Electron. J. Diff. Equ., Vol. 2015 (2015), No. 55, pp. 1-25.

Weak solutions to the Landau-Lifshitz-Maxwell system with nonlinear Neumann boundary conditions arising from surface energies

Gilles Carbou, Pierre Fabrie, Kevin Santugini

Abstract:
We study the Landau-Lifshitz system associated with Maxwell equations in a bilayered ferromagnetic body when super-exchange and surface anisotropy interactions are present in the spacer in-between the layers. In the presence of these surface energies, the Neumann boundary condition becomes nonlinear. We prove, in three dimensions, the existence of global weak solutions to the Landau-Lifshitz-Maxwell system with nonlinear Neumann boundary conditions.

Submitted June 4, 2014. Published February 26, 2015.
Math Subject Classifications: 35D30, 35F31, 35Q61.
Key Words: Ferromagnetism; Micromagnetism; surface energy; Landau-Lifshitz-Maxwell equation; nonlinear PDE.

Show me the PDF file (339 KB), TEX file for this article.

  Gilles Carbou
Université de Pau et des Pays de l'Adour
LMAP, UMR CNRS 5142, F-64000 Pau, France
email: gilles.carbou@univ-pau.fr
  Pierre Fabrie
Bordeaux INP, IMB, UMR 5251, F-33400
Talence, France
email: Pierre.Fabrie@math.u-bordeaux1.fr
Kévin Santugini
Bordeaux INP, IMB, UMR 5251, F-33400
Talence, France
email: Kevin.Santugini@math.u-bordeaux1.fr

Return to the EJDE web page