has at least one solution.

Acknowledgments. This research was supported by the Natural Science Foundation of Shandong Province of PR China (ZR2011AL007).

References

[1] D. Averna, G. Bonanno; A three critical points theorem and its applications to the ordinary Dirichlet problem, Topol. Methods Nonlinear Anal., 22 (2003): 93-104.
[2] G. Bonanno, A. Chinnì; Existence of three solutions for a perturbed two-point boundary value problem, Appl. Math. Lett., 23 (2010): 807-811.
[3] J. Xie, Z. Luo; Existence of three distinct solutions to boundary value problem of nonlinear differential equations with a p-Laplacian operator, Appl. Math. Lett., 27 (2014): 101-106.
[4] Y. Tian, W. Ge; Multiple solutions of Sturm-Liouville boundary value problem via lower and upper solutions and variational methods, Nonlinear Anal. TMA, 74 (2011): 6733-6746.
[5] Q. Zhang, F. Li, X. Zhu; Multiple sign-changing solutions to the Sturm-Liouville boundary value problem with resonance, Appl. Math. Comput., 219 (2012): 1061-1072.
[6] G. Bonanno, G. Riccobono; Multiplicity results for Sturm-Liouville boundary value problems, Appl. Math. Comput., 210 (2009): 294-297.
[7] G. Bonanno, G. D'Aguì; A critical point theorem and existence results for a nonlinear boundary value problem, Nonlinear Anal., 72 (2010): 1977-1982.
[8] Z. Han, Solutions of periodic boundary value problems for second-order nonlinear differential equations via variational methods, Appl. Math. Comput., 217(2011): 6516-6525.
[9] H. Sun, Y. Li, J. J. Nieto, Q. Tang; Existence of Solutions for Sturm-Liouville Boundary Value Problem of Impulsive Differential Equations, Abstr. Appl. Anal., (2012) Article ID 707163, 19 pages.
[10] J. J. Nieto, D. O’Regan; Variational approach to impulsive differential equations, Nonlinear Anal. RWA, 10 (2009): 680-690.
[11] Y. Tian, W. Ge; Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations, Nonlinear Anal. TMA, 72 (2010): 277-287.
[12] Y. Tian, W. Ge; Multiple solutions of impulsive Sturm-Liouville boundary value problem via lower and upper solutions and variational methods, J. Math. Anal. Appl., 387 (2012): 475-489.
[13] H. Zhang, Z. Li; Variational approach to impulsive differential equations with periodic boundary conditions, Nonlinear Anal. RWA, 11(2010): 67-78.
[14] J. Mawhin, M. Willem; Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York (1989).

Dianwu Yang
School of Mathematical Sciences, University of Jinan, Jinan 250022, China
E-mail address: ss_yangdw@ujn.edu.cn

[^0]: 2010 Mathematics Subject Classification. 34B15, 58E30.
 Key words and phrases. Boundary value problem; non-linear boundary value condition; variational principle.
 (C)2015 Texas State University.

 Submitted August 15, 2015. Published December 7, 2015.

