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STABILIZATION FOR 1-D HYPERBOLIC DIFFERENTIAL
EQUATIONS WITH BOUNDARY INPUT INCLUDING A

NONLINEAR DISTURBANCE

XIAOYING ZHANG, SHUGEN CHAI

Abstract. We consider the stabilization for 1-D hyperbolic differential equa-

tions with boundary input including a nonlinear disturbance. The time varying

extended state observer (ESO) is designed to estimate the disturbance. Based
on the estimated disturbance, we obtain an explicit controller by applying

the backstepping method. It is shown that the closed-loop system of the 1-D
hyperbolic differential equation is asymptotically stable under this controller.

This result is illustrated by simulation examples.

1. Introduction

Recently, stabilization problems of PDEs, such as a string, a beam, a chemical
tubular reactor, have received a lot of attention [2, 5, 6, 8, 9, 10, 11, 12, 13]. For
the first-order hyperbolic system, some stability problems were studied in [1, 3,
4, 15, 16, 17]. However, as far as we know, there are only a few papers that
consider stability for the first-order hyperbolic system with boundary input matched
with disturbance. It is well-known that when the small disturbance on boundary
happens, the system can become instable, even has no solution.

In this article concerns the stabilization for 1-D hyperbolic differential equation
with boundary input matched with nonlinear disturbance

ut(t, x) = ux(t, x) +
∫ x

0

f(x, y)u(t, y) dy + g(x)u(t, 0), x ∈ (0, 1), t > 0,

u(t, 1) = U(t) + d(t), t ≥ 0,

u(0, x) = u0(x),

(1.1)

where u is the state, U is the control input, the disturbance d(t) is assumed to be
bounded in the Euclidean norm. And g ∈ C[0, 1], f ∈ C(Ω), Ω = {(x, y) : 0 <
x, y < 1}.
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For (1.1), when d(t) is absent, the system is null controllable and the backstep-
ping controller can be chose as in [14, 15],

U(t) =
∫ 1

0

k(1, y)u(t, y) dy, (1.2)

where k(x, y) satisfies

kx(x, y) + ky(x, y) =
∫ x

y

k(x, ξ)f(ξ, y) dξ − f(x, y), x, y ∈ Ω, t > 0,

k(x, 0) =
∫ x

0

k(x, y)g(y) dy − g(x), x ∈ [0, 1].
(1.3)

Note that (1.3) is well-posed, see [15, 16].
The objective of this article is to estimate the disturbance based on the time

varying extended state observer designed, and redesign a continuous controller U(t),
to stabilize system (1.1) in the presence of a disturbance. We consider systems (1.1)
in the state space H = L2(0, 1).

2. Preliminary lemma

Following the ideas in [15, 16], we introduce a inverse transformation

V (t, x) = u(t, x)−
∫ x

0

k(x, y)u(t, y) dy. (2.1)

This function transforms (1.1) into the system

Vt(t, x) = Vx(t, x), x ∈ (0, 1), t > 0,

V (t, 1) = U(t)−
∫ 1

0

k(1, y)u(t, y) dy + d(t), t ≥ 0,

V (0, x) = V0(x).

(2.2)

In what follows, we consider the stabilization of (2.2), and in the final step to
go back to system (1.1), under the inverse transformation.

Introduce a new controller U0(t) such that

U(t) = U0(t) +
∫ 1

0

k(1, y)u(t, y) dy. (2.3)

Then system (2.2) becomes

Vt(t, x) = Vx(t, x), x ∈ (0, 1), t > 0,

V (t, 1) = U0(t) + d(t), t ≥ 0,

V (0, x) = V0(x).
(2.4)

To write this system in operator form, we define the operator A and B as follows:

Af = f ′, D(A) =
{
f ∈ H1(0, 1)

∣∣f(1) = 0
}
, (2.5)

B = δ(x− 1). (2.6)

Then we can write system (2.4) as an evolutionary equation in H:
d

dt
V (t, x) = AV (t, x) +B(U0(t) + d(t)). (2.7)

Lemma 2.1. Let A, B be defined in (2.5) and (2.6). Then
(i) A generates a strongly continuous semigroup.
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(ii) B is admissible to the semigroup eAt.

Proof. It is well-known that A generates a strongly continuous semigroup T (t), and
σ(A) = ∅, ω0(T (t)) = −∞ [18]. This shows that A generates an exponential stable
C0-semigroup eAt on H.

Now we show that B is admissible for eAt. Actually, a straightforward compu-
tation gives the adjoint of (2.5),

A∗g = −g′,
D(A∗) =

{
g ∈ H1(0, 1)|g(0) = 0

}
.

(2.8)

The dual system to (2.7) is

d

dt
V ∗(t, x) = A∗V ∗(t, x),

y(t) = B∗V ∗(t, x) .
(2.9)

That is,
V ∗t (t, x) = −V ∗x (t, x),

V ∗(t, 0) = 0,

y(t) = V ∗(t, 1).
(2.10)

On the one hand, for all f ∈ H,

(A∗)−1f = −
∫ x

0

f(s)ds, (2.11)

and

B∗(A∗)−1f = −
∫ 1

0

f(s)ds, (2.12)

which is bounded from H to C.
On the other hand, we define the energy function for (2.10) as

E(t) =
1
2

∫ 1

0

(V ∗)2(t, x)dx. (2.13)

Differentiate E(t) with respect to t along the solution to (2.10) we obtain

Ė(t) = −1
2

(V ∗)2(t, 1). (2.14)

Choose the function

ρ(t) =
∫ 1

0

x(V ∗)2(t, x)dx. (2.15)

Then, |ρ(t)| 6 2E(t). Differentiate ρ(t) to give∫ T

0

(V ∗)2(t, 1)dt ≤ 2(T + 2)E(0), (2.16)

This together with boundedness of B∗(A∗)−1 shows that B is admissible to the
semigroup generated by A [7]. �
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3. Estimate for the disturbance

The solution of (2.4) is understood in the sense that

d

dt
〈V (t, ·), f〉 = 〈V (t, ·), A∗f〉+ f(1)(U0(t) + d(t)), ∀f ∈ D(A∗). (3.1)

Let f(x) = 2x2 + x ∈ D(A∗) in (3.1) to obtain

ẏ1(t) = 3(U0(t) + d(t))− y2(t), (3.2)

where

y1(t) =
∫ 1

0

(2x2 + x)V (t, x)dx, y2(t) =
∫ 1

0

(4x+ 1)V (t, x)dx. (3.3)

It is seen that (3.2) is an ODE with state y1(t) and control U(t) with disturbance
d(t). We design a time varying high gain extended state observer to estimate
disturbance d(t) and y1(t) as follows:

˙̂y(t) = 3(U0(t) + d̂(t))− y2(t) + r(t)(y1(t)− ŷ(t)),

˙̂
d(t) =

1
3
r2(t)(y1(t)− ŷ(t)),

(3.4)

where r(t) is time varying function satisfying

ṙ(t) > 0, lim
t→∞

r(t) =∞, ṙ(t)
r(t)

≤M, ∀t ≥ 0, M > 0. (3.5)

Lemma 3.1. Suppose that the disturbance d(t) is bounded on [0,∞) and satisfies

lim
t→∞

ḋ(t)
r(t)

= 0. (3.6)

Then, the solution of (3.2) satisfies

lim
t→∞

|y1(t)− ŷ(t)| = lim
t→∞

|d(t)− d̂(t)| = 0. (3.7)

Proof. Let

ỹ(t) = r(t)(y1(t)− ŷ(t)), d̃(t) = (d(t)− d̂(t)) (3.8)

be the estimator errors. Then, by the system (3.2) and (3.4), the error (ỹ, d̃) satisfies

˙̃y(t) = −r(t)ỹ(t) + 3r(t)d̃(t) +
ṙ(t)
r(t)

ỹ(t),

˙̃
d(t) = −1

3
r(t)ỹ(t) + ḋ(t).

(3.9)

For system (3.9), we construct the Lyapunov function

V
(
ỹ(t), d̃(t)

)
= ỹ2(t) +

21
2
d̃2(t)− ỹ(t)d̃(t). (3.10)

It follows that

1
11
V
(
ỹ(t), d̃(t)

)
≤ ỹ2(t) + d̃2(t) ≤ 2V

(
ỹ(t), d̃(t)

)
. (3.11)
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Along with (3.5), finding the derivative of V along the solution of (3.9), we obtain

V̇ (t) =
(
− 5

3
r(t) + 2

ṙ(t)
r(t)

)
ỹ2(t)− 3r(t)d̃2(t)− ṙ(t)

r(t)
ỹ(t)d̃(t) + 21d̃(t)ḋ(t)− ỹ(t)

≤
(
− 5

3
r(t) +

5
2
ṙ(t)
r(t)

)
ỹ2(t)−

(
3r(t)− 1

2
ṙ(t)
r(t)

)
d̃2(t) + 21ḋ(t)(|d̃|+ |ỹ|).

(3.12)

K(t) = min
{5

3
r(t)− sup

5
2

∣∣∣ ṙ(t)
r(t)

∣∣∣, 3r(t)− sup
1
2

∣∣∣ ṙ(t)
r(t)

∣∣∣}. (3.13)

By (3.5), we obtain
lim
t→∞

K(t) =∞. (3.14)

Noticing (3.11),

V̇ (t) ≤ −K(t)
11

V (t) + 42
√

2
√
V (t)|ḋ(t)|. (3.15)

That is,
d
√
V (t)
dt

≤ −K(t)
22

√
V (t) + 21

√
2ḋ(t). (3.16)

Integrating (3.16), from 0 to t, yields√
V (t) ≤ 21

√
2

∫ t
0
|ḋ(s)|e

R s
0

1
22K(τ)dτds

e
R t
0

1
22K(τ)dτ

. (3.17)

We can apply the L’Hospital rule to the right side of (3.17) and the condition of
Lemma 3.1 to obtain

lim
t→∞

∫ t
0
|ḋ(s)|e

R s
0

1
22K(τ)dτds

e
R t
0

1
22K(τ)dτ

= lim
t→∞

22|ḋ(t)|e
R t

t0
1
22K(τ)dτ

e
R t
0

1
22K(τ)dτK(t)

= 0. (3.18)

By (3.17) and (3.18), we have

lim
t→∞

√
V (t) = 0. (3.19)

Along with (3.11), this implies

lim
t→∞

ỹ(t) = 0, lim
t→∞

d̃(t) = 0. (3.20)

Since y1(t)− ŷ(t) = ỹ(t)
r(t) , we finally obtain

lim
t→∞

|y1(t)− ŷ(t)| = 0. (3.21)

Then, (3.7) follows from (3.20) and (3.21). �

Remark 3.2. Note that in Lemma 3.1, the derivative of disturbance d(t) is not
bounded, and a time varying high gain extended state observer have been designed.
However, when r(t) has constant gain, a more strict condition the derivative of
disturbance d(t) is needed, to be bounded. In fact, after time varying high gain
extended state observer reduce the peak value in initial state, the derivative of
disturbance can become bounded. From the practice point of view, we begin to
use the constant gain extended state observer to filter the noise. For example,
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choosing r(t) = 1
ε , we design a constant high gain extended state observer for (3.2)

to estimate y1(t) and d(t) as follows:

˙̂y(t) = 3(U0(t) + d̂(t))− y2(t) +
1
ε

(y1(t)− ŷ(t)),

˙̂
d(t) =

1
3ε2

(y1(t)− ŷ(t)),
(3.22)

where ε is the tuning small parameter. Using the similar method, we can also prove
|ŷ(t)− y1(t)|+ |d̂(t)− d(t)| → 0 as t→∞, ε→ 0. We omit the proof here.

4. Proof of main results

Choose U0(t) = −d̂(t), the closed-loop is governed by

Vt(t, x) = Vx(t, x), x ∈ (0, 1), t > 0,

V (t, 1) = U0(t) + d(t), t ≥ 0,

ẏ1(t) = 3(U0(t) + d(t))− y2(t),
˙̂y(t) = 3(U0(t) + d̂(t))− y2(t) + r(t)(y1(t)− ŷ(t)),

˙̂
d(t) =

1
3
r2(t)(y1(t)− ŷ(t)),

(4.1)

In the next section, we will prove that the closed-loop (4.1) is well-posed and stable.

Theorem 4.1. Suppose that d is bounded measurable and satisfies (3.6), r(t) sat-
isfies (3.5). Then for any initial value (V (0, x), y1(0), ŷ(0), d̂(0)) ∈ H × R3, the
closed-loop system of (4.1) admits a unique solution (V, y1, ŷ, d̂) ∈ C(0,∞;H×R3),
and the solution V tends to zero as t→∞, ŷ(t), d̂(t) satisfy (3.7).

Proof. Introduce error variables ỹ(t) = r(t)(y1 − ŷ(t)), d̃(t) = (d(t) − d̂(t)), the
system (4.1) is equivalent system (4.2)

Vt(t, x) = Vx(t, x), x ∈ (0, 1), t > 0,

V (t, 1) = d̃(t), t ≥ 0,

˙̃y(t) = −r(t)ỹ(t) + 3r(t)d̃(t) +
ṙ(t)
r(t)

ỹ(t),

˙̃
d(t) = −1

3
r(t)ỹ(t) + ḋ(t),

(4.2)

We can see the closed-loop system (4.2) is a “PDE” and “ODE” coupled system.
By Lemma 3.1, the “ODE” section of system (4.2) is proved. We only need to prove
the “PDE” section. The “PDE” section of the system (4.2) becomes

Vt(t, x) = Vx(t, x), x ∈ (0, 1), t > 0,

V (t, 1) = d̃(t), t ≥ 0,

V (0, x) = V0(x).

(4.3)

This system can be rewritten as an evolution equation in H,

d

dt
V (t, x) = AV (t, x) +Bd̃(t), (4.4)

where A,B are the same as that in (2.5) and (2.6).
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By Lemma 2.1, suppose that ‖eAt‖ ≤ L0e
−ωt for some L0, ω > 0. For any

initial value V (0, ·) ∈ H, there exists a unique solution V ∈ C(0,∞;H) that can
be written as

V (t, ·) = eAtV (0, ·) +
∫ t

0

eA(t−s)Bd̃(s)ds. (4.5)

By Lemma 3.1, for any given ε0 > 0, there exist t1 > 0 and ε1 > 0 such that
|d̃(t)| < ε0 for all t > t1 and 0 < ε < ε1. We rewrite (4.5) as

V (t, ·) = eAtV (0, ·) + eA(t−t1)
∫ t1

0

eA(t1−s)Bd̃(s)ds+
∫ t

t1

eA(t−s)Bd̃(s)ds. (4.6)

The admissibility of B implies∥∥ ∫ t

0

eA(t−s)Bd̃(s)ds
∥∥2

H
≤ Ct‖d̃(t)‖2L2(0,t) ≤ Ctt‖d̃(t)‖2L∞(0,t). (4.7)

for some constant Ct that is independent of d̃(t) [7, Definition 6.6]. Because eAt is
exponentially stable, it follows from [19, Proposition 2.5] that∥∥∫ t

t1

eA(t−s)Bd̃(s)ds
∥∥
H

=
∥∥ ∫ t

0

eA(t−s)B(0 �t1 d̃)(s)ds
∥∥
H

≤ L‖d̃(t)‖L∞(t1,∞) ≤ Lε0,
(4.8)

where L is a constant that is independent of d̃, and

(d1 �τ d2)(t) =

{
d1(t), 0 ≤ t ≤ τ,
d2(t) t > τ

(4.9)

where the left-hand side of (4.9) denotes the τ -concatenation of d1 and d2 [18].
By (4.6), (4.7) and (4.8), we have

‖V (t, ·)‖ ≤ L0e
−ωt‖V (0, ·)‖+ L0Ct1t1e

−ω(t−t1)‖d̃(t)‖L∞(0,t1) + Lε0. (4.10)

As t→∞, the first two terms of right hand side for (4.10) tend to zero. The result
is then proved by the arbitrariness of ε0. �

Remark 4.2. Under the constant high gain extended estimated observer (3.22),
the closed loop system is governed by

Vt(t, x) = Vx(t, x), x ∈ (0, 1), t > 0,

V (t, 1) = U0(t) + d(t), t ≥ 0,

ẏ1(t) = 3(U0(t) + d(t))− y2(t),

˙̂y(t) = 3(U0(t) + d̂(t))− y2(t) +
1
ε

(y1(t)− ŷ(t)),

˙̂
d(t) =

1
3ε2

(y1(t)− ŷ(t)),

(4.11)

This system is equivalent to the system
Vt(t, x) = Vx(t, x), x ∈ (0, 1), t > 0,

V (t, 1) = d̃(t), t ≥ 0,

˙̃y(t) = −1
ε
ỹ(t) +

3
ε
d̃(t),

˙̃
d(t) = − 1

3ε
ỹ(t) + ḋ(t),

(4.12)
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The solution of system (4.12) also tends to zero as t→∞, ε→ 0.

Theorem 4.3. Suppose that d is bounded measurable and satisfies (3.6), r(t) sat-
isfies (3.5). Choose the controller U(t) =

∫ 1

0
k(1, y)u(t, y) dy − d̂(t). Then for any

initial value (u(0, x), y1(0), ŷ(0), d̂(0)) ∈ H × R3, the closed-loop system of (1.1)
following

ut(t, x) = ux(t, x) +
∫ x

0

f(x, y)u(t, y) dy + g(x)u(t, 0), x ∈ (0, 1), t > 0,

u(t, 1) =
∫ 1

0

k(1, y)u(t, y) dy − d̂(t) + d(t), t ≥ 0,

ẏ1(t) = 3(−d̂(t) + d(t))− y2(t),
˙̂y(t) = 3(−d̂(t) + d̂(t))− y2(t) + r(t)(y1(t)− ŷ(t)),

˙̂
d(t) =

1
3
r2(t)(y1(t)− ŷ(t)),

(4.13)

admits a unique solution (u, y1, ŷ, d̂) ∈ C(0,∞;H ×R3), and the solution u(x, t) of
system (4.13) tends to zero as t→∞. And ŷ(t), d̂(t) satisfies (3.7).

This theorem can be proved by the a inverse transformation of (2.1). We will
omit the proofs.

Remark 4.4. Under the constant gain extended state observer (3.22), we choose
the controller U(t) =

∫ 1

0
k(1, y)u(t, y) dy − d̂(t). Then for any initial value

(u(0, x), y1(0), ŷ(0), d̂(0)) ∈ H × R3,

the closed-loop system of (1.1) following

ut(t, x) = ux(t, x) +
∫ x

0

f(x, y)u(t, y) dy + g(x)u(t, 0), x ∈ (0, 1), t > 0,

u(t, 1) =
∫ 1

0

k(1, y)u(t, y) dy − d̂(t) + d(t), t ≥ 0,

ẏ1(t) = 3(−d̂(t) + d(t))− y2(t),

˙̂y(t) = 3(−d̂(t) + d̂(t))− y2(t) +
1
ε

(y1(t)− ŷ(t)),

˙̂
d(t) =

1
3ε2

(y1(t)− ŷ(t)),

(4.14)

admits a unique solution (u, y1, ŷ, d̂) ∈ C(0,∞;H ×R3), and the solution u(x, t) of
system (4.13) tends to zero as t→∞, ε→ 0. Also ŷ(t), d̂(t) satisfies (3.7).

Corollary 4.5. The special form of (1.1) is as follows:

ut(t, x) = ux(t, x) + g(x)ebxu(t, 0), x ∈ (0, 1), t > 0,

u(t, 1) = U(t) + d(t), t ≥ 0,

u(0, x) = u0(x),

(4.15)

By Theorem 4.3, we can choose U(t) = −
∫ 1

0
g(y)e(b+g)(1−y)u(t, y) dy − d̂(t), the

closed-loop system (4.15) admits a unique solution u ∈ C(0,∞;H), and the solution
of system (4.14) tends to zero as t → ∞, and d̂(t) satisfies (3.6), r(t) satisfies the
condition of (3.5).
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5. Numerical simulation

In this section, the finite difference method is applied to obtain computation of
the displacement. We noticed the closed system (4.13) and (4.1) has the invertible
transformation. And system (4.2) is equivalent to (4.1). The numerical simulation
of system (4.2) is presented. The steps of space and time are taken as 0.05 and
0.001, respectively. The initial values are V (0, x) = sin(2πx), ỹ(0) = 0, d̃(0) = 0.
From the practical view, we choose d(t) = sin t,

r(t) =

{
1 + 2

3 t, t < 10.5,
8, t ≥ 10.5.

Figure (1a) shows that system (4.2) is asymptotically stable under the time varying
extended state observer. Figure (1b) shows that the time varying extended state
observer is convergent.

0 20 40 60 80 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(1a) (1b)

Figure 1. (1a) displacement of V (x, t); (1b) the amplitude of
error d̃(t) (for interpretation of the estimation of disturbance)
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