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A VARIATIONAL PRINCIPLE FOR BOUNDARY-VALUE
PROBLEMS WITH NON-LINEAR BOUNDARY CONDITIONS

DIANWU YANG

Abstract. In this article, we establish a variational principle for a class of

boundary-value problems with a suitable non-linear boundary conditions. As
an application of the variational principle, we study the existence of classical

solutions for boundary-value problems.

1. Introduction

By using the variational principle, boundary-value problems have been studied by
numerous mathematicians (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and references
therein). In [1, 2], the authors studied equations with the boundary condition
u(0) = u(1) = 0. In [4, 5, 6], the authors studied Sturm-Liouville boundary-value
problems. In [3, 7], the authors studied Neumann boundary-value problems. In
[8], Han studied the periodic boundary-value problems. In [9, 10, 11, 12, 13], the
authors applied variational methods to impulsive differential equations. In all the
references above, the boundary conditions are linear. In this article, we consider a
boundary-value problem with non-linear boundary conditions:

x′′ = f(t, x), t ∈ [0, 1],

H(x(0), x(1)) = 0,

∇H(x(0), x(1))J [(x′(0),−x′(1))−∇I(x(0), x(1))]T = 0.

(1.1)

Here, H and I : R2 → R are continuously differentiable, and

J =
(

0 −1
1 0

)
is the standard symplectic matrix. Also, we assume that the set A = {(x, y) :
H(x, y) = 0} is nonempty. If H(x, y) = x2 + y2 and I(x, y) = 0, problem (1.1)
becomes a Dirichlet boundary value problem. If H(x, y) = x − y and I(x, y) = 0,
problem (1.1) becomes a periodic boundary value problem. If H(x, y) = x+ y and
I(x, y) = 0, then problem (1.1) becomes a antiperiodic boundary value problem.

2010 Mathematics Subject Classification. 34B15, 58E30.
Key words and phrases. Boundary value problem; non-linear boundary value condition;

variational principle.
c©2015 Texas State University.

Submitted August 15, 2015. Published December 7, 2015.

1



2 D. YANG EJDE-2015/301

This article is organized as follows: in section 2, we construct a variational
functional for (1.1). In section 3, we obtain sufficient conditions for (1.1) to have a
solution.

2. Variational structure

Let W be the Sobolev space of functions x : [0, 1] → R with a weak derivative
x′ ∈ L2(0, 1;R). The inner product on W is

(x, y) =
∫ 1

0

[x′(t)y′(t) + x(t)y(t)]dt (2.1)

and the corresponding norm is ‖ · ‖. For each x ∈ W , there exists a real number
ξ ∈ (0, 1) such that

x(ξ) =
∫ 1

0

x(t)dt.

Then

|x(t)| = |x(ξ) +
∫ t

ξ

x′(s)ds|

≤
(∫ 1

0

x2(t)dt
)1/2

+
(∫ 1

0

(x′(t))2dt
)1/2

≤
√

2‖x‖.
(2.2)

To establish a variational principle for (1.1), we assume that f satisfies the
condition

(H1) f(t, x) is measurable in t for each x ∈ R, continuous in x for almost every
t ∈ [0, 1], and there exists hk ∈ L1(0, 1) for any k > 0 such that

|f(t, x)| ≤ hk(t)

for almost every t ∈ [0, 1] and all |x| ≤ k.
Under this condition, we define the functional φ on W by

φ(x) =
∫ 1

0

[
1
2

(x′(t))2 + F (t, x(t))]dt+ I(x(0), x(1)) (2.3)

where F (t, x) =
∫ x
0
f(t, u)du. Then φ is continuously differentiable, weakly lower

semi-continuous and

(φ′(x), y) =
∫ 1

0

[x′(t)y′(t) + f(t, x(t))y(t)]dt+∇I(x(0), x(1))(y(0), y(1)) (2.4)

for all y ∈W , see [14]. Let Y be a C1-manifold defined by

Y = {x ∈W : H(x(0), x(1)) = 0}.

Then, Y is weakly closed since W can be compactly imbedded in C[0, 1]. The
following theorem is our main result.

Theorem 2.1. Assume that f satisfies (H1) and that the following condition is
satisfied,

(H2) ∇H(x, y) 6= 0 for each (x, y) satisfying H(x, y) = 0, or A is a discrete set.
If x is a critical point of the functional φ defined by (2.3) on Y , then x(t) is a
solution of (1.1).
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Proof. For a given u in Y , let DY (u) denote the tangent space to Y at u. If
x is a critical point of the functional φ on Y , then for any y ∈ DY (x) we have
(φ′(x), y) = 0. It follows from (2.4) that∫ 1

0

[x′(t)y′(t) + f(t, x(t))y(t)]dt+∇I(x(0), x(1)) · (y(0), y(1)) = 0. (2.5)

We define ω ∈ C(0, 1;R) by

ω(t) =
∫ t

0

f(s, x(s))ds. (2.6)

By Fubini’s theorem and (2.5), we obtain that for any y ∈ DY (x),∫ 1

0

[x′(t)− ω(t)]y′(t)dt

= −
∫ 1

0

f(t, x(t))y(t)dt−∇I(x(0), x(1)) · (y(0), y(1))

−
∫ 1

0

y′(t)
∫ t

0

f(s, x(s))dsdt

= −y(1)
∫ 1

0

f(t, x(t))dt−∇I(x(0), x(1)) · (y(0), y(1)).

(2.7)

We complete this proof by considering two cases. When ∇H(x(0), x(1)) 6= 0, we
have

DY (x) = {y ∈W : ∇H(x(0), x(1)) · (y(0), y(1)) = 0}. (2.8)

In (2.7), we can choose

y(t) = sin(2nπt), n = 1, 2, . . . ,

and
y(t) = 1− cos(2nπt), n = 1, 2, . . . .

It follows from (2.7) that∫ 1

0

[x′(t)− ω(t)] sin(2nπt)dt =
∫ 1

0

[x′(t)− ω(t)] cos(2nπt)dt = 0, n = 1, 2, . . . .

A theorem for Fourier series implies that

x′(t)− ω(t) = x′(0) (2.9)

on [0, 1]. Thus, we have x′′(t) = f(t, x(t)) and∫ 1

0

f(t, x(t))dt = x′(1)− x′(0). (2.10)

Integrating both sides of (2.9) over [0, 1], we have

x(1)− x(0)−
∫ 1

0

(1− t)f(t, x(t))dt = x′(0). (2.11)

Set y(t) = ∇H(x(0), x(1)) · (t, t − 1). It is easy to show that y ∈ DY (x) as
(y(0), y(1)) = J∇H(x(0), x(1)). Inserting y(t) into (2.5) we obtain[

x(1)− x(0)−
∫ 1

0

(1− t)f(t, x(t))dt
]
∇H(x(0), x(1)) · (1, 1)
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+∇I(x(0), x(1))J∇H(x(0), x(1)) +
∫ 1

0

f(t, x(t))dt∇H(x(0), x(1)) · (1, 0) = 0.

From (2.10) and (2.11), the above equality implies

∇H(x(0), x(1))J [(x′(0),−x′(1))−∇I(x(0), x(1))]T = 0.

When the A is a discrete set, (x(0), x(1)) is a isolated point of A. Applying the
implicit function theorem we obtain ∇H(x(0), x(1)) = 0, so that

DY (x) = {y ∈W : y(0) = y(1) = 0}.
It is easy to show that x(t) is a solution of problem (1.1). This completes the
proof. �

3. Solutions to boundary-value problems

As an application of Theorem 2.1, we consider the existence of solutions for
problem (1.1).

Theorem 3.1. Assume that (H1), (H2) hold, and that the following conditions are
satisfied:

(H3) The set A is bounded.
(H4) There is a positive constant l with l < 2, and a positive function c ∈ L1(0, 1)

such that
F (t, x) ≥ −c(t)(1 + |x|l)

for almost every t ∈ [0, 1] and all x ∈ R.
Then (1.1) has at least one solution.

Proof. Let y be in Y . By (H3), there exists a positive number M such that

y2(0) + y2(1) ≤M2.

This implies

|y(t)| = |y(0) +
∫ t

0

y′(t)dt| ≤M +
∫ 1

0

|y′(t)|dt ≤M + (
∫ 1

0

[y′(t)]2dt)1/2. (3.1)

Set
M1 = min

x2+y2≤M2
I(x, y).

Then, from (H4), (2.3) and (3.1), we have

φ(y) ≥ 1
2

∫ 1

0

[y′(t)]2dt−
∫ 1

0

c(t)(1 + |y(t)|l)dt+M1

≥ 1
2

∫ 1

0

[y′(t)]2dt+M2(
∫ 1

0

[y′(t)]2dt)
l
2 +M3

for some M2 and M3. It follows that

lim
‖y‖→∞

φ(y) = +∞,

since ‖y‖ → ∞ if and only if
∫ 1

0
[y′(t)]2dt→∞. Hence, φ|Y is bounded from blow.

Therefore, there exists a critical point of φ on Y . By Theorem 2.1, problem (1.1)
has at least one solution. �

Theorem 3.2. Assume that (H1)–(H3) hold, and that the following conditions are
satisfied:
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(H5) There is a positive function c ∈ L1(0, 1) such that

F (t, x) ≥ −c(t)(1 + x2)

for almost every t ∈ [0, 1] and all x ∈ R.
(H6) 2

∫ 1

0
c(t)dt < 1.

Then (1.1) has at least one solution.

Proof. For each y ∈ Y , from (H5), (2.3) and (3.1), we obtain

φ(y) ≥ 1
2

∫ 1

0

[y′(t)]2dt−
∫ 1

0

c(t)(1 + y2(t))dt+M1

≥ (
1
2
−
∫ 1

0

c(t)dt)
∫ 1

0

[y′(t)]2dt+M4(
∫ 1

0

[y′(t)]2dt)1/2 +M5

for some M4 and M5. Assumption (H6) implies

lim
‖y‖→∞

φ(y) = +∞.

Therefore, problem (1.1) has at least one solution. �

Theorem 3.3. Assume that (H1), (H2) hold, and that the following conditions are
satisfied:

(H7) There is a positive function c ∈ L1(0, 1) and positive constants k1, l with
l < 2 such that

F (t, x) ≥ k1x
2 − c(t)(1 + |x|l)

for almost every t ∈ [0, 1] and all x ∈ R.
(H8) There are positive constants k2 and k3 such that I(x, y) ≥ −k2x

2 − k3y
2.

(H9) 4(k2 + k3) < min{1, 2k1}.
Then (1.1) has at least one solution.

Proof. Assumptions (H7) and (H8), and (2.3) imply

φ(y) ≥ 1
2

∫ 1

0

[y′(t)]2dt+ k1

∫ 1

0

y2(t)dt−
∫ 1

0

c(t)(1 + |y(t)|l)dt− k2y
2(0)− k3y

2(1)

≥ (
1
2

min{1, 2k1} − 2k2 − 2k3)‖y‖2 −
∫ 1

0

c(t)(1 + |y(t)|l)dt).

for each y ∈ Y . From (H9) we obtain

lim
‖y‖→∞

φ(y) = +∞.

Therefore (1.1) has at least one solution. �
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