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EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE
EQUATIONS

QI-LIN XIE, XING-PING WU, CHUN-LEI TANG

Abstract. In this article, we prove the existence of solutions for Kirchhoff
type equations with Dirichlet boundary-value condition. We use the Mountain

Pass Theorem in critical point theory, without the (PS) condition.

1. Introduction and statement of main results

Consider the Kirchhoff type problem

−(a+ b

∫
Ω

|∇u|2dx)∆u = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in RN , a, b > 0, and f(x, t) : Ω × R is a
continuous real function and satisfies the subcritical condition

|f(x, t)| ≤ C(|t|p−1 + 1) for some 2 < p < 2∗ =

{
2N
N−2 , N ≥ 3,
∞, N = 1, 2,

(1.2)

where C denotes some positive constant.
It is pointed out in [7] that the similar nonlocal problems model several physical

and biological systems where u describes a process which depends on the average
of itself, for example that of the population density.

Problem (1.1) is related to the stationary analogue of the Kirchhoff equation

utt −
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = g(x, u),

proposed by Kirchhoff in [13] as an extension of the classical d’Alembert wave equa-
tion for free vibrations of elastic strings. Kirchhoff’s model takes into account the
changes in length of the string produced by transverse vibrations. It received great
attention only after Lions [16] proposed an abstract framework for the problem.

Positive solutions are considered by authors, such as Alves et al [1], Ma and
Rivera [19], Cheng and Wu [6], Yang and Zhang [29]. Problems on the unbounded
domain R3 have also been considered by authors, such as Jin and Wu [12], Nie and
Wu [21], Wu [28], Liu and He [27], Li et al [15], Li and Ye [14]. And more recently
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the concentration behavior of positive solutions has been studied by He and Zou
[9], Wang et al [26], He et al [11]. A result with Hartree-type nonlinearities can be
found in Lü [18]. Ground state nonlinear with critical growth is considered in He
and Zou [10]. The readers may consult Bernstein [2] and Pohožaev [23], Sun and
Tang [24], Chen et al [4], Cheng [5], Perera and Zhang [22, 31], Mao and Zhang [20],
Sun and Liu [25] and the references therein, for more information on this problem.

There are many solvability conditions for problem (1.1) with f , like the asymptot-
ical linear case (at infinity) in [29] and people are more interested in the superlinear
case (at infinity):

(S1) there exists θ ≥ 1 such that θG(t) ≥ G(st) for all t ∈ R and s ∈ [0, 1],
where G(t) = f(t)t− 4F (t) (see [24]);

(S2) lim|t|→∞G(t) =∞ and there exist σ > max{1, N/2} and C > 0 such that
|f(t)|σ ≤ CG(t)|t|σ for |t| large (see [20]); or some limitation forms,

(S3) lim|t|→∞[f(t)t− 4F (t)] =∞ (see [30]);
(S4) lim inf |t|→∞

f(x,t)t−4F (x,t)
|t|τ > −α uniformly in x ∈ Ω, where τ ∈ [0, 2] and

0 < α < aλ1, λ1 is the first eigenvalue of
(
−∆, H1

0 (Ω)
)

(see [5]).
All kinds of conditions are mainly making sure the boundness of the Cerami or
Palais-Smale sequences. The following condition on f which is called Ambrosetti-
Rabinowitz condition is often used:

(S5) there exists θ > 4 such that f(x, t)t ≥ θF (x, t) for |t| large, where F (x, t) =∫ t
0
f(x, s)ds.

We consider the nonlinear eigenvalue problem

−
(∫

Ω

|∇u|2dx
)

∆u = µu3, in Ω,

u = 0, on ∂Ω,
(1.3)

whose the eigenvalues are the critical values of the functional

J(u) = ‖u‖4, u ∈ S :=
{
u ∈ H1

0 (Ω) :
∫

Ω

|u|4dx = 1
}
, (1.4)

where ‖u‖ =
( ∫

Ω
|∇u|2dx

)1/2. We already know the first eigenvalue µ1 > 0 and
the first eigenfunction ψ1 > 0 (see [31]).

Now, we can state our main results.

Theorem 1.1. Assume that f ∈ C(Ω× R,R) satisfies (1.2) and
(F1) lim|t|→∞

(
aλ1
2 t2 + bµ1

4 t4 − F (x, t)
)

= +∞ uniformly in x ∈ Ω;
(F2) there exists λ > λ1 such that F (x, t) ≥ aλ

2 t
2 for |t| small.

Then (1.1) has at least one nontrivial solution.

Remark 1.2. Theorem 1.1 is a new for the case lim inf |t|→∞
F (x,t)
t4 ≤ bµ1

4 . The
condition (F1) is weaker than (F3) in [30]. So our theorem is different from their
theorems and obtains one nontrivial solution by adding the condition (F2) near
zero.

Theorem 1.3. Assume that f ∈ C(Ω× R,R) satisfies (1.2) and

(F3) lim inf |t|→∞
F (x,t)
t4 > bµ1

4 uniformly in x ∈ Ω;
(F4) lim|t|→∞

(
1
4f(x, t)t− F (x, t) + aλ1

4 t2
)

= +∞ uniformly in x ∈ Ω;
(F5) there exists µ < µ1 such that F (x, t) ≤ aλ1

2 t2 + bµ
4 t

4 for |t| small.
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Then (1.1) has at least one nontrivial solution.

Remark 1.4. Condition (F4) is a new condition for a class of function f(x, t) and
is weaker than (S1)–(S5). For example, let

f(x, t) =
aλ1

8

(
8t3 ln(1 + t2) +

4t5

1 + t2
+ 4t3 cos t4

)
.

A simple computation shows that

1
4
f(x, t)t− F (x, t) +

aλ1

4
t2 =

aλ1

8

( t6(1 + cos t4)
1 + t2

+
t4(2 + cos t4) + 2t2

1 + t2
− sin t4

)
and

lim
|t|→∞

(1
4
f(x, t)t− F (x, t) +

aλ1

4
t2
)

= +∞.

Hence, f(x, t) satisfies all the assumptions of Theorem 1.3, but it does not satisfy
any conditions of (S1)–(S5).

2. Preliminaries

We consider H := H1
0 (Ω) endowed with the norm ‖u‖ =

( ∫
Ω
|∇u|2dx

)1/2. We
denote the usual Lp(Ω)-norm by | · |p. Since Ω is a bounded domain, it is well
known that H ↪→ Lp(Ω) continuously for p ∈ [1, 2∗], and compactly for p ∈ [1, 2∗).
Moreover there exists γp > 0 such that

|u|p ≤ γp‖u‖, u ∈ H. (2.1)

Seeking a weak solution of problem (1.2) is equivalent to finding a critical point
of the C1 functional

I(u) :=
a

2
‖u‖2 +

b

4
‖u‖4 −

∫
Ω

F (x, u)dx, u ∈ H, (2.2)

which implies that

〈I ′(u), v〉 = (a+ b‖u‖2)
∫

Ω

∇u · ∇vdx−
∫

Ω

f(x, u)vdx, u, v ∈ H. (2.3)

Let
Ej := ⊕i≤j ker(−∆− λi),

where 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λi ≤ . . . are the eigenvalues of (−∆, H). We
denote a subsequence of a sequence {un} as {un} to simplify the notation unless
specified. We need the following concept, which was introduced by Cerami [3] and
is a weak version of the (PS) condition.

Definition 2.1 ([3]). Let J ∈ C1(X,R), we say that J satisfies the Cerami condi-
tion at the level c ∈ R ((Ce)c for short), if any sequence {un} ⊂ X with

J(un)→ c, (1 + ‖un‖)J ′(un)→ 0 as n→∞,

possesses a convergence subsequence inX; J satisfies the (Ce) condition if J satisfies
the (Ce)c for all c ∈ R.

The following lemma, which can be found in [8], is our main tool in this article.

Lemma 2.2 (Mountain Pass Theorem). Let H be a real Banach space and I ∈
C1(H,R) satisfying the (Ce) condition. Suppose I(0) = 0,
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(i) there are constants ρ, β > 0 such that I|∂Bρ
≥ β where

Bρ = {u ∈ H : ‖u‖ ≤ ρ};

(ii) there is u1 ∈ H and ‖u1‖ > ρ such that I(u1) < 0.
Then I possesses a critical value c ≥ β. Moreover c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

I(u), Γ = {g ∈ C([0, 1], H) : g(0) = 0, g(1) = u1}.

We give a lemma about the (Ce) condition which will play an important role in
the proof of our theorems.

Lemma 2.3. Assume that f(x, t) satisfies (1.2) and (F4), then I satisfies the (Ce)
condition.

Proof. Suppose that {un} is a (Ce)c sequence for c ∈ R

I(un)→ c, (1 + ‖un‖)I ′(un)→ 0 as n→∞. (2.4)

Now firstly, we prove that {un} is a bounded sequence. From (2.2), (2.3) and (2.4),
we obtain

1 + c ≥ I(un)− 1
4
I ′(un)un =

a

4
‖un‖2 +

∫
Ω

(1
4
f(x, un)un − F (x, un)

)
dx. (2.5)

By (F4), there exists M > 0 such that

1
4
f(x, t)t− F (x, t) +

aλ1

4
|t|2 ≥ −M (2.6)

for all x ∈ Ω and t ∈ R. And let un = φn + wn, where φn ∈ E1 and wn ∈ E⊥1 .
From (2.5) and (2.6), one obtains

1 + c ≥ I(un)− 1
4
I ′(un)un

=
a

4
‖un‖2 −

aλ1

4
|un|22 +

∫
Ω

(1
4
f(x, un)un − F (x, un) +

aλ1

4
|un|2

)
dx

≥ a

4
(
1− λ1

λ2

)
‖wn‖2 −M |Ω|

(2.7)

which implies that ‖wn‖ is bounded. We claim that {un} is a bounded sequence.
Otherwise, there is a subsequence of {un} satisfying ‖un‖ → +∞ as n → +∞.
Then we obtain

wn
‖un‖

→ 0 ∈ H.

Since φn/‖un‖ is bounded in E1 (E1 has finite dimension), we have φn/‖un‖ → v
in E1. By

vn :=
un
‖un‖

=
φn + wn
‖un‖

=
φn
‖un‖

+
wn
‖un‖

→ v ∈ E1,

one has
un(x)
‖un‖

→ v(x) a.e. in Ω. (2.8)

From ‖vn‖ = 1, we obtain that ‖v‖ = 1. And by v ∈ E1, one has that v(x) > 0 or
v(x) < 0, which implies that

|un(x)| → +∞ as n→ +∞ (2.9)
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for all x ∈ Ω by (2.8). It follows from (2.7), (2.9) and Fatou’s lemma that

1 + c ≥ I(un)− 1
4
I ′(un)un

=
a

4
‖un‖2 +

∫
Ω

(1
4
f(x, un)un − F (x, un)

)
dx

≥
∫

Ω

(1
4
f(x, un)un − F (x, un) +

aλ1

4
|un|2

)
dx

→ +∞ as n→ +∞,
which is a contradiction. Then we get that {un} is bounded in H. Since f(x, t) is
subcritical growth, we can easily obtain that {un} has a convergence subsequence.
Hence, I satisfies the (Ce) condition. �

3. Proof of main results

Proof of Theorem 1.1. Let

u =
(∫

Ω

∇u · ∇φ1dx
)
φ1, ũ = u− u,

where the φ1 is the first eigenfunction corresponding to λ1.
The following statements come from [17]. First, there exist a real function g ∈

L1(Ω), and G ∈ C(R, R) which is subadditive; that is,

G(s+ t) ≤ G(s) +G(t)

for all s, t ∈ R, and coercive; that is, G(t)→ +∞ as |t| → ∞, and satisfies

G(t) ≤ |t|+ 4

for all t ∈ R, such that

F (x, t)− aλ1

2
t2 − bµ1

4
t4 ≤ −G(t) + g(x)

for all t ∈ R and x ∈ Ω.
Second, the functional

∫
Ω
G(v)dx is coercive on E1 (this result also can be seen

in [17]). We claim that I(u) is coercive.∫
Ω

(
F (x, u)− aλ1

2
u2 − bµ1

4
u4
)
dx

≤ −
∫

Ω

G(u)dx+
∫

Ω

g(x)dx

≤ −
∫

Ω

(G(u)−G(−ũ)) dx+
∫

Ω

g(x)dx

≤ −
∫

Ω

G(u)dx+ |ũ|1 + 4|Ω|+
∫

Ω

g(x)dx

≤ −
∫

Ω

G(u)dx+ C1(‖ũ‖+ 1)

for all u ∈ H and some

C1 = C + 4|Ω|+
∫

Ω

g(x)dx,

where C is a positive constant in Sobolev’s inequality,

|u|1 ≤ C‖u‖, |u|2 ≤ C‖u‖
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for all u ∈ H. Hence we have

I(un) =
a

2
‖u‖2 +

b

4
‖u‖4 −

∫
Ω

F (x, u)dx

=
a

2
‖un‖2 −

aλ1

2
|un|22 +

b

4
‖un‖4 −

bµ1

4
|un|44

+
∫

Ω

(aλ1

2
|un|2 +

bµ1

4
|un|4 − F (x, un)

)
dx

≥ a

2
‖un‖2 −

aλ1

2
|un|22 +

∫
Ω

(aλ1

2
|un|2 +

bµ1

4
|un|4 − F (x, un)

)
dx

≥ a

2
(
1− λ1

λ2

)
‖ũ‖2 +

∫
Ω

G(u)dx− C1(‖ũ‖+ 1)

for all u ∈ H. By the coercivity of the functional
∫

Ω
G(v)dx on E1 and that fact

‖u‖2 = ‖u‖2 + ‖ũ‖2,

which implies that the functional I(u) is coercive. I satisfies the (Ce) condition
and is bounded from below. By (F2), we have

F (x, t) ≥ aλ

2
t2 − C|t|p

for all x ∈ Ω and t ∈ R, which implies that

I(u) ≤ a

2
‖u‖2 +

b

4
‖u‖4 − aλ

2
|u|22 + C|u|pp

=
a

2
(
1− λ

λ1

)
‖u‖2 +

b

4
‖u‖4 + C‖u‖p < 0

for u ∈ E1 ∩ Bδ, λ > λ1, where δ > 0 small enough and E1 is the subspace of H
spanned by φ1 the eigenfunctions of λ1. Then I(u) achieves the negative infimum.
This completes the proof �

Proof of Theorem 1.3. By Lemmas 2.2 and 2.3, it is sufficient to show that I sat-
isfies (i) and (ii).
Step 1. There are constants ρ, β > 0 such that I(u) ≥ β for all ‖u‖ = ρ. In fact,
by (F5), it is easy to see that

F (x, t) ≤ aλ1

2
t2 +

b(µ1 − ε)
4

t4 + C|t|p

for all t ∈ R and x ∈ Ω,

I(u) ≥ a

2
‖u‖2 +

b

4
‖u‖4 − aλ1

2
|u|22 −

b(µ1 − ε)
4

|u|44 − C
∫

Ω

|u|pdx

≥ b

4
(
1− µ1 − ε

µ1

)
‖u‖4 − Cγp‖u‖p.

Note that 4 < p < 2∗, then for ε small enough. So there exists β > 0 such that
I(u) ≥ β for all ‖u‖ = ρ, where ρ > 0 small enough.
Step 2. There exists u1 ∈ H and ‖u1‖ > ρ such that I(u1) < 0. Indeed, for small
ε > 0, by the definition of µ1, we can choose u ∈ S satisfying

µ1 +
ε

2
≥ ‖u‖4. (3.1)
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It follows from (F3) that

F (x, t) ≥ b(µ1 + ε)
4

t4 − C. (3.2)

Hence, by (3.1) and (3.2), we have

I(tu) ≤ a

2
t2‖u‖2 +

b

4
t4‖u‖4 − b

4
t4(µ1 + ε) + C|Ω|

≤ a

2
t2‖u‖2 +

b

4
t4µ1 +

bε

8
t4 − b

4
t4(µ1 + ε) + C|Ω|

= −bε
8
t4 +

a

2
t2‖u‖2 + C|Ω|.

(3.3)

Thus, I(tu)→ −∞ as t→∞. Therefore, there is u1 ∈ H with ‖u1‖ > ρ such that
I(u1) < 0. This completes the proof. �
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