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PROPERTIES OF LYAPUNOV EXPONENTS FOR
QUASIPERODIC COCYCLES WITH SINGULARITIES

KAI TAO

Abstract. We consider the quasi-periodic cocycles (ω, A(x, E)) : (x, v) 7→
(x+ω, A(x, E)v) with ω Diophantine. Let M2(C) be a normed space endowed
with the matrix norm, whose elements are the 2 × 2 matrices. Assume that

A : T × E → M2(C) is jointly continuous, depends analytically on x ∈ T and

is Hölder continuous in E ∈ E , where E is a compact metric space and T is
the torus. We prove that if two Lyapunov exponents are distinct at one point

E0 ∈ E , then these two Lyapunov exponents are Hölder continuous at any E

in a ball central at E0. Moreover, we will give the expressions of the radius of
this ball and the Hölder exponents of the two Lyapunov exponents.

1. Introduction

Denote by T := R/Z the torus equipped with its Haar measure µ, and µ(T) = 1.
Let Md(C) be the set of linear operators from Cd to Cd, i.e. the set of d × d
complex matrices. A quasi-periodic cocycle is a pair (ω,A), where ω, the irrational
number, is the frequency and A ∈ C0(T,Md(C)) is continuous, defined by a map
(ω,A) : (x, v)→ (x+ω,A(x)v). The iterates of the cocycle are given by (ω,A)N =
(Nω,AN ), where

AN (x) =
0∏

j=N−1

A(x+ jω).

In this case, the dynamical system is ergodic and the Oseledets Theorem provides
us with a sequence of Lyapunov exponents L1 ≤ L2 ≤ · · · ≤ Lm, and for almost
every x ∈ T there exist an invariant measurable decomposition Cd = ⊕nj=1E

j
x,

and a non decreasing surjective map k : {1, 2, . . . , d} → {1, . . . , n} such that for
almost every x ∈ T, every 1 ≤ i ≤ m and every v ∈ Ekix \{0} we have Lj =
limN→∞

1
N log ‖AN (x)v‖. Moreover, Li = Li+1 if and only if ki = ki+1, and the

subspace Ejx has dimension equal to ]k−1(j), where ]k−1(j) is the number of the
elements in the set {i|ki = j}.

In the past several years, some researchers focused on the continuity of Lyapunov
exponent for the Schrödinger equation:

(Sx,ωφ)(n) = φ(n+ 1) + φ(n− 1) + v(x+ nω)φ(n) = Eφ(n), n ∈ Z,
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with the cocycle

A(x,E) =
(
v(x)− E −1

1 0

)
.

Goldstein and Schlag [2] proved that if v(x) is analytic and ω is a Diophantine,
which will mean that

‖nω‖ ≥ c(ω)
n(log n)a

, ∀n ≥ 2 (1.1)

with a > 1 arbitrary but fixed, the Lyapunov exponent L(E) is Hölder continuous.
Then You and Zhang showed the similar result with more general ω in [11]. Ob-
serving that for the Schrödinger cocycle, detA ≡ 1 and L1(E) +L2(E) = 0 for any
E, it makes that we can only study the Lyapunov exponent defined by

L(E) := lim
N→∞

1
N

∫
T

log ‖AN (x,E)‖dx. (1.2)

Recall that we say a function f(E) is Hölder continuous, when there are nonnegative
real constants C, α, such that

|f(E1)− f(E2)| < C|E1 − E2|α

for all E1 and E2 in the domain of f(E). The number α is called the exponent
of the Hölder condition or the Hölder exponent. Compared with the Schrödinger
equation, the Jacobi operator is more complicated with the cocycle

A(x,E) =
(
a(x)− E −b(x)
b(x+ ω) 0

)
.

The author in [8] showed that the Lyapunov exponent L(E) defined in (1.2) is
Hölder continuous, and the Hölder exponent does not depend on the L(E). It is a
better result than what in [2], as the Hölder exponent of the Lyapunov exponent in
[2] depends on L(E). Later, for the 2 × 2 analytic quasi-periodic cocycles A(x) ∈
Cωr (T,M2(C)) which have a holomorphic extension to a neighborhood of the strip
Sr := {z ∈ C : |Imz| ≤ r} and is endowed with the norm

‖A‖r := sup
z∈Sr
‖A(z)‖,

Jitomirskaya, Koslover and Schulteis [5] proved that the Lyapunov exponent L(A),
which is defined by

L(A) := lim
N→∞

1
N

∫
T

log ‖
0∏

j=N−1

A(x+ jω)‖dx, (1.3)

is a continuous for the fixed determinant with Diophantine ω. The author gave
a proof of this result for the High dimensional torus in [9]. Similar problems for
higher dimensional quasi-periodic cocycles have been studied by Schlag [7]. In
that paper, the Hölder continuity is proven if all Lyapunov exponents defined in
Oseledets Theorem are unequal.

This article concerns certain quasi-periodic cocycles (ω,A(x,E)) defined as fol-
low. The ω is defined as (1.1) and it is well know that almost every ω ∈ (0, 1)
satisfies this condition. The function x→ A(x,E) is a element of the Banach space
Cωr (T,M2(C)). The variable E in the matrix A(x,E) is defined as a parameter, and
the parameter space (E ,d) is a compact metric space. The Lyapunov exponents
L1(E) and L2(E) which are concerned in this paper are defined by the Oseledets
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Theorem. The purpose of this paper is to study some properties of these two Lya-
punov exponents which can be regarded as functions of the parameter E. Well, we
proof the following main theorem:

Theorem 1.1. Let A(x,E) be jointly continuous in T × E , analytic uniformly in
E ∈ E as a function x 7→ A(x,E), and Hölder continuous with Hölder exponent
β as a function E 7→ A(x,E). Assume L1(E0) − L2(E0) := 2L̃(E0) 6= 0. Then
there exists ρ > 0 such that for any E ∈ (E0 − ρ,E0 + ρ), L1(E) and L2(E) are
Hölder continuous with Hölder exponent α. Moreover, α = cβ, where c is a positive
and small constant depending only on A(x,E) but not on L̃(E0); and the ρ has an
expression as following:

ρ(A, L̃(E0)) =
[
L̃(E0) exp

(
− Cρ,1

L̃Cρ,2(E0)

)]1/β
,

where Cρ,1, Cρ,2 are the big constants depending only on A(x,E).

Remark 1.2. The parameter space (E ,d) here is always being the spectral spaces
of operators, such like the Schrödinger equation [2], the extended Happer’s model [4]
and the Jacobi operators [8]. It is well known that the cocycle is uniform hyperbolic
when the energy E is not in the spectral. Thus, we assume that this parameter
space is compact, as the discrete operators’ spectrums are always bounded.

The study of the Hölder exponent of the Lyapunov exponents is a hot spot in
our field. For the almost Mathieu operator with the cocycle

A(x,E) =
(
λ cosx− E −1

1 0

)
,

Avila and Jitomirskaya proved that the Lyapunov exponent defined by (1.2) is
Hölder continuous with Hölder exponent 1/2, provided ω is a Diophantine number
[1]. For the general Schrödinger operator with the cocycle

A(x,E) =
(
v(x)− E −1

1 0

)
,

supposing v(x) is a small perturbation of a trigonometric polynomial v0(x) of degree
k0 and L̃(E) > 0, Goldstein and Schlag proved that Lyapunov exponent is Hölder
continuous with Hölder exponent 1

2k0
− κ for any κ > 0 [3]. In this article, we

study the continuity of the Lyapunov exponent from a new perspective. We want
to show the relationship between the continuity of the function E → A(x,E) and
the continuity of the Lyapunov exponents. [10] showed that the assumption that
E 7→ A(x,E) is analytic, is necessary. Here only consider the condition that A(x,E)
is a 2×2 matrix, but we believe that the main theorem also work ifA(x,E) ∈Md(C).

This article is organized as follows. In section 2 we get the Large Deviation Theo-
rem and some upper bound estimate by using some propositions of the subharmonic
functions. In section 3 we apply Avalanche principle twice to prove the sharp large
deviation theorem. The proof of the main theorem is presented in section 4.

Some other common senses about analytic functions which will be applied in this
article are presented as follows. Because E is compact, there exist D(A), C2(A)
and Cmax(A) , such that for any E ∈ E ,

‖ log |detA(·, E)|‖1 ≤ D(A),

‖ log ‖A(·, E)‖ − 1
2

log |detA(·, E)|‖2 = C2(A,E) ≤ C2(A)
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and for any x ∈ T and any E ∈ E ,

‖A(x,E)‖ ≤ Cmax(A,E) ≤ Cmax(A).

Also, by the suppose that E 7→ A(x,E) is Hölder continuous in x ∈ T with Hölder
exponent β, it is easy to see that

|D(E)−D(E′)| ≤ CD(A)|E − E′|β , ∀E,E′ ∈ E ,

where D(E) :=
∫

T log |detA(x,E)|dx.

2. Large deviation theorem and the upper bound estimate

It is obvious that we can define L1(E) = limN→∞
1
N

∫
T log ‖AN (x,E)‖dx. For

easy notation, we replace L1(E) by L(E).
It is also convenient to replace AN (x,E) by AN (e(x), E) (with e(x) = e2πix),

where AN (z, E) is analytic function in the annulus Aρ = {z ∈ C : 1−ρ < |z| < 1+ρ}
uniformly in E ∈ E .

Set un(z, E) = 1
n log ‖AN (z, E)‖, dN (z, E) = 1

n log |detAN (z, E)|. Sometimes
we use uN (z) or uN for short, and the same for dN (z, E). Let LN,r(E) =<
uN (re(·)) >, Dr(E) =< log |detA(re(·)) >. For r = 1 we use notations LN (E)
and D(E).

Note that uN (z) and dN (z) are subharmonic functions in Aρ and then the fol-
lowing Large Deviation Theorem for the subharmonic functions applies, provided
ω satisfies (1.1).

Theorem 2.1 ([8, Theorem 2.15, Remark 2.16]). There exists Ň(A,ω) such that
for any N ≥ Ň , any 1− ρ

2 ≤ r ≤ 1 + ρ
2 and δ < 1 holds

meas({x : |uN (re(x))− Lr| > δ}) < exp(−čδ2N),

meas({x : |dN (re(x))−Dr| > δ}) < exp(−čδ2N),

where č = č(A).

Remark 2.2. (1) For the avalanche principle in the next section, we need to define
the unimodular matrix of AN (z, E):

ÃN (z, E) :=
1

|detAN (z, E)|1/2
AN (z, E), (2.1)

and the unimodular function of uN (z, E)

ũN (z, E) :=
1
N

log ‖ÃN (z, E)‖ = uN (z, E)− 1
2N

log |det(AN (z, E))|.

By Theorem 2.1, for any N ≥ Ň
meas({x : |ũN (re(x))− L̃N,r(E)| > δ}) < exp(−c̃δ2N), (2.2)

where L̃N,r(E) =< ũN (re(·)) >= LN,r − Dr
2 .

(2) In the proof of Theorem 2.1, the following lemma will be necessary and apply
in the later of this paper:

Lemma 2.3 ([8, Lemma 2.12]). For any 1− ρ
2 ≤ r ≤ 1 + ρ

2 , δ and K,

meas
{
x : |

K∑
k=1

uN (re(x+ kω))−KL̃N,r| > δK
}
< exp(−cδK),

where c = c(A,ω).



EJDE-2015/67 PROPERTIES OF LYAPUNOV EXPONENTS 5

(3) let us note that the constants c, c̃ here do not depend on δ. In particular,
one can choose here δ depending on N.

In the next part of this section, we estimate the upper bound of the subharmonic
function uN (z, E) and some other functions. Now we first review a lemma from [3].

Lemma 2.4 ([3, Lemma 4.1]). For any r1, r2 so that 1 − ρ
2 ≤ r1, r2 ≤ 1 + ρ

2 one
has

uN (re(·), E) > −LN (E)| ≤ Cρ|r − 1|.

Lemma 2.5. For any N ≥ Ň(A)
1
N

log ‖AN (e(x), E)‖ ≤ LN (E) + C6

( logN
N

)1/2
,

where C6 = C6(A) and Ň is as in Theorem 2.1.

Proof. Let 0 < δ < ρ
4 be arbitrary. Note that e(x + iy) = e−2πye(x), 1 − ρ

4 ≤
e−2πy ≤ 1 + ρ

4 , if |y| ≤ δ
4πeC′ρ

, where C ′ρ = max(1, Cρ) and e = exp(1). By Lemma
2.4, one has

|〈uN (re(·))〉 − LN (E)| ≤ δ, if |y| ≤ δ

4πeC ′ρ
. (2.3)

Set
By := {x : |uN (e(x+ iy))− LN (E)| > 2δ}.

It follows from (2.3) that for |y| ≤ δ
4πeC′ρ

, there holds

By ⊆ {x : |uN (e(x+ iy))− < uN (e(·+ iy)) > | > δ}.
By Theorem 2.1 one obtains meas By ≤ exp(−čδ2N). The function uN (e(x+ iy)) is
subharmonic, for e(x+iy) ∈ Aρ. Let x0 be arbitrary and y0 = 0. Then e(x0) ∈ A ρ

4
.

Due to subharmonicity one has for any t0 < ρ
4 ,

uN (e(x0))− LN (E) ≤ 1
πt20

∫∫
|(x,y)−(x0,0)|≤t0

[uN (e(x+ iy))− LN ] dx dy

=
1
πt20

∫
|y|≤t0

∫
|x−x0|≤

√
t20−|y|2

[uN (e(x+ iy))− LN ] dx dy.

Furthermore∫
|x−x0|≤

√
t20−|y|2

[uN (e(x+ iy))− LN ]dx

=
(∫
{|x−x0|≤

√
t20−|y|2}

T
By

+
∫
{|x−x0|≤

√
t20−|y|2}\By

)
[uN (e(x+ iy))− LN ]dx.

Note that

|uN (e(x+ iy))− LN | ≤ 2δ, if x 6∈ By and y <
δ

4eπC ′ρ
.

So ∣∣ ∫
{|x−x0|≤

√
t20−|y|2}\By

[uN (e(x+ iy))− LN ]dx
∣∣ ≤ 2δ × (2

√
t20 − |y|2).

By Cauchy-Schwartz inequality,∣∣ ∫
{|x−x0|≤

√
t20−|y|2}

T
By

[uN (e(x+ iy))− LN ]dx
∣∣
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≤
(∫ 1

0

|uN (e(x+ iy))− LN |2dx
)1/2

(meas By)1/2

≤ C7 exp(− č
2
δ2N).

Set t0 = δ/(4eπC ′ρ); then

uN (e(x))− LN ≤
1
πt20

∫
|y|≤t0

[C7 exp(− č
2
δ2N) + 2δ × (2

√
t20 − |y|2)]dy

≤ 1
πt20
× C7 exp(− č

2
δ2N)× (2t0) + 2δ

=
8eC7C

′
ρ

δ
exp(− č

2
δ2N) + 2δ.

Set δ =
(
C8 logN

N

)1/2, where C8 > 2/č. Then exp(− č
2C8 logN) < 1

N , and

uN (e(x)) ≤ LN+8eC7C
′
ρ×(

N

C8 logN
)1/2 1

N
+2(

C8 logN
N

)1/2 ≤ LN+C6(
logN
N

)1/2.

�

Lemma 2.6. Set

FN (x,E) :=
1

2N

N−1∑
n=0

(
log |detA(e(x+ nω), E)| −D(E)

)
.

Then
(1) For any N and any k holds

| log ‖ÃN (e(x+ kω), E)‖ − log ‖ÃN (e(x), E)‖ |

≤ 2k(logCmax(A,E)− 1
2
D(E))− kFk(x)− kFk(x+Nω),

(2) For any N and any k ≥ Ň holds

| log ‖ÃN (e(x+ kω), E)‖ − log ‖ÃN (e(x), E)‖ |

≤ 2kL̃k(E) + 2C6(k log k)1/2 − kFk(x)− kFk(x+Nω).

Proof. (1) Recall that any N , uN (e(x), E) ≤ logCmax(A,E). Then

log ‖ÃN (e(x), E)‖

= NuN (e(x), E)− 1
2

N−1∑
n=0

log |detA(e(x+ nω), E)|

≤ N logCmax(A,E)− 1
2

N−1∑
n=0

log |detA(e(x+ nω), E)|

= N(logCmax(A,E)− 1
2
D(E))− 1

2

N−1∑
n=0

(log |detA(e(x+ nω), E)| −D(E))

= N(logCmax(A,E)− 1
2
D(E))−NFN (x,E)

One has if detM = 1, then ‖M‖ = ‖M−1‖ and

ÃN (e(x+ kω), E)Ãk(e(x), E) = Ãk(e(x+Nω), E)ÃN (e(x), E).
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Thus,

| log ‖ÃN (e(x+ kω), E)‖ − log ‖ÃN (e(x))‖ |

≤ log ‖Ãk(e(x), E)‖+ log ‖Ãk(e(x+Nω), E)‖

≤ 2k(logCmax(A,E)− 1
2
D(E))− kFk(x,E)− kFk(x+Nω,E)

(2) From the previous lemma, we know that for any N ≥ Ň(A),

1
N

log ‖AN (e(x), E)‖ ≤ LN (E) + C6(
logN
N

)1/2.

Then the rest follows as in part (1). �

3. Avalanche principle and the sharp large deviation theorem

For the rest of the paper, without special statement, N ≥ Ň and N ≥ Ǩ from
now on (δ in Ǩ will be defined in Lemma 3.6). Furthermore, we do not use e(x+iy)
with y 6= 0 and write x instead of e(x) in all expressions.

Proposition 3.1. Let A1, . . . , An be a sequence of 2 × 2-matrices whose determi-
nants satisfy max1≤j≤n |detAj | ≤ 1. Suppose that

min
1≤j≤n

‖Aj‖ ≥ µ > n, max
1≤j<n

[log ‖Aj+1‖+ log ‖Aj‖ − log ‖Aj+1Aj‖] <
1
2

logµ

Then ∣∣∣ log ‖An · . . . ·A1‖+
n−1∑
j=2

log ‖Aj‖ −
n−1∑
j=1

log ‖Aj+1Aj‖
∣∣∣ < C

n

µ
(3.1)

with some constant C.

Proof. This lemma is called the Avalanche Principle. For the proof, see [2]. Re-
cently, Schlag [7] gave a general Avalanche Principle for n× n matrix. �

Lemma 3.2. Let c̃ be as in (2.2). Let L̃N (E) > 100δ > 0, where δ < 1 is a
constant not depending on N , and L̃2N (E) > 9

10 L̃N (E). Let N ′ = mN , m ∈ N and
m ≤ exp( c̃4δ

2N). Then

|L̃N ′(E) + L̃N (E)− 2L̃2N (E)| ≤ exp(−c̃′δ2N) +
2

9m
LN (E),

where c̃′ = c̃′(A). If exp( c̃10δ
2N) ≤ m ≤ exp( c̃4δ

2N), we have

|L̃N ′(E) + L̃N (E)− 2L̃2N (E)| ≤ exp(−ĉδ2N),

where ĉ = ĉ(A). Furthermore, if L̃N0(E) > 100δ > 0, L̃2N0(E) > 9
10 L̃N0(E) and

exp(−ĉδ2N0) ≤ δ/12, then there exists Ñ0 = Ñ0(A, δ,N0) ≤ (exp( c̃8δ
2N0) + 1)N0

such that for any N ≥ Ñ0,

|L̃N (E) + L̃N0(E)− 2L̃2N0(E)| < exp(−c̄′δ2N0),

where c̄′ = c̄′(A). Furthermore,

|L̃(E) + L̃N0(E)− 2L̃2N0(E)| < exp(−c̄δ2N0),

where c̄ = c̄(A).
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Proof. In section three in [8], we proved this lemma for Jacobi operator, which is
a special 2× 2 analytic matrix. It is easy to see that the proof there is suitable in
this general condition. �

Lemma 3.3. Assume L̃(E0) > 0. There exists Č(A, L̃(E0)) such that with ρ′0 =[ L̃(E0)
200N exp

(
− Č(A, L̃(E0))N

)]1/β, one has

|L̃N (E0)− L̃N (E)| < L̃(E0)
100

,

for any |E − E0| < ρ′0(E0, N) and any N .

Proof. Note that

| ‖AN (x,E0)‖ − ‖AN (x,E)‖ |
≤ ‖AN (x,E0)−AN (x,E)‖

≤
N−1∑
j=0

(
‖A(x+ (N − 1)ω,E0) . . . A(x+ (j + 1)ω,E0)‖

× ‖A(x+ jω,E0)−A(x+ jω,E)‖ ‖A(x+ (j − 1)ω,E) . . . A(x,E)‖
)

≤ NCmax(A)N−1 × C(A)|E0 − E|β .

(3.2)

By (2.1), if |detAN (x,E0)| ≤ |detAN (x,E)|, one has

| ‖ÃN (x,E0)‖ − ‖ÃN (x,E)‖ | =
∣∣ ‖AN (x,E0)‖
|detAN (x,E0)|1/2

− ‖AN (x,E)‖
|detAN (x,E)|1/2

∣∣
≤ NCmax(A)N−1C(A)|E0 − E|β

|detAN (x,E0)|1/2

(3.3)

Assume for instance that ‖ÃN (x,E0)‖ ≥ ‖ÃN (x,E)‖. Then

| log ‖ÃN (x,E0)‖ − log ‖ÃN (x,E)‖ |

= log
‖ÃN (x,E0)‖
‖ÃN (x,E)‖

= log(1 +
‖ÃN (x,E0)‖ − ‖ÃN (x,E)‖

‖ÃN (x,E)‖
)

≤ ‖ÃN (x,E0)‖ − ‖ÃN (x,E)‖
‖ÃN (x,E)‖

≤ ‖ÃN (x,E0)‖ − ‖ÃN (x,E)‖

≤ NCmax(A)N−1C(A)|E0 − E|β

|detAN (x,E0)|1/2
.

(3.4)

By Theorem 2.1, for any δ and any K

meas
{
x : |

K∑
k=1

log |detA(x+ kω)| −K〈log |detA(·)|〉| > δK
}
< exp(−c′δK).

Thus if x 6∈ B1, meas B1 < exp(−c′ × 800C2(A)

L̃(E0)c′
N) = exp(− 800C2(A)

L̃(E0)
N), then

| log |detAN (x,E0)| | < |〈log |detA(·, E0)|〉|N +
800C2(A)
L̃(E0)c′

N

= |D(E0)|N +
800C2(A)
L̃(E0)c′

N
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≤ D(A)N +
800C2(A)
L̃(E0)c′

N = Ĉ(A, L̃(E0))N. (3.5)

It is obvious that the same estimate holds in the other three conditions.
So if x 6∈ B1, meas B1 < exp(− 800C̃(A)1/2

L̃(E0)
N), then

|ũN (x,E0)− ũN (x,E)| ≤ Cmax(A)N−1C(A)|E0 − E|β exp(Ĉ(A, L̃(E0))N)

≤ exp
(
Č(A, L̃(E0))N

)
|E0 − E|β .

Set ρ′0 =
[ L̃(E0)

200 exp
(
−Č(A, L̃(E0))N

) ]1/β . Then, if |E − E0| ≤ ρ′0, we have

|ũN (x,E0)− ũN (x,E)| < L̃(E0)
200 , and if x 6∈ B1,meas B1 < exp(− 800C̃(p,q)1/2

L̃(E0)
N), we

also have ∣∣∣ ∫
T\B1

ũN (x,E0)dx−
∫

T\B1

ũN (x,E)dx
∣∣∣ < L̃(E0)

200
. (3.6)

By the Cauchy-Schwartz inequality,∣∣ ∫
B1

ũNdx
∣∣ =

∣∣ ∫
T
ũN1B1dx

∣∣
≤ ‖ũN (E)‖2(meas B1)1/2

≤ C2(A) exp(−400C2(A)
L̃(E0)

N)

for E or E0. As y exp(−ξy) ≤ ξ−1 for any y, ξ > 0. Thus∣∣ ∫
B1

ũNdx
∣∣ ≤ L̃(E0)

400N
≤ L̃(E0)

400
(3.7)

for E or E0. Combining (3.6) with (3.7), one has

|L̃N (E0)− L̃N (E)| < L̃(E0)
200

+ 2
L̃(E0)

400
=
L̃(E0)

100
.

�

Lemma 3.4. Assume L̃(E0) > 0. There exists ρ = ρ(A, L̃(E0)) > 0 and Ñ0 =
Ñ0(A,E0) < +∞ such that for any N ≥ Ñ0 and any |E − E0| < ρ

|L̃N (E)− L̃(E)| < 1
20
L̃(E),

11
10
L̃(E0) > L̃(E) >

9
10
L̃(E0).

Proof. One has limn→∞ L̃(E0) = L̃(E0). Therefore, there exists N0 = N0(A,E0)
such that the following statements hold:

(1) |L̃n(E0)−L̃(E0)| < L̃(E0)
100 for n ≥ N0(A,E0), which implies that L̃N0(E0)−

L̃2N0(E0) < L̃(E0)
100 , as L̃(E0) ≤ L̃2N0(E0) ≤ L̃N0(E0);

(2) exp(−ĉδ2N0) ≤ δ
12 , exp(−c̄δ2N0)) < 1

50 L̃(E0), exp(−c̄′δ2N0)) < 1
50 L̃(E0)

with δ = min( 1
200 L̃(E0), 1

2 ), where ĉ , c̄ and c̄′ are as Lemma 3.2.

Using Lemma 3.3 applied to N0 and 2N0. One has for |E − E0| < ρ(A, L̃(E0)) :=
ρ′0(L̃(E0), 2N0),

L̃N0(E) ≥ L̃(E0)− |L̃N0(E)− L̃N0(E0)| − |L̃N0(E0)− L̃(E0)|

> L̃(E0)− L̃(E0)
100

− L̃(E0)
100

=
49
50
L̃(E0),

(3.8)
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and
|L̃N0(E)− L̃2N0(E)|

≤ |L̃N0(E)− L̃N0(E0)|+ |L̃N0(E0)− L̃2N0(E0)|+ |L̃2N0(E0)− L̃2N0(E)|

<
L̃(E0)

100
+
L̃(E0)

100
+
L̃(E0)

100
=

3
100

L̃(E0) <
1
10
L̃N0(E).

(3.9)

Thus Lemma 3.2 applies with L̃N0(E), δ, N0 and E. Then there exists a number
Ñ0 = Ñ0(A, δ,N0) ≤ (exp( c̃8δ

2N0) + 1)N0 such that for any N ≥ Ñ0 there holds

|L̃N (E) + L̃N0(E)− 2L̃2N0(E)| < exp(−c̄′δ2N0),

|L̃(E) + L̃N0(E)− 2L̃2N0(E)| < exp(−c̄δ2N0), (3.10)

where c̄′ = c̄′(A) and c̄ = c̄(A) are as in Lemma 3.2. These imply

|L̃(E)− L̃N (E)| ≤ exp(−c̄′δ2N0) + exp(−c̄δ2N0)

<
1
50
L̃(E0) +

1
50
L̃(E0) =

1
25
L̃(E0).

(3.11)

Combining (3.8), (3.9) with (3.10), one obtains

|L̃(E0)− L̃(E)|

≤ |L̃(E) + L̃Ñ0
(E)− 2L̃2Ñ0

(E)|+ |L̃(E0)− L̃Ñ0
(E)|+ 2|L̃Ñ0

(E)− L̃2Ñ0
(E)|

<
1
50
L̃(E0) +

1
50
L̃(E0) + 2

3
100

L̃(E0) =
1
10
L̃(E0).

It implies
11
10
L̃(E0) > L̃(E) >

9
10
L̃(E0),

|L̃(E)− L̃N (E)| < 1
25
L̃(E0) <

1
25

(
10
9

)L̃(E) =
2
45
L̃(E) <

1
20
L̃(E).

�

Remark 3.5. From (3.5), Ĉ(A, L̃(E0)) = D(A) + 800C̃(A)1/2

L̃(E0)c′
. It is obvious that

Ĉ(A, L̃(E0)) is a positive constant, which is smaller when L̃(E0) becomes larger.
Thus Č(A, L̃(E0)) = Ĉ(A, L̃(E0)) + logC(A) is a positive and monotonically in-
creasing function of L̃(E0). Recall that

0 < ρ(A, L̃(E0)) =
[ L̃(E0)

200
exp

(
− 2Č(A, L̃(E0))N0

)]1/β
< 1. (3.12)

N0 depends on the rate of convergence of L̃n(E0)→ L̃(E0) (see the proof of Lemma
3.4). On the other hand, in Lemma 3.2, let m = exp( c̃8δ

2N), N ′ = mN , then

|L̃N ′ − L̃2N ′ | < 2 exp(−ĉδ2N) <
( 1
N ′
)C1(A)

.

Like the induction in the proof of Lemma 3.2, one gets

|L̃N − L̃| <
( 1
N

)C2(A)
. (3.13)

Actually, in [7], the better estimate holds as

|L̃N − L̃| <
C

N
,
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with the large constant C depending on L̃. Finally, combining (3.12), (3.13) with
some assumptions in Lemma 3.2 and Lemma 3.4, we have

ρ(A, L̃(E0)) '
[
L̃(E0) exp

(
− Cρ,1

(L̃(E0))Cρ,2

)]1/β
,

where Cρ,1, Cρ,2 are the big constants depending only on A(x,E).

The first part of this section shows that the uniform property that for any E ∈
(E0 − ρ,E0 + ρ) and for the uniformly large N , the distance between L̃N (E) and
L̃(E) is controlled by a uniform constant L̃(E). This property is very important
and will be applied repeatedly in the following part of this paper, such like the
sharp Large Deviation Theorem (Lemma 3.6) and the proof of the main theorem
(Section 4).

Lemma 3.6. Assume L̃(E0) > 0. There exist N1(A,E0) such that for any N ≥ N1

and any E ∈ (E0 − ρ,E0 + ρ) holds

meas{x : |ũN (x,E)− L̃(E)| > L̃(E)
10
} < exp(−cL̃(E)N),

where constant c depends only on A, but does not depend on E or E0.

Proof. Choose N̄0 such that

N̄0 > max
(104C6

L̃(E0)
,max
E∈E

106(logCmax(A,E)− 1
2D(E))

L̃(E0)
, 40, Ñ0

)
,

log N̄0 < N̄
1/3
0

(3.14)

where (logCmax(A,E) −D(E)) is as in Lemma 2.6, C6 is as in Lemma 2.5, Ñ0 is
as in Lemma 3.4.

Take N ≥ N̄3
0 , K := 1

800N ≥ N̄0. Thus for any E ∈ (E0 − ρ,E0 + ρ),

L̃K(E) < (1 +
1
20

)L̃(E). (3.15)

Using Lemma 2.6 one obtains

|ũN (x,E)− 1
K

K∑
k=1

ũN (x+ kω,E)|

≤ 1
KN

[ N̄0∑
k=1

2k(logCmax(A,E)− 1
2
D(E)) +

K∑
k=N̄0+1

2kL̃k(E)

+
K∑

k=N̄0+1

2C6(k log k)1/2
]
− 1
KN

K∑
k=1

(kFk(x) + kFk(x+Nω))

= I + II.

By (3.14), (3.15) and Lemma 3.4, one has

I <
N̄2

0 (logCmax(A,E)− 1
2D(E))

KN
+ 4

21
20
L̃(E)

K

N
+ +

C6K
1/2(logK)1/2

N

<
L̃(E0)

320
+
L̃(E)
160

+
L̃(E0)

320
=
L̃(E)

80
.

(3.16)
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If
∑K
k=1 kFk(x,E) < −KN160 L̃(E), then there is a k such that kFk(x,E) < − N

160 L̃(E).
We know that

meas{x : |kFk(x)− k〈Fk(x)〉| > kδ} < exp(−cδk),

Since 〈Fk〉 = 0,

meas{x : kFk(x) < − N

160
L̃(E)}

≤ meas{x : |kFk(x)| > N

160
L̃(E)}

< exp(−cNL̃(E)
160k

k) = exp(−c2NL̃(E)).

So

meas
{
x :

K∑
k=1

kFk(x) < −KN
160

L̃(E)
}

≤ K exp(−c2NL̃(E) < exp(−c′2L̃(E)N),

(3.17)

if N is large enough depending on L(E0) (see Lemma 3.4 and (3.14)). Combining
(3.16) with (3.17) one has

meas
{
x : |ũN (x,E)− 1

K

K∑
k=1

ũN (x+ kω,E)| > L̃(E)
40

}
≤ 2 exp(−c′2NL̃(E)) < exp(−c′′L̃(E)N).

(3.18)

On the other hand, recall that by Lemma 2.3, for any K,

meas
{
x : |

K∑
k=1

uN (x+ kω)−K < uN (·) > | > δK
}
< exp(−cδK),

meas
{
x : |

K∑
k=1

1
N

log |detA(x+ kω)| −KD| > δK
}
< exp(−c′δK).

By the definition of ũN (x,E) and L̃N (E), there exists Ǩ = Ǩ(A,E0) such that for
any K > Ǩ holds (with δ := L̃(E)

40 )

meas
{
x : |

K∑
k=1

ũN (x+ kω,E)−K〈ũN (·, E)〉| > L̃(E)
40

K
}
≤ exp(−ĉL̃(E)K).

Note that if ∣∣ 1
K

K∑
k=1

ũN (x+ kω,E)− 〈ũN (·, E)〉
∣∣ ≤ L̃(E)

40
,

then

| 1
K

K∑
k=1

ũN (x+ kω,E)− L̃(E)|

≤ | 1
K

K∑
k=1

ũN (x+ kω,E)− L̃N (E)|+ |L̃N (E)− L̃(E)|

<
1
40
L̃(E) +

1
20
L̃(E) =

3
40
L̃(E) .
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Therefore

meas
{
x : | 1

K

K∑
k=1

ũN (x+ kω,E)− L̃(E)| > 3
40
L̃(E)

}
< exp(−ĉL̃(E)K).

Combining this with (3.18), there exists N1 = N1(A,E0) such that for any N ≥ N1

holds

meas{x : |ũN (x,E)− L̃(E)| > L̃(E)
10
} < exp(−c0L(E)N),

where c0 depends only on A. Here we replace c0 by c for convenient notations. �

Lemma 3.7. Assume L̃(E0) > 0. Let N ≥ N1 and E ∈ (E0 − ρ,E0 + ρ) be
arbitrary. Then

|L̃(E) + L̃N (E)− 2L̃2N (E)| < exp(−cL̃(E)N), (3.19)

where c = c(A).

Proof. By the sharp Large Deviation Theorem, Lemma 3.6, this lemma get better
conclusion than Lemma 3.2, which comes from Theorem 2.1 and Remark 2.2, but
the proof here is the same as the later one. �

4. proof of the main theorem

Let L̃(E0) > 0. By Lemma 3.4 and (3.11), one has that for any N ≥ Ñ0(A,E0)
and E ∈ (E0 − ρ,E0 + ρ),

L̃N (E) ≤ L̃(E) +
1
25
L̃(E0) <

11
10
L̃(E0) +

1
25
L̃(E0) =

57
50
L̃(E0). (4.1)

Let E′ → E such that |D(E)−D(E′)| ≤ 1
5 L̃(E0). Thus,

LN (E)− 1
2
D(E′) ≤ LN (E) +

1
10
L̃(E0)− 1

2
D(E)

= L̃N (E) +
1
10
L̃(E0) ≤ 62

50
L̃(E0).

(4.2)

Assume ‖ÃN (x,E)‖ ≥ ‖ÃN (x,E′)‖ and |detAN (x,E)| ≤ |detAN (x,E)|. By
(3.2), (3.3) and (3.4),

| log ‖ÃN (x,E)‖ − log ‖ÃN (x,E′)‖ |

≤ ‖ÃN (x,E)‖ − ‖ÃN (x,E′)‖ =
‖AN (x,E)‖

|detAN (x,E)|1/2
− ‖AN (x,E′)‖
|detAN (x,E′)|1/2

≤ ‖AN (x,E)‖ − ‖AN (x,E′)‖
|detAN (x,E)|1/2

≤ ‖AN (x,E)−AN (x,E′)‖
|detAN (x,E)|1/2

≤ C(A)|E − E′|β
∑N−1
j=0 ‖

∏N−j
m=1A(x+ (N −m)ω,E)‖ ‖

∏0
m=j−1A(x+mω,E′)‖

|detAN (x,E)|1/2

= C(A)|E − E′|β
N−1∑
j=0

(
‖
N−j∏
m=1

A(x+ (N −m)ω,E)‖ ‖
0∏

m=j−1

A(x+mω,E′)‖
)

× exp(−N
2
D(E)) exp(−NFN (x,E));

(4.3)
see Lemma 2.6 for the definition of FN (x).
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Let N ≥ N2, where N2(A) := maxE1,E2∈E
2 logCmax(A,E1)−D(E2)

L(E0) Ñ0 ≥ 2Ñ0. Then

(4.3) ≤
( Ñ0∑
j=1

+
N−Ñ0∑
j=Ñ0+1

+
N∑

j=N−Ñ0+1

)
‖
N−j∏
m=1

A(x+ (N −m)ω,E)‖

× ‖
0∏

m=j−1

A(x+mω,E′)‖ exp(−N
2
D) exp(−NFN (x,E))C(A)|E − E′|β

:= I + II + III.

By Lemma 2.5 and Lemma 2.6, one has

I, III ≤
Ñ0∑
j=1

exp
(
LN−j(E)(N − j) + C6(N − j)1/2 log1/2(N − j)

+ logCmax(A,E′)(j − 1)− N

2
D(E)

)
exp(−NFN (x,E))× C(A)|E − E′|β

≤
Ñ0∑
j=1

exp
(
L̃N−j(E)(N − j) + C6N

1/2 log1/2N +
(

logCmax(A,E′)

− 1
2
D(E)

)
(j − 1)− 1

2
D(E)

)
exp(−NFN (x,E))× C(A)|E − E′|β

≤
Ñ0∑
j=1

exp
(1

2
L̃(E0)N +

62
50
L̃(E0)N + C6N

1/2 log1/2N − 1
2
D
)

× exp(−NFN (x,E))C(A)|E − E′|β ,
and

II ≤
N−Ñ0∑
j=Ñ0+1

exp
(
LN−j(E)(N − j) + C6(N − j)1/2 log1/2(N − j) + Lj−1(E′)(j − 1)

+ C6(j − 1)1/2 log1/2(j − 1)− N

2
D(E)

)
exp(−NFN (x,E))× C(A)|E − E′|β

≤
N∑

j=N−Ñ0+1

exp
((

logCmax(A,E)− 1
2
D(E)

)
(N − j) +

(
Lj−1(E′)

− 1
2
D(E)

)
(j − 1) + C6N

1/2 log1/2N − 1
2
D(E)

)
× exp(−NFN (x,E))× C(A)|E − E′|β

≤
N−Ñ0∑
j=Ñ0+1

exp
(62

50
L̃(E0)N + C6N

1/2 log1/2N − 1
2
D
)

× exp(−NFN (x,E))C(A)|E − E′|β .
Combining these expressions, we have

(4.3) ≤
N∑
j=1

exp
(87

50
L̃(E0)N + C6N

1/2 log1/2N − 1
2
D
)

exp(−NFN (x,E))

× C(A)|E − E′|β .
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There exists N3 = N3(A,E0) such that for any N ≥ N3 there holds

C(A)
N∑
j=1

exp
(87

50
L̃(E0)N + C6N

1/2 log1/2N − 1
2
D
)
≤ exp(2L̃(E0)N).

It is easy to see that there are similar processes for the other three conditions. Thus

(4.3) ≤ |E − E′|β exp(2L̃(E0)N) max{exp(−NFN (x,E)) exp(−NFN (x,E′))}.

Set
B(E) := {x : NFN (x,E) < −NL̃(E0)},

then

meas(B(E)) ≤ meas({x : |NFN (x,E)−N〈FN (·, E)〉| > NL̃(E0)})

< exp(−cL̃(E0)N),

since < FN (·, E) >= 0. By the Cauchy-Schwartz inequality, one has

|L̃N (E)− L̃N (E′)| =
∫

T\(B(E)
S

B(E′))

|ũN (x,E)− ũN (x,E′)|dx

+
∫

B(E)
S

B(E′)

|ũN (x,E)− ũN (x,E′)|dx

< |E − E′|β exp(3L̃(E0)N) + 4C2(A) exp(− c
2
L̃(E0)N).

Let N ≥ N4 := max(N1, N2, N3), where N1 is as in Lemma 3.6. By Lemma 3.7,

|L̃(E)− L̃(E′)|

≤ |L̃(E) + L̃N (E)− 2L̃2N (E)|+ |L̃(E′) + L̃N (E′)− 2L̃2N (E′)|

+ |L̃N (E)− L̃N (E′)|+ 2|L̃2N (E)− L̃2N (E′)|

< 2 exp(−cL̃(E0)N) + 3|E − E′|β exp(3L̃(E0)N) + 12C2(A) exp(− c
2
L̃(E0)N)

< exp(−c7L̃(E0)N) + 3 exp(3L̃(E0)N)|E − E′|β ,

where c7 = c7(A). Then when E′ → E, there exists N ≥ N4 such that

exp
(
− (6 + c7)L̃(E0)(N + 1)

)
≤ |E − E′|β ≤ exp

(
− (6 + c7)L̃(E0)N

)
.

It implies

|L̃(E)− L̃(E′)| < 4 exp(−c7L̃(E0)N)

= 4 exp
(
− N

N + 1
c7L̃(E0)(N + 1)

)
< exp

(
− 2c7

3
L̃(E0)(N + 1)

)
= exp

(
− 2c7

18 + 3c7
L̃(E0)N

)
< |E − E′|

2c7×β
18+3c7 .

By the definition, one also has

|L1(E)− L1(E′)|, |L2(E)− L2(E′)| ≤ |L̃(E)− L̃(E′)|+ 1
2
|D(E)−D(E′)|

< |E − E′|
2c7×β
18+3c7 +

CD(A)
2
|E − E′|β

≤ (1 +
C(A)

2
)|E − E′|

2c7×β
18+3c7 .
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