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BRANCHING ANALYSIS OF A COUNTABLE FAMILY OF
GLOBAL SIMILARITY SOLUTIONS OF A FOURTH-ORDER

THIN FILM EQUATION

PABLO ALVAREZ-CAUDEVILLA, VICTOR A. GALAKTIONOV

Abstract. The main goal in this article is to justify that source-type and

other global-in-time similarity solutions of the Cauchy problem for the fourth-

order thin film equation

ut = −∇ · (|u|n∇∆u) in RN × R+ where n > 0, N ≥ 1,

can be obtained by a continuous deformation (a homotopy path) as n → 0+.
This is done by reducing to similarity solutions (given by eigenfunctions of a

rescaled linear operator B) of the classic bi-harmonic equation

ut = −∆2u in RN × R+, where B = −∆2 +
1

4
y · ∇+

N

4
I.

This approach leads to a countable family of various global similarity pat-

terns of the thin film equation, and describes their oscillatory sign-changing

behaviour by using the known asymptotic properties of the fundamental so-
lution of bi-harmonic equation. The branching from n = 0+ for thin film

equation requires Hermitian spectral theory for a pair {B,B∗} of non-self
adjoint operators and leads to a number of difficult mathematical problems.

These include, as a key part, the problem of multiplicity of solutions, which is

under particular scrutiny.

1. Introduction: TFEs, connections with classic PDE theory, layout

1.1. Main models, applications, and preliminaries. We study the global-in-
time behaviour of solutions of the fourth-order quasilinear evolution equation of
parabolic type, called the thin film equation (TFE-4),

ut = −∇ · (|u|n∇∆u) in RN × R+ , (1.1)

where ∇ = gradx, ∆ = ∇ · ∇ stands for the Laplace operator in RN , and n > 0 is
a real parameter. The TFE-4 (1.1) is written for solutions of changing sign, which
can occur in the Cauchy problem (CP) and also in some free-boundary problems
(FBPs); see proper settings shortly.

Fourth- and sixth-order TFEs with a similar form to (1.1) such as (TFE-6)

ut = ∇ · (|u|n∇∆2u) , (1.2)
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as well as more complicated doubly nonlinear degenerate parabolic models (see
[1,27] for other typical examples), have various applications in thin film, lubrication
theory, and in several other hydrodynamic-type problems.

These equations model the dynamics of a thin film of viscous fluid, such as the
spreading of a liquid film along a surface, where u stands for the height of the film
(then clearly u ≥ 0 that naturally leads to a FBP setting).

Specifically, when n = 3 we are dealing with a problem in the context of lubri-
cation theory for thin viscous films that are driven by surface tension and when
n = 1 with Hele–Shaw flows. We refer e.g. to [15, 17, 24, 25] for recent surveys and
for extended lists of references concerning physical derivations of various models,
key mathematical results and further applications. Moreover, since the 1980s such
equations also play quite a special role in nonlinear PDE theory.

It is worth mentioning that nonnegative solutions with compact support of var-
ious FBPs are mostly physically relevant, and that the pioneering mathematical
approaches by Bernis and Friedman in 1990 [7] were developed mainly for such
solutions in the one dimensional case.

Furthermore, some very important extensions to the N-dimensional case were
achieved by Beretta, Bertsch and Dal Passo in [5].

However, solutions of changing sign have already been under scrutiny for a few
years (see [11,16,18]), which in particular, can have some biological motivations as
stated in personnal communications with Professor J. R. King, to say nothing of
general PDE theory.

It turned out that these classes of the so-called “oscillatory solutions of changing
sign” of (1.1) were rather difficult to tackle rigorously by standard and classical
methods. Principally, due to the additional fact that any kind of detailed analysis
for higher-order equations is much more difficult than for second-order counterparts
(such as the notorious classic porous medium equation ut = ∆(|u|n−1u)) in view of
the lack of maximum principle, comparison and order preserving semigroups and
potential properties of the operators involved.

Thus, practically all the existing methods for monotone or variational operators
are not applicable to the TFE-4 (1.1). Moreover, for TFEs such as (1.1) even their
self-similar radial (i.e. ODE) representatives can lead to several surprises in trying
to describe sign-changing features close to interfaces; see [16] for a collection of such
hard properties.

On the other hand, it also turned out that, for better understanding of such sin-
gular oscillatory properties of solutions of the CP for (1.1), it is fruitful to consider
the (homotopic) limit n → 0+ (see [2] for an extensive analysis of this homotopic
approach) owing to Hermitian spectral theory developed in [14] for a pair {B,B∗}
of linear rescaled operators for n = 0, i.e. for the bi-harmonic equation

ut = −∆2u in RN×R+ , B = −∆2 +
1
4
y ·∇+

N

4
I, B∗ = −∆2− 1

4
y ·∇, (1.3)

which will be key for our further analysis and whose solutions are C∞, have infinite
speed of propagation and oscillates infinitely near the interfaces.

1.2. Main results. In this article, our goal is, using this continuity/homotopy
deformation approach as “n → 0+”, to reduce the nonlinear eigenvalue problem
(described in detail later on)

−∇ · (|f |n∇∆f) + βy · ∇f + αf = 0 in RN , (1.4)
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to the linear eigenvalue problem with the non-self-adjoint operator B, after writing
the solutions of equation (1.1) by

u(x, t) := t−αf(y), with y :=
x

tβ
, β =

1− nα
4

, for t > 0,

with f as the similarity profiles satisfying the nonlinear eigenvalue problem (1.4).
Thus, we shall focus our analysis on the Cauchy problem (1.1) for exponents

n > 0, which are assumed to be sufficiently small, studying large time behaviour of
the solutions of (1.1), i.e. source-type solutions or global asymptotic behaviour (as
t→∞) with conservation of mass, in the case on a non-zero mass, i.e.,∫

u(x, t) dx 6= 0.

Thus, we perform a systematic analysis of the behaviour of the similarity solu-
tions through a so-called homotopic approach (branching from n = 0) via branching
theory, by using the Lyapunov–Schmidt methods, obtaining relevant results and
properties for the solutions of the self-similar equation associated with (1.1) and,
hence, for the proper solutions of (1.1).

Loosely speaking, this approach is characterized as follows: good proper (simi-
larity or not) solutions of the Cauchy problem for the TFE (1.1) are those that can
be continuously deformed (via a homotopic path) as n→ 0+ to the corresponding
solutions of the bi-harmonic equation (1.3), which will play a crucial role in the
subsequent analysis. Note that in [3] this analysis has been carried out directly on
the parabolic TFE-4 (1.1).

Then, under the previous conditions we are able to show the following result.

Theorem 1.1. For sufficiently small n > 0

there exists a countable set of solutions {fk, αk}|σ|=k≥0, (1.5)

which depend directly on the dimension of the eigenfunctions of the linear operator
B, where σ is a multiindex in RN to numerate the pairs.

Remark 1.2. Note that this continuity with respect to the parameter n was already
observed by Bernis, Hulshof & Quirós in [9]. For the one dimensional case and
assuming non-negative solutions for (1.1) they ascertained that the limit when
n→ 0+ cannot be the CP due to the oscillatory properties of (1.3). However, since
we are supposing changing sign solutions for the the equation (1.1) our limiting
problem might be the CP (1.3).

Furthermore, our homotopic-like approach is based upon the spectral properties
known for the linear counterpart (1.3) of the TFE (1.1). Moreover, owing to the
oscillatory character of the solutions of the bi-harmonic equation (1.3), being a
“limit case” of the TFE (1.1), close to the interfaces this homotopy study exhibits
a typical difficulty concerning the desired structure of the transversal zeros of solu-
tions, at least for small n > 0. The proof of such a transversality zero property is a
difficult open problem, though qualitatively, this was rather well understood, [15].

Remark 1.3. It is worth mentioning that, unlike the FBPs, studied in hundreds of
papers since the 1980s (see [24] and [16] for key references and alternative versions
of uniqueness approaches), thin film theory for the Cauchy problem for (1.1) or
(1.7) has recently led to a number of difficult open problems and is not still fully
developed; see the above references as a guide to main difficulties and ideas.



4 P. ALVAREZ-CAUDEVILLA, V. A. GALAKTIONOV EJDE-2015/90

In fact, the concept of proper solutions is still rather obscure for the Cauchy
problem, since any classic or standard notions of weak-mild-generalized-. . . solutions
fail in the CP setting. Therefore, the complete definition of the solutions of the CP
for (1.1) is still unclear, although the results obtained in [3] provide us with a great
improvement in that respect.

1.3. Previous related results, further extensions and layout. Observe that
this approach certainly has great similarities to a previous one developed in the
last two decades of the twentieth century for second-order operators. It is well
understood that for any n > 1, (PME-2)

ut = ∆(|u|n−1u) (1.6)

has a family of exact self-similar compactly supported source-type solutions (the
ZKB ones from 1950s), which describes the large time behaviour of compactly
supported solutions with conservation of mass.

In addition, (1.6) also admits a countable family of other similarity solutions;
see [22] for key references and most recent results.

The PME-2 (1.6) can be interpreted as a nonlinear degenerate version of the
classic heat equation for n = 0,

ut = ∆u in RN × R+.

Note that passing to the limit n→ 0+ in (1.6) for nonnegative solutions was consid-
ered a difficult mathematical problem in the 1970s-80s, which exhibited typical (but
clearly simpler than in the TFE case) features of a “homotopy” transformation of
PDEs. This study was initiated by Kalashnikov in 1978 [26] for the one-dimensional
case.

Further detailed results in RN were obtained in [4]; see also [12]. More recent
estimates were obtained in [29,30] for the 1D PME-2 (1.6) establishing the rate of
convergence of solutions as n → 0±, such as O(n) as n → 0− (i.e. from n < 0,
the fast diffusion range, where solutions are smoother) in L1(R) [29], and O(n2) as
n→ 0+ in L2(R× (0, T )) [30].

However, most of such convergence results are obtained for nonnegative solutions
of (1.6). For solutions of changing sign, even for this second-order equation (1.6),
there are some open problems; see [22] for references and further details.

Thus, in the twenty-first century, higher-order TFEs such as (1.1), though look-
ing like a natural counterpart/extension of the PME-2 (1.6), corresponding math-
ematical TFE theory is more complicated with several remaining problems still
open.

Finally, to summarize let us also mention that higher-order semilinear and quasi-
linear parabolic equations occur in applications to thin film theory, nonlinear dif-
fusion, lubrication theory, flame and wave propagation (the Kuramoto–Sivashinsky
equation and the extended Fisher–Kolmogorov equation), phase transition at crit-
ical Lifshitz points and bi-stable systems (see Peletier-Troy [31] for further details,
models and results).

Furthermore, the analysis carried out in this paper could be extended to more
complicated models such as the unstable fourth-order thin film equation (the un-
stable TFE-4):

ut = −∇ · (|u|n∇∆u)−∆(|u|p−1u) , (1.7)
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with the unstable homogeneous second-order diffusion term, where p > 1 is a fixed
exponent; see [15] for physical motivations, references, and other basics. Here,
(1.7) represents a fourth-order nonlinear parabolic equation with the backward
(unstable) diffusion term in the second-order operator. Note, that the fourth-
order term reflects surface tension effects and the second-order term can reflect
gravity, van der Waals interactions, thermocapillarity effects, or geometry of the
solid substrate.

Although, the analysis of equations such as (1.7) will be the ultimate goal, they
are not within the scope of this paper. Thus, the layout of the paper is as follows:

(I) Problem setting and spectral theory for the linear equation (1.3). Sections
2 and 3

(II) Proof of the main results of the paper. Study of a countable family of
global self-similar solutions of (1.1) via their branching from eigenspaces at
n = 0+, Section 4.

2. Problem setting and self-similar solutions

2.1. The FBP and CP. For both the FBP and the CP, the solutions are assumed
to satisfy standard free-boundary conditions or boundary conditions at infinity:

u = 0, zero-height,
∇u = 0, zero contact angle,

−n · ∇(|u|n∆u) = 0, conservation of mass (zero-flux),
(2.1)

at the singularity surface (interface) Γ0[u], which is the lateral boundary of

suppu ⊂ RN × R+, N ≥ 1 ,

where n stands for the unit outward normal to Γ0[u]. Note that, for sufficiently
smooth interfaces, the condition on the flux can be read as

lim
dist(x,Γ0[u])↓0

−n · ∇(|u|n∆u) = 0.

For the FBP, dealing with nonnegative solutions, this setting is assumed to define
a unique solution. However, this uniqueness result is known in 1D only; see [24],
where the interface equation was included into the problem setting. We also refer
to [16, § 6.2], where a “local” uniqueness is explained via von Mises transformation,
which fixes the interface point. For more difficult, non-radial geometries in RN ,
there is no hope of getting any uniqueness for the FBP, in view of possible very
complicated shapes of supports leading to various “self-focusing” singularities of
interfaces at some points, which can dramatically change the required regularity of
solutions.

For the CP, the assumption of non-negativity is got rid of, and solutions become
oscillatory close to interfaces. It is then key, for the CP, that the solutions are
expected to be “smoother” at the interface than those for the FBP, i.e. (2.1) are
not sufficient to define their regularity. These maximal regularity issues for the CP,
leading to oscillatory solutions, are under scrutiny in [16]. However, since as far as
we know there is no knowledge of how the solutions for these problems should be,
little more can be said about it.

Moreover, we denote by

M(t) :=
∫
u(x, t) dx,
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the mass of the solution, where integration is performed over smooth support (RN is
allowed for the CP only). Then, differentiating M(t) with respect to t and applying
the divergence theorem (under natural regularity assumptions on solutions and free
boundary) we have that

J(t) :=
dM
dt

= −
∫

Γ0∩{t}
n · ∇(|u|n∆u) .

The mass is conserved if J(t) ≡ 0, which is assured by the flux condition in (2.1).
The problem is completed with bounded, smooth, integrable, compactly sup-

ported initial data
u(x, 0) = u0(x) in Γ0[u] ∩ {t = 0}. (2.2)

In the CP for (1.1) in RN×R+, one needs to pose bounded compactly supported
initial data (2.2) prescribed in RN . Then, under the same zero flux condition at
finite interfaces (to be established separately), the mass is preserved.

2.2. Global similarity solutions: towards a nonlinear eigenvalue problem.
We now begin to specify the self-similar solutions of the equation (1.1), which are
admitted due to its natural scaling-invariant nature. In the case of the mass being
conserved, we have global in time source-type solutions.

Using the following scaling in (1.1)

x := µx̄, t := λt̄, u := νū, with,

∂u

∂t
=
ν

λ

∂ū

∂t
,

∂u

∂xi
=
ν

µ

∂ū

∂xi
,

∂2u

∂x2
i

=
ν

µ2

∂2ū

∂x2
i

,

and substituting those expressions in (1.1) yields

ν

λ

∂ū

∂t
= −ν

n+1

µ4
∇ · (|ū|n∇∆ū) .

To keep this equation invariant, the following must be fulfilled:

ν

λ
=
νn+1

µ4
, (2.3)

so that

µ := λβ ⇒ ν := λ
4β−1
n and u(x, t) := λ

4β−1
n ū(x̄, t̄) = λ

4β−1
n ū(

x

µ
,
t

λ
).

Consequently,

u(x, t) := t
4β−1
n f(

x

tβ
),

where t = λ and f(x/tβ) = ū(x/tβ , 1). Owing to (2.3), we obtain

nα+ 4β = 1,

which links the parameters α and β. Hence, substituting

u(x, t) := t−αf(y), with y :=
x

tβ
, β =

1− nα
4

, (2.4)

into (1.1) and rearranging terms, we find that the function f solves a quasilinear
elliptic equation of the form

∇ · (|f |n∇∆f) = αf + βy∇ · f . (2.5)
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Finally, thanks to the above relation between α and β, we find a nonlinear eigen-
value problem of the form

−∇ · (|f |n∇∆f) +
1− αn

4
y∇ · f + αf = 0, f ∈ C0(RN ) , (2.6)

where we add to the equation (2.5) a natural assumption that f must be com-
pactly supported (and, of course, sufficiently smooth at the interface, which is an
accompanying question to be discussed as well).

Thus, for such degenerate elliptic equations, the functional setting in (2.6) as-
sumes that we are looking for (weak) compactly supported solutions f(y) as cer-
tain “nonlinear eigenfunctions” that hopefully occur for special values of nonlinear
eigenvalues {αk}k≥0. Our goal is to justify that, labelling the eigenfunctions via a
multiindex σ,

Equation (2.6) possesses a countable set of eigenfunction/value
pairs {fk, αk}|σ|=k≥0. (2.7)

Concerning the well-known properties of finite propagation for TFEs, we refer
to papers [15]– [18], where a large amount of earlier references are available; see
also [23] for more recent results and references in this elliptic area.

However, one should observe that there are still a few entirely rigorous results,
especially those that are attributed to the Cauchy problem for TFEs; for example
[3].

In the linear case n = 0, the condition f ∈ C0(RN ) is naturally replaced by
the requirement that the eigenfunctions ψβ(y) exhibit typical exponential decay
at infinity, a property that is reinforced by introducing appropriate weighted L2-
spaces. Actually, using the homotopy limit n → 0+, we will be obliged for small
n > 0, instead of C0-setting in (2.6), to use the following weighted L2-space:

f ∈ L2
ρ(RN ), where ρ(y) = ea|y|

4/3
, a > 0 small . (2.8)

Note that, in the case of the Cauchy problem with conservation of mass making
use of the self-similar solutions (2.4), we have that

M(t) :=
∫

RN
u(x, t) dx = t−α

∫
RN

f
( x
tβ
)

dx = t−α+βN

∫
RN

f(y) dy,

where the actual integration is performed over the support supp f of the nonlinear
eigenfunction. Then, as is well known, if

∫
f 6= 0, the exponents are calculated

giving the first explicit nonlinear eigenvalue:

− α+ βN = 0⇒ α0(n) =
N

4 +Nn
and β0(n) =

1
4 +Nn

. (2.9)

3. Hermitian spectral theory of the linear rescaled operators

In this section, we establish the spectrum σ(B) of the linear operator B obtained
from the rescaling of the linear counterpart of (1.1), i.e. the bi-harmonic equation
(1.3), which will be essentially used in what follows.

3.1. How the operator B appears: a linear eigenvalue problem. Let u(x, t)
be the unique solution of the CP for the linear parabolic bi-harmonic equation (1.3)
with the initial data (the space as in (2.8) to be more properly introduced shortly)

u0 ∈ L2
ρ(RN ),
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given by the convolution Poisson-type integral

u(x, t) = b(t) ∗ u0 ≡ t−N/4
∫

RN
F ((x− z)t−1/4)u0(z) dz. (3.1)

Here, by scaling invariance of the problem, in a similar way as was done in the
previous section for (1.1), the unique fundamental solution of the operator ∂

∂t + ∆2

has the self-similar structure

b(x, t) = t−N/4F (y), y :=
x

t1/4
(x ∈ RN ). (3.2)

Substituting b(x, t) into (1.3) yields that the rescaled fundamental kernel F in (3.2)
solves the linear elliptic problem

BF ≡ −∆2
yF +

1
4
y · ∇yF +

N

4
F = 0 in RN ,

∫
RN

F (y) dy = 1. (3.3)

B is a non-symmetric linear operator, which is bounded from H4
ρ(RN ) to L2

ρ(RN )
with the exponential weight as in (2.8). Here, a ∈ (0, 2d) is any positive constant,
depending on the parameter d > 0, which characterises the exponential decay of
the kernel F (y):

|F (y)| ≤ De−d|y|
4/3

in RN
(
D > 0, d = 3 · 2−11/3

)
. (3.4)

By F we denote the oscillatory rescaled kernel as the only solution of (3.3), which
has exponential decay, oscillates as |y| → ∞, and satisfies the standard pointwise
estimate (3.4).

Thus, we need to solve the corresponding linear eigenvalue problem:

Bψ = λψ in RN , ψ ∈ L2
ρ(RN ). (3.5)

One can see that the nonlinear one (2.6) formally reduces to (3.5) at n = 0 with
the following shifting of the corresponding eigenvalues:

λ = −α+
N

4
.

In fact, this is the main reason to calling (2.6) a nonlinear eigenvalue problem and,
crucially, the discreteness of the real spectrum of the linear one (3.5) will be shown
to be inherited by the nonlinear problem.

3.2. Functional setting and semigroup expansion. Thus, we solve (3.5) and
calculate the spectrum of σ(B) in the weighted space L2

ρ(RN ). We then need the
following Hilbert space:

H4
ρ(RN ) ⊂ L2

ρ(RN ) ⊂ L2(RN ).

The Hilbert space H4
ρ(RN ) has the following inner product:

〈v, w〉ρ :=
∫

RN
ρ(y)

4∑
k=0

Dkv(y)Dkw(y) dy,

where Dkv stands for the vector {Dβv , |β| = k}, and the norm

‖v‖2ρ :=
∫

RN
ρ(y)

4∑
k=0

|Dkv(y)|2 dy.
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Next, introducing the rescaled variables

u(x, t) = t−N/4w(y, τ), y :=
x

t1/4
, τ = ln t : R+ → R, (3.6)

we find that the rescaled solution w(y, τ) satisfies the evolution equation

wτ = Bw , (3.7)

since, substituting the representation of u(x, t) (3.6) into (1.3) yields

−∆2
yw +

1
4
y · ∇yw +

N

4
w = t

∂w

∂t

∂τ

∂t
.

Thus, to keep this invariant, the following should be satisfied:

t
∂τ

∂t
= 1⇒ τ = ln t,

i.e., as defined in (3.6). Hence, w(y, τ) is the solution of the Cauchy problem for
the equation (3.7) and with the following initial condition at τ = 0, i.e. at t = 1:

w0(y) = u(y, 1) ≡ b(1) ∗ u0 = F ∗ u0 . (3.8)

Then, the linear operator ∂
∂τ −B is also a rescaled version of the standard parabolic

one ∂
∂t+∆2. Therefore, the corresponding semigroup eBτ admits an explicit integral

representation. This helps to establish some properties of the operator B and
describes other evolution features of the linear flow.

Indeed, from (3.1) we find the following explicit representation of the semigroup:

w(y, τ) =
∫

RN
F
(
y − ze− τ4

)
u0(z) dz ≡ eBτw0,

where x = t1/4y, τ = ln t. Subsequently, consider Taylor’s power series of the
analytic kernel1

F
(
y − ze− τ4

)
=
∑
(β)

e−
|β|τ
4

(−1)|β|

β!
DβF (y)zβ ≡

∑
(β)

e−
|β|τ
4

1√
β!
ψβ(y)zβ , (3.9)

for any y ∈ RN , where
zβ := zβ1

1 . . . zβNN ,

and ψβ are the normalized eigenfunctions for the operator B. The series in (3.9)
converges uniformly on compact subsets in z ∈ RN . Indeed, denoting |β| = l and
estimating the coefficients∣∣ ∑

|β|=l

(−1)l

β!
DβF (y)zβ1

1 . . . zβNN
∣∣ ≤ bl|z|l,

by Stirling’s formula we have that, for l� 1,

bl =
N l

l!
sup

y∈RN ,|β|=l
|DβF (y)| ≈ N l

l!
l−l/4el/4 ≈ l−3l/4cl = e−l ln 3l/4+l ln c.

Note that, the series
∑
bl|z|l, has radius of convergence R = ∞. Thus, we obtain

the following representation of the solution:

w(y, τ) =
∑
(β)

e−
|β|
4 τMβ(u0)ψβ(y), where λβ := −|β|

4
,

1We hope that returning here to the multiindex β instead of σ in (2.7) will not lead to a

confusion with the exponent β in self-similar scaling (2.4).
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and {ψβ} are the eigenvalues and eigenfunctions of the operator B, respectively,
and

Mβ(u0) :=
1√
β!

∫
RN

zβ1
1 . . . zβNN u0(z) dz,

are the corresponding momenta of the initial datum w0 defined by (3.8).

3.3. Main spectral properties of the pair {B, B∗}. Thus, the following holds
[14]:

Theorem 3.1. (i) The spectrum of B comprises real eigenvalues only with the
form

σ(B) :=
{
λβ = −|β|

4
, |β| = 0, 1, 2, . . .

}
.

Eigenvalues λβ have finite multiplicity with eigenfunctions,

ψβ(y) :=
(−1)|β|√

β!
DβF (y) ≡ (−1)|β|√

β!

( ∂

∂y1

)β1
. . .
( ∂

∂yN

)βN
F (y). (3.10)

(ii) The subset of eigenfunctions Φ = {ψβ} is complete in L2(RN ) and in
L2
ρ(RN ).

(iii) For any λ /∈ σ(B), the resolvent (B − λI)−1 is a compact operator in
L2
ρ(RN ).

Subsequently, it was also shown in [14] that the adjoint (in the dual metric of
L2(RN )) operator of B given by

B∗ := −∆2 − 1
4
y · ∇,

in the weighted space L2
ρ∗(RN ), with the exponentially decaying weight function

ρ∗(y) ≡ 1
ρ(y)

= e−a|y|
α

> 0,

is a bounded linear operator, B∗ : H4
ρ∗(RN )→ L2

ρ∗(RN ), so

〈Bv, w〉 = 〈v,B∗w〉, v ∈ H4
ρ(RN ), w ∈ H4

ρ∗(RN ).

Moreover, the following theorem establishes the spectral properties of the adjoint
operator which will be very similar to those ones shown in Theorem 3.1 for the
operator B.

Theorem 3.2. (i) The spectrum of B∗ consists of eigenvalues of finite multi-
plicity,

σ(B∗) = σ(B) :=
{
λβ = −|β|

4
, |β| = 0, 1, 2, . . .

}
,

and the eigenfunctions ψ∗β(y) are polynomials of order |β|.
(ii) The subset of eigenfunctions Φ∗ = {ψ∗β} is complete in L2

ρ∗(RN ).
(iii) For any λ /∈ σ(B∗), the resolvent (B∗ − λI)−1 is a compact operator in

L2
ρ∗(RN ).

It should be pointed out that, since ψ0 = F and ψ∗0 ≡ 1, we have

〈ψ0, ψ
∗
0〉 =

∫
RN

ψ0 dy =
∫

RN
F (y) dy = 1.
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However, thanks to (3.10), we have that∫
RN

ψβ ≡ 〈ψβ , ψ∗0〉 = 0 for |β| 6= 0.

This expresses the orthogonality property to the adjoint eigenfunctions in terms of
the dual inner product.

Note that as shown in [14], for the eigenfunctions {ψβ} of B denoted by (3.10),
the corresponding adjoint eigenfunctions are generalized Hermite polynomials given
by

ψ∗β(y) :=
1√
β!

[
yβ +

[|β|/4]∑
j=1

1
j!

∆2jyβ
]
. (3.11)

Hence, the orthonormality condition holds

〈ψβ , ψγ〉 = δβγ for any β, γ,

where 〈·, ·〉 is the duality product in L2(RN ) and δβγ is Kronecker’s delta. Also,
operators B and B∗ have zero Morse index (no eigenvalues with positive real parts
are available).

Moreover, the adjoint operator B∗ was used in [2] to analyse blow-up solutions
for the TFE-4 (1.1).

Some key spectral results can be extended as in [14] to 2mth-order linear poly-
harmonic flows

ut = −(−∆)mu in RN × R+,

where the elliptic equation for the rescaled kernel F (y) takes the form

BF ≡ −(−∆y)mF +
1

2m
y · ∇yF +

N

2m
F = 0 in RN ,

∫
RN

F (y) dy = 1.

In particular, for m = 1, we find the Hermite operator and the Gaussian kernel
(see [10] for further information)

BF ≡ ∆F +
1
2
y · ∇F +

N

2
F = 0 ⇒ F (y) =

1
(4π)N/2

e−|y|
2/4,

whose name is connected to fundamental works of Charles Hermite on orthogonal
polynomials {Hβ} about 1870. These classic Hermite polynomials are obtained by
differentiating the Gaussian: up to normalization constants,

Dβe−
|y|2
4 = Hβ(y) e−

|y|2
4 for any β. (3.12)

Note that, for N = 1, such operators and polynomial eigenfunctions in 1D were
studied earlier by Jacques C.F. Sturm in 1836; on this history and Sturm’s main
original calculations, see [19, Ch. 1].

The generating formula (3.12) for (generalized) Hermite polynomials is not avail-
able if m ≥ 2, so that (3.11) are obtained via a different procedure, [14].

4. Similarity profiles for the Cauchy problem via n-branching

In general, construction of oscillatory similarity solutions of the Cauchy problem
for the TFE-4 (1.1) is a difficult nonlinear problem, which is harder than for the
corresponding FBP one.

On the other hand, for n = 0, such similarity profiles exist and are given by
eigenfunctions {ψβ}. In particular, the first mass-preserving profile is just the
rescaled kernel F (y), so it is unique, as was shown in Section 3.
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Hence, somehow, a possibility to visualize such an oscillatory first “nonlinear
eigenfunction” f(y) of changing sign, which satisfies the nonlinear eigenvalue prob-
lem (2.6), at least, for sufficiently small n > 0 can be expected.

This suggests that, via an n-branching approach argument, it is possible to
“connect” f with the rescaled fundamental profile F , satisfying the corresponding
linear equation (3.3), with all the necessary properties of F presented in Section 3.

Thus, we plan to describe the behaviour of the similarity profiles {fβ}, as nonlin-
ear eigenfunctions of (2.6) for the TFE performing a “homotopic” approach when
n ↓ 0.

Homotopic approaches are well-known in the theory of vector fields, degree and
nonlinear operator theory (see [13, 28] for details). However, we shall be less pre-
cise in order to apply that approach and, here, a “homotopic path” just declares
existence of a continuous connection (a curve) of solutions f ∈ C0 that ends up
at n = 0+, at the linear eigenfunction ψ0(y) = F (y) or further eigenfunctions
ψβ(y) ∼ DβF (y), as (3.10) claims.

Using classical branching theory in the case of finite regularity of nonlinear oper-
ators involved, we formally show that the necessary orthogonality condition holds
deriving the corresponding Lyapunov–Schmidt branching equation. We will try to
be as rigorous as possible in supporting the delivery of the nonlinear eigenvalues
{αk}.

Further extensions of solutions for non-small n > 0 require a novel essentially
non-local technique of such nonlinear analysis, which remains an open problem.

4.1. Nonlinear eigenvalues {αk} and transversality conditions for the non-
linear eigenfunctions f . In this first part of the section we establish the condi-
tions and terms necessary for the expansions of the parameter α and the nonlinear
eigenfunctions, as well as the transversality oscillatory conditions for such nonlinear
eigenfunctions.

This will allow us to obtain the desired countable number of solutions (1.5) for the
similarity equation (1.4) via Lyapunov-Schmidt reduction through the subsequent
analysis.

The nonlinear eigenvalues {αk} are obtained according to non-self-adjoint spec-
tral theory from Section 3. We then use the explicit expressions for the eigenvalues
and eigenfunctions of the linear eigenvalue problem (3.5) given in Theorem 3.1,
where we also need the main conclusions of the “adjoint” Theorem 3.2.

Thus, taking the corresponding linear equation from (2.6) with n = 0, we find,
at least, formally, that

n = 0 : L(α)f := −∆2f +
1
4
y · ∇f + αf = 0.

Moreover, from that equation, combined with the eigenvalues expressions obtained
in the previous section, we ascertain the following critical values for the parameter
αk = αk(n),

n = 0 : αk(0) := −λk +
N

4
≡ k +N

4
for k = 0, 1, 2, . . . , (4.1)

where λk are the eigenvalues defined in Theorem 3.1, so that

α0(0) =
N

4
, α1(0) =

N + 1
4

, α2(0) =
N + 2

4
, . . . , αk(0) =

k +N

4
. . . .
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In particular, when k = 0, we have that α0(0) = N
4 and the eigenfunction satisfies

BF = 0, so that kerL(α0) = span{ψ0} (ψ0 = F ),

and, hence, since λ0 = 0 is a simple eigenvalue for the operator L(α0) = B, its
algebraic multiplicity is 1. In general, we find that

ker
(
B +

k

4
I
)

= span{ψβ , |β| = k}, for any k = 0, 1, 2, 3, . . . ,

where the operator B + k
4 I is Fredholm of index zero since it is a compact pertur-

bation of the identity of linear type with respect to k. In other words, R[L(αk)] is
a closed subspace of L2

ρ(RN ) and, for each αk,

dim ker(L(αk)) <∞ and codimR[L(αk)] <∞.

Then, for small n > 0 in (2.6), we can assume the following asymptotic expan-
sions

αk(n) := αk + µ1,kn+ o(n), and (4.2)

|f |n ≡ en ln |f | := 1 + n ln |f |+ o(n). (4.3)

As customary in bifurcation-branching theory [28, 32], existence of an expansion
such as (4.2) will allow one to get further expansion coefficients in

αk(n) := αk + µ1,kn+ µ2,kn
2 + µ3,kn

3 + . . . ,

as the regularity of nonlinearities allows and suggests, though the convergence of
such an analytic series can be questionable and is not under scrutiny here.

Another principle question is that, for oscillatory sign changing profiles f(y), the
last expansion (4.3) cannot be understood in the pointwise sense. However, it can
be naturally expected to be valid in other metrics such as weighted L2 or Sobolev
spaces, as in Section 3, that used to be appropriate for the functional setting of the
equivalent integral equation and for that with n = 0.

Then, since (4.3) is obviously pointwise violated at the nodal set {f = 0} of f(y),
this imposes some restrictions on the behaviour of corresponding eigenfunctions
ψβ(y) (n = 0) close to their zero sets. Using well-known asymptotic and other
related properties of the radial analytic rescaled kernel F (y) of the fundamental
solutions (3.2), the generating formula of eigenfunctions (3.10) confirms that the
nodal set of analytic eigenfunctions {ψβ = 0} consists of isolated zero surfaces,
which are “transversal”, at least in the a.e. sense, with the only accumulation
point at y =∞. Overall, under such conditions, this indicates that

Expansion (4.3) contains not more than “logarithmic” singularities a.e., (4.4)

which well suited the integral compact operators involved in the branching analysis,
though we are far from claiming this as any rigorous issue.

Moreover, when n > 0 is not small enough, such an analogy and statements like
(4.4) become unclear, and global extensions of continuous n-branches induced by
some compact integral operators, i.e. nonexistence of turning (saddle-node) points
in n, require, as usual, some unknown monotonicity-like results.

Then, to carry out our homotopic approach we assume the expansion (4.3) away
from possible zero surfaces of f(y), which, by transversality, can be localized in
arbitrarily small neighbourhoods.
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Indeed, it is clear that when

|f | > δ > 0, for any δ > 0,

there is no problem in approximating |f |n by (4.3), i.e.,

|f |n = 1 +O(n) as n→ 0+.

However, when
|f | ≤ δ, for any δ > 0,

sufficiently small, the proof of such an approximation in weak topology (as suffices
for dealing with equivalent integral equations) is far from clear unless

the zeros of the f ’s are also transversal a.e.,

with a standard accumulating property at the only interface zero surface. The latter
issues have been studied and described in [16] in the radial setting. Hence, we can
suppose that such nonlinear eigenfunctions f(y) are oscillatory and infinitely sign
changing close to the interface surface.

Therefore, if we assume that their zero surface is transversal a.e. with a known
geometric-like accumulation at the interface, we find that, for any n close to zero
and any δ = δ(n) > 0 sufficiently small,

n| ln |f || � 1, if |f | ≤ δ(n),

and, hence, on such subsets, f(y) must be exponentially small:

| ln |f || � 1
n
⇒ ln |f | � − 1

n
⇒ |f | � e−

1
n .

Recall that this happens in also exponentially small neighbourhoods of the transver-
sal zero surfaces.

Overall, using the periodic structure of the oscillatory component at the inter-
face [16] (we must admit that such delicate properties of oscillatory structures of
solutions are known for the 1D and radial cases only, though we expect that these
phenomena are generic), we can control the singular coefficients in (4.3), and, in
particular, to see that

ln |f | ∈ L1
loc(RN ). (4.5)

However, for most general geometric configurations of nonlinear eigenfunctions
f(y), we do not have a proper proof of (4.5) or similar estimates, so our further
analysis is still essentially formal.

4.2. Derivation of the branching equation. Under the above-mentioned trans-
versality conditions and assuming the expansions (4.2), for the nonlinear eigenvalues
αk, and (4.3), for the nonlinear eigenfunctions f , we are able to obtain the branching
equation applying the classical Lyapunov-Schmidt method.

It is worth recalling again that our computations below are to be understood as
those dealing with the equivalent integral equations and operators, so, in particular,
we can use the powerful facts on compactness of the resolvent (B − λI)−1 and of
the adjoint one (B∗ − λI)−1 in the corresponding weighted L2-spaces. Note that,
in such an equivalent integral representation, the singular term in (4.3) satisfying
(4.5) makes no principal difficulty, so the expansion (4.3) makes rather usual sense
for applying standard nonlinear operator theory.
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Thus, under natural assumptions, substituting (4.2) into (2.6), for any k =
0, 1, 2, 3, . . . , we find that, omitting o(n) terms when necessary,

−∇ · [(1 + n ln |f |)∇∆f ] +
1− αkn− µ1,kn

2

4
y · ∇f + (αk + µ1,kn)f = 0 ,

and, rearranging terms,

−∆2f − n∇ · (ln |f |∇∆f) +
1
4
y · ∇f − αkn+ µ1,kn

2

4
y · ∇f + αkf + µ1,knf = 0 .

Hence, we finally have(
B +

k

4
I
)
f + n

[
−∇ · (ln |f |∇∆f)− αk

4
y · ∇f + µ1,kf

]
+ o(n) = 0 ,

which can be written in the form(
B +

k

4
I
)
f + nNk(f) + o(n) = 0 , (4.6)

with the operator

Nk(f) := −∇ · (ln |f |∇∆f)− αk
4
y · ∇f + µ1,kf .

Subsequently, as was shown in Section 3, we have that

ker
(
B +

k

4
I
)

= span{ψβ}|β|=k for k = 0, 1, 2, 3, . . . ,

where the operator B + k
4 I is Fredholm of index zero and

dim ker
(
B +

k

4
I
)

= Mk ≥ 1 for any k = 0, 1, 2, 3, . . . ,

where Mk stands for the length of the vector {Dβv, |β| = k}, so that Mk > 1 for
k ≥ 1.

Simple eigenvalue for k = 0. Since 0 is a simple eigenvalue of B when k = 0,
i.e.,

ker B⊕R[B] = L2
ρ(RN ),

the study of the case k = 0 seems to be simpler than for other different k’s because
the dimension of the eigenspace is M0 = 1.

Thus, we shall describe the behaviour of solutions for small n > 0 and apply
the classical Lyapunov–Schmidt method to (4.6) (assuming, as usual, some extra
necessary regularity hypothesis to be clarified later on), in order to accomplish the
branching approach as n ↓ 0, in two steps, when k = 0 and k is different from 0.

Thus, owing to Section 3, we already know that 0 is a simple eigenvalue of B, i.e.
ker B = span{ψ0} is one-dimensional. Hence, denoting by Y0 the complementary
invariant subspace, orthogonal to ψ∗0 , we set

f = ψ0 + V0,

where V0 ∈ Y0.
Moreover, according to the spectral properties of the operator B, we define P0

and P1 such that P0 +P1 = I, to be the projections onto ker B and Y0 respectively.
Finally, setting

V0 := nΦ1,0 + o(n), (4.7)
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substituting the expression for f into (4.6) and passing to the limit as n→ 0+ leads
to a linear inhomogeneous equation for Φ1,0,

BΦ1,0 = −N0(ψ0), (4.8)

since Bψ0 = 0.
Furthermore, by Fredholm theory, V0 ∈ Y0 exists if and only if the right-hand

side is orthogonal to the one dimensional kernel of the adjoint operator B∗ with
ψ∗0 = 1, because of (3.11). Hence, in the topology of the dual space L2, this requires
the standard orthogonality condition:

〈N0(ψ0), 1〉 = 0. (4.9)

Then, (4.8) has a unique solution Φ1,0 ∈ Y0 determining by (4.7) a bifurcation
branch for small n > 0. In fact, the algebraic equation (4.9) yields the following ex-
plicit expression for the coefficient µ1,0 of the expansion (4.2) for the first eigenvalue
α0(n):

µ1,0 :=
〈∇ · (ln |ψ0|∇∆ψ0) + N

16y · ∇ψ0, ψ
∗
0〉

〈ψ0, ψ∗0〉
= 〈∇ · (ln |ψ0|∇∆ψ0) +

N

16
y ·∇ψ0, ψ

∗
0〉.

Consequently, in the particular case of having simple eigenvalues we just obtain one
branch of solutions emanating at n = 0.

Multiple eigenvalues for k ≥ 1. Next we ascertain the number of branches
in the case when the eigenvalues of the operator B are semisimple. For any k ≥ 1,
we know that

dim ker
(
B +

k

4
I
)

= Mk > 1.

Hence, in order to perform a similar analysis to the one done for simple eigenvalues
we have to use the full eigenspace expansion

f =
∑
|β|=k

cβψ̂β + Vk, (4.10)

for every k ≥ 1. Currently, for convenience, we denote

{ψ̂β}|β|=k = {ψ̂1, . . . , ψ̂Mk
},

the natural basis of the Mk-dimensional eigenspace ker
(
B + k

4 I
)

and set

ψk =
∑
|β|=k

cβψ̂β .

Moreover,
Vk ∈ Yk and Vk =

∑
|β|>k

cβψβ ,

where Yk is the complementary invariant subspace of ker
(
B + k

4 I
)
.

Furthermore, in the same way, as we did for the case k = 0, we define the P0,k

and P1,k, for every k ≥ 1, to be the projections of ker
(
B+ k

4 I
)

and Yk respectively.
We also expand Vk as

Vk := nΦ1,k + o(n). (4.11)
Subsequently, substituting (4.10) into (4.6) and passing to the limit as n ↓ 0+, we
obtain the following equation:(

B +
k

4
I
)
Φ1,k = −Nk

( ∑
|β|=k

cβψβ
)
, (4.12)
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under the natural “normalizing” constraint∑
|β|=k

cβ = 1 (cβ ≥ 0). (4.13)

Therefore, applying the Fredholm alternative, Vk ∈ Yk exists if and only if the term
on the right-hand side of (4.12) is orthogonal to ker

(
B + k

4 I
)
. Then, multiplying

the right-hand side of (4.12) by ψ∗β , for every |β| = k, in the topology of the dual
space L2, we obtain an algebraic system of Mk + 1 equations and the same number
of unknowns, {cβ , |β| = k} and µ1,k:

〈Nk(
∑
|β|=k

cβψβ), ψ∗β〉 = 0 for all |β| = k, (4.14)

which is indeed the Lyapunov–Schmidt branching equation [32]. In general, such
algebraic systems are assumed to allow us to obtain the branching parameters
and, hence, establish the number of different solutions induced on the given Mk-
dimensional eigenspace as the kernel of the operator involved.

However, we must admit and urge that the algebraic system (4.14) is a truly
difficult issue. One of the main features of it is as follows:

Equation (4.14) is not variational. (4.15)

In other words, one cannot use for (4.14) the classic category-genus theory of cal-
culus of variation [6, 28], to claim that the category of the kernel (equal to Mk) is
the least number of different critical points and hence of different solutions.

To see (4.15), it suffices to note that, due to (3.10) and (3.11), the generalized
Hermite polynomials ψ∗β have nothing in common in the algebraic sense with the
eigenfunctions ψβ in the L2-scalar products in (4.14).

4.3. A digression to Hermite classic self-adjoint theory. It is worth men-
tioning that for the classic second-order Hermite operator

B = ∆ +
1
2
y · ∇+

N

2
I (then, in the L2-metric, B∗ = ∆− 1

2
y · ∇), (4.16)

statement (4.15) does not hold. Indeed, by classic theory [10, p. 48], these eigen-
functions are related to each other by

ψβ(y) = DβF (y) ≡ Hβ(y)F (y), where F (y) = (4π)−
N
2 e−

|y|2
4 (4.17)

is the Gaussian kernel and Hβ(y) are standard Hermite polynomials, which also
define the adjoint eigenfunctions:

ψ∗β(y) = bβHβ(y) ≡ bβ
F (y)

ψβ(y), (4.18)

where bβ are normalization constants. One knows that this result comes from the
symmetry of the operator (4.16) in the weighted metric of L2

ρ(RN ), where

ρ(y) = e
|y|2
4 ∼ 1

F (y)
⇒ B =

1
ρ
∇ · (ρ∇) +

N

2
I, so (B)∗L2

ρ
= B.

In view of the relations (4.17) and (4.18) of the bi-orthonormal bases {ψβ} and {ψ∗β},
the corresponding algebraic systems such as (4.14) can be variational. Moreover,
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even the original nonlinear elliptic equation, similar to (2.6), where the 4th-order
operator is replaced by a natural 2nd-order, one of the porous medium type:

−∇(|f |n∇∆f) 7→ ∇(|f |n∇f),

then, we are in a situation where it becomes variational.
Thus, in this case, both branching (local phenomena) and global extensions of

n-bifurcation branches can be performed on the basis of the powerful Lusternik–
Schnirel’man category variational theory from 1920s [28, § 56], so that existence
and multiplicity (at least, not less than in the linear case n = 0) of solutions are
guaranteed.

4.4. Computations for branching of dipole solutions in 2D. To avoid exces-
sive computations and as a self-contained example, we now ascertain some expres-
sions for those coefficients in the case when |β| = 1, N = 2, and M1 = 2, so that,
in our notations, {ψβ}|β|=1 = {ψ̂1, ψ̂2}.

Consequently, in this case, we obtain the following algebraic system: the expan-
sion coefficients of ψ1 = c1ψ̂1 + c2ψ̂2 satisfy

c1〈ψ̂∗1 , h1〉 −
c1α1

4
〈ψ̂∗1 , y · ∇ψ̂1〉+ c1µ1,1 + c2〈ψ̂∗1 , h2〉 −

c2α1

4
〈ψ̂∗1 , y · ∇ψ̂2〉 = 0,

c1〈ψ̂∗2 , h1〉 −
c1α1

4
〈ψ̂∗2 , y · ∇ψ̂1〉+ c2〈ψ̂∗2 , h2〉 −

c2α1

4
〈ψ̂∗2 , y · ∇ψ̂2〉+ c2µ1,1 = 0,

c1 + c2 = 1,
(4.19)

where

h1 := −∇ · [ln(c1ψ̂1 + c2ψ̂2)∇∆ψ̂1], h2 := −∇ · [ln(c1ψ̂1 + c2ψ̂2)∇∆ψ̂2],

and, c1, c2, and µ1,1 are the coefficients that we want to calculate, α1 is regarded
as the value of the parameter α denoted by (4.1) and dependent on the eigenvalue
λ1, for which ψ̂1,2 are the associated eigenfunctions, and ψ̂∗1,2 the corresponding
adjoint eigenfunctions. Hence, substituting the expression c2 = 1 − c1 from the
third equation into the other two, we have the following nonlinear algebraic system

0 = N1(c1, µ1,1)− c1
α1

4
[
〈ψ̂∗1 , y · ∇ψ̂1〉 − 〈ψ̂∗1 , y · ∇ψ̂2〉

]
,

0 = N2(c1, µ1,1)− c1
α1

4
[
〈ψ̂∗2 , y · ∇ψ̂1〉 − 〈ψ̂∗2 , y · ∇ψ̂2〉

]
+ µ1,1,

(4.20)

where

N1(c1, µ1,1) := c1〈ψ̂∗1 , h1〉+ 〈ψ̂∗1 , h2〉 −
α1

4
〈ψ̂∗1 , y · ∇ψ̂2〉 − c1〈ψ̂∗1 , h2〉+ c1µ1,1,

N2(c1, µ1,1) := c1〈ψ̂∗2 , h1〉+ 〈ψ̂∗2 , h2〉 −
α1

4
〈ψ̂∗2 , y · ∇ψ̂2〉 − c1〈ψ̂∗2 , h2〉 − c1µ1,1,

represent the nonlinear parts of the algebraic system, with h0 and h1 depending on
c1.

Subsequently, to guarantee existence of solutions of the system (4.19), we apply
the Brouwer fixed point theorem to (4.20) by supposing that the values c1 and
µ1,1 are the unknowns, in a disc sufficiently big DR(ĉ1, µ̂1,1) centered in a possible
non-degenerate zero (ĉ1, µ̂1,1). Thus, we write the system (4.20) in the matrix form(

0
0

)
=
(
−α1

4

[
〈ψ̂∗1 , y · ∇ψ̂1〉 − 〈ψ̂∗1 , y · ∇ψ̂2〉

]
0

−α1
4

[
〈ψ̂∗2 , y · ∇ψ̂1〉 − 〈ψ̂∗2 , y · ∇ψ̂2〉

]
1

)(
c1
µ1,1

)
+
(
N1(c1, µ1,1)
N2(c1, µ1,1)

)
.
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Hence, we have that the zeros of the operator

F(c1, µ1,1) := M

(
c1
µ1,1

)
+
(
N1(c1, µ1,1)
N2(c1, µ1,1)

)
,

are the possible solutions of (4.20), where M is the matrix corresponding to the
linear part of the system, while

(N1(c1, µ1,1), N2(c1, µ1,1))T ,

corresponds to the nonlinear part. The application H : A× [0, 1]→ R, defined by

H(c1, µ1,1, t) := M

(
c1
µ1,1

)
+ t

(
N1(c1, µ1,1)
N2(c1, µ1,1)

)
,

provides us with a homotopy transformation from F(c1, µ1,1) = H(c1, µ1,1, 1) to its
linearization

H(c1, µ1,1, 0) := M

(
c1
µ1,1

)
. (4.21)

Thus, the system (4.20) possesses a nontrivial solution if (4.21) has a non-degenerate
zero, in other words, if the next condition is satisfied

〈ψ̂∗1 , y · ∇ψ̂1〉 − 〈ψ̂∗1 , y · ∇ψ̂2〉 6= 0. (4.22)

Note that, if the substitution would have been c1 = 1−c2, the condition might also
be

〈ψ̂∗2 , y · ∇ψ̂2〉 − 〈ψ̂∗2 , y · ∇ψ̂1〉 6= 0.
Then, under condition (4.22), the system (4.20) can be written in the form(

c1 − ĉ1
µ1,1 − µ̂1,1

)
= −M−1

(
N1(c1, µ1,1)− ĉ1
N2(c1, µ1,1)− µ̂1,1

)
,

which can be interpreted as a fixed point equation. Moreover, applying Brouwer’s
fixed point theorem, we have that

Ind((ĉ1, µ̂1,1),H(·, ·, 0)) = QCR(ĉ1,µ̂1,1)(H(·, ·, 0))

= deg(H(·, ·, 0), DR(ĉ1, µ̂1,1))

= deg(F(c1, µ1,1), DR(ĉ1, µ̂1,1)),

whereQCR(ĉ1,µ̂1,1)(H(·, ·, 0)) defines the number of rotations of the functionH(·, ·, 0)
around the curve CR(ĉ1, µ̂1,1) and deg(H(·, ·, 0), DR(ĉ1, µ̂1,1)) denotes the topologi-
cal degree of H(·, ·, 0) in DR(ĉ1, µ̂1,1). Owing to classical topological methods, both
are equal.

Thus, once we have proved the existence of solutions, we achieve some expressions
for the coefficients required:

µ1,1 = c2(〈ψ̂∗1 + ψ̂∗2 , h1 − h2〉 −
α1

4
〈ψ̂∗1 + ψ∗2 , y · ∇ψ̂1 − y · ∇ψ̂2〉)

− 〈ψ̂∗1 + ψ̂∗2 , h1〉+
α1

4
〈ψ̂∗1 + ψ̂∗2 , y · ∇ψ̂1〉,

c1 = 1− c2.
The expressions for the coefficients in a general case might be accomplished after
some tedious calculations, otherwise similar to those performed above.

Note that, in general, those nonlinear finite-dimensional algebraic problems are
rather complicated, and the problem of an optimal estimate of the number of dif-
ferent solutions remains open.
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Moreover, reliable multiplicity results are very difficult to obtain. We expect
that this number should be somehow related (and even sometimes coincides) with
the dimension of the corresponding eigenspace of the linear operators B + k

4 I, for
any k = 0, 1, 2, . . . . This is a conjecture only, and may be too illusive; see further
supportive analysis presented below.

However, we devote the remainder of this section to a possible answer to that
conjecture, which is not totally complete though, since we are imposing some con-
ditions.

Thus, in order to detect the number of solutions of the nonlinear algebraic sys-
tem (4.19), we proceed to reduce this system to a single equation for one of the
unknowns. As a first step, integrating by parts in the terms in which h1 and h2 are
involved and rearranging terms in the first two equations of the system (4.19), we
arrive at ∫

RN
∇ψ∗1 · ln(c1ψ̂1 + c2ψ̂2)∇∆(c1ψ̂1 + c2ψ̂2)

− c1
α1

4

∫
RN

ψ̂∗1y · ∇ψ̂1 + c1µ1,1 − c2
α1

4

∫
RN

ψ̂∗1y · ∇ψ̂2 = 0,∫
RN
∇ψ̂∗2 · ln(c1ψ̂1 + c2ψ̂2)∇∆(c2ψ̂1 + c2ψ̂2)

− c1
α1

4

∫
RN

ψ̂∗2y · ∇ψ̂1 + c2µ1,1 − c2
α1

4

∫
RN

ψ̂∗2y · ∇ψ̂2 = 0.

By the third equation, we have that c1 = 1− c2, and hence, setting

c1ψ̂1 + c2ψ̂2 = ψ̂1 + (ψ̂2 − ψ̂1)c2,

and substituting these into those new expressions for the first two equations of the
system, we find that∫

RN
∇ψ̂∗1 · ln(ψ̂1 + (ψ̂2 − ψ̂1)c2)∇∆(ψ̂1 + (ψ̂2 − ψ̂1)c2) + µ1,1 − c2µ1,1

− α1

4

∫
RN

ψ̂∗1y · ∇ψ̂1 + c2
α1

4

∫
RN

ψ̂∗1y · (∇ψ̂1 −∇ψ̂2) = 0,∫
RN
∇ψ̂∗2 · ln(ψ̂1 + (ψ̂2 − ψ̂1)c2)∇∆(ψ̂1 + (ψ̂2 − ψ̂1)c2) + c2µ1,1

− α1

4

∫
RN

ψ̂∗2y · ∇ψ̂1 + c2
α1

4

∫
RN

ψ̂∗2y · (∇ψ̂1 −∇ψ̂2) = 0.

(4.23)

Adding both equations, we have

µ1,1 = −
∫

RN
(∇ψ̂∗1 +∇ψ̂∗2) · ln(ψ̂1 + (ψ̂2 − ψ̂1)c2)∇∆(ψ̂1 + (ψ̂2 − ψ̂1)c2)

+
α1

4

∫
RN

(ψ∗1 + ψ∗2)y · ∇ψ̂1 − c2
α1

4

∫
RN

(ψ̂∗1 + ψ̂∗2)y · (∇ψ̂2 −∇ψ̂1).

Thus, substituting it into the second equation of (4.23), we obtain the following
equation with the single unknown c2:

− c22
α1

4

∫
RN

(ψ̂∗1 + ψ̂∗2)y · (∇ψ̂2 −∇ψ̂1)

+ c2
α1

4

(∫
RN

(ψ̂∗1 + 2ψ̂∗2)y · ∇ψ̂1 −
∫

RN
ψ̂∗2y · ∇ψ̂2

)
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− α1

4

∫
RN

ψ̂∗2y · ∇ψ̂1 +
∫

RN
∇ψ∗2 · ln(ψ̂1 + (ψ̂2 − ψ̂1)c2)∇∆(ψ̂1 + (ψ̂2 − ψ̂1)c2)

− c2
∫

RN
(∇ψ̂∗1 +∇ψ̂∗2) ln(ψ̂1 + (ψ̂2 − ψ̂1)c2)∇∆(ψ̂1 + (ψ̂2 − ψ̂1)c2) = 0,

which can be written as

c22A+ c2B + C + ω(c2) ≡ F(c2) + ω(c2) = 0.

Here, ω(c2) can be considered as a perturbation of the quadratic form F(c2) with
the coefficients defined by

A := −α1

4

∫
RN

(ψ̂∗1 + ψ̂∗2)y · (∇ψ̂2 −∇ψ̂1),

B :=
α1

4

(∫
RN

(ψ̂∗1 + 2ψ̂∗2)y · ∇ψ̂1 −
∫

RN
ψ̂∗2y · ∇ψ̂2

)
,

C := −α1

4

∫
RN

ψ̂∗2y · ∇ψ̂1,

ω(c2) :=
∫

RN
∇ψ̂∗2 · ln(ψ̂1 + (ψ̂2 − ψ̂1)c2)∇∆(ψ̂1 + (ψ̂2 − ψ̂1)c2)

− c2
∫

RN
(∇ψ̂∗1 +∇ψ̂∗2) · ln(ψ̂1 + (ψ̂2 − ψ̂1)c2)∇∆(ψ̂1 + (ψ̂2 − ψ̂1)c2).

Since, by the normalizing constraint (4.13), c2 ∈ [0, 1], solving the quadratic equa-
tion F(c2) yields:

(i) c2 = 0⇒ F(0) = C;
(ii) c2 = 1⇒ F(1) = A+B + C; and

(iii) differentiating F with respect to c2, we obtain that F′(c2) = 2c2A + B.
Then, the critical point of the function F is c∗2 = − B

2A and its image is
F(c∗2) = − B

4A + C.
Consequently, the conditions to be imposed for having more than one solution

(we already know the existence of at least one solution) are as follows:
(a) C(A+B + C) > 0;
(b) C

(
− B

4A + C
)
< 0; and

(c) 0 < − B
2A < 1.

Note that, for − B
4A +C = 0, we have just a single solution. Hence, considering the

equation again in the form
F(c2) + ω(c2) = 0,

where ω(c2) is a perturbation of the quadratic form F(c2), and bearing in mind that
the objective is to detect the number of solutions of the system (4.19), we need to
control somehow this perturbation.

Under conditions (a), (b), and (c), F(c2) possesses exactly two solutions. There-
fore, controlling the possible oscillations of the perturbation ω(c2) in such a way
that

‖ω(c2)‖L∞ ≤ F(c∗2),

we can assure that the number of solutions for (4.19) is exactly two. This is the
dimension of the kernel of the operator B+ 1

4 I (as we expected in our more general
conjecture).
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The above particular example shows how difficult the questions on existence and
multiplicity of solutions for such non-variational branching problems are.

Recall that the actual values of the coefficients A, B, C, and others, for which
the number of solutions crucially depends on, are very difficult to estimate, even
numerically, in view of the complicated nature of the eigenfunctions (3.10) involved.
To say nothing of the nonlinear perturbation ω(c2).

4.5. Branching computations for |β| = 2. Overall, the above analysis provides
us with some expressions for the solutions for the self-similar equation (2.6) de-
pending on the value of k. Actually, we can achieve those expressions for every
critical value αk, but again the calculus gets rather difficult.

For the sake of completeness, we now analyze the case |β| = 2 and M2 = 3, so
that {ψβ}|β|=2 = {ψ̂1, ψ̂2, ψ̂3} stands for a basis of the eigenspace ker

(
B + 1

2 I
)
,

with k = 2 (λk = −k/4).
Thus, in this case, performing in a similar way as was done for (4.19) with

ψ2 = c1ψ̂1 + c2ψ̂2 + c3ψ̂3,

we arrive at the following algebraic system:

c1〈ψ̂∗1 , h1〉+ c2〈ψ̂∗1 , h2〉+ c3〈ψ̂∗1 , h3〉 −
c1α2

4
〈ψ̂∗1 , y · ∇ψ̂1〉

− c2α2

4
〈ψ̂∗1 , y · ∇ψ̂2〉 −

c3α2

4
〈ψ̂∗1 , y · ∇ψ̂3〉+ c1µ1,2 = 0,

c1〈ψ̂∗2 , h1〉+ c2〈ψ̂∗2 , h2〉+ c2〈ψ̂∗2 , h3〉 −
c1α2

4
〈ψ̂∗2 , y · ∇ψ̂1〉

− c2α2

4
〈ψ̂∗2 , y · ∇ψ̂2〉 −

c3α2

4
〈ψ̂∗2 , y · ∇ψ̂3〉+ c2µ1,2 = 0,

c1〈ψ̂∗3 , h1〉+ c2〈ψ̂∗3 , h2〉+ c2〈ψ̂∗3 , h3〉 −
c1α2

4
〈ψ̂∗3 , y · ∇ψ̂1〉

− c2α2

4
〈ψ̂∗3 , y · ∇ψ̂2〉 −

c3α2

4
〈ψ̂∗3 , y · ∇ψ̂3〉+ c3µ1,2 = 0,

c1 + c2 + c3 = 1,

(4.24)

where

h1 := −∇ · [ln(c1ψ̂1 + c2ψ̂2 + c3ψ̂3)∇∆ψ̂1],

h2 := −∇ · [ln(c1ψ̂1 + c2ψ̂2 + c3ψ̂3)∇∆ψ̂2],

h3 := −∇ · [ln(c1ψ̂1 + c2ψ̂2 + c3ψ̂3)∇∆ψ̂3],

and c1, c2, c3, and µ1,2 are the unknowns to be evaluated. Moreover, α2 is regarded
as the value of the parameter α denoted by (4.1) and is dependent on the eigenvalue
λ2 with ψ̂1, ψ̂2, ψ̂3 representing the associated eigenfunctions and ψ̂∗1 , ψ̂

∗
2 , ψ̂

∗
3 the

corresponding adjoint eigenfunctions.
Subsequently, substituting c3 = 1 − c1 − c2 into the first three equations and

performing an argument based upon the Brouwer fixed point theorem and the
topological degree as the one done above for the case |β| = 1, we ascertain the exis-
tence of a non-degenerate solution of the algebraic system if the following condition
is satisfied:

〈ψ̂∗1 , y ·∇(ψ̂3− ψ̂1)〉〈ψ̂∗2 , y ·∇(ψ̂3− ψ̂2)〉−〈ψ̂∗1 , y ·∇(ψ̂3− ψ̂2)〉〈ψ̂∗2 , y ·∇(ψ̂3− ψ̂1)〉 6= 0.

Note that, by similar substitutions, other conditions might be obtained.
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Furthermore, once we know the existence of at least one solution, we proceed now
with a possible way of computing the number of solutions of the nonlinear algebraic
system (4.24). Obviously, since the dimension of the eigenspace is bigger than that
in the case |β| = 1, the difficulty in obtaining multiplicity results increases.

Firstly, integrating by parts in the nonlinear terms, in which h1, h2 and h3 are
involved, and rearranging terms in the first three equations gives∫

RN
∇ψ∗1 · ln(c1ψ̂1 + c2ψ̂2 + c3ψ̂3)∇∆(c1ψ̂1 + c2ψ̂2 + c3ψ̂3)

− c1
α2

4

∫
RN

ψ̂∗1y · ∇ψ̂1 + c1µ1,2 − c2
α2

4

∫
RN

ψ̂∗1y · ∇ψ̂2 − c3
α2

4

∫
RN

ψ̂∗1y · ∇ψ̂3 = 0,∫
RN
∇ψ̂∗2 · ln(c1ψ̂1 + c2ψ̂2 + c3ψ̂3)∇∆(c2ψ̂1 + c2ψ̂2 + c3ψ̂3)

− c1
α2

4

∫
RN

ψ̂∗2y · ∇ψ̂1 + c2µ1,2 − c2
α2

4

∫
RN

ψ̂∗2y · ∇ψ̂2 − c3
α2

4

∫
RN

ψ̂∗2y · ∇ψ̂3 = 0,∫
RN
∇ψ̂∗3 · ln(c1ψ̂1 + c2ψ̂2 + c3ψ̂3)∇∆(c2ψ̂1 + c2ψ̂2 + c3ψ̂3)

− c1
α2

4

∫
RN

ψ̂∗3y · ∇ψ̂1 + c3µ1,2 − c2
α2

4

∫
RN

ψ̂∗3y · ∇ψ̂2 − c3
α2

4

∫
RN

ψ̂∗3y · ∇ψ̂3 = 0.

According to the fourth equation, we have that c1 = 1− c2 − c3. Then, setting

c1ψ̂1 + c2ψ̂2 + c3ψ̂3 = ψ̂1 + c2(ψ̂2 − ψ̂1) + c3(ψ̂3 − ψ̂1),

and substituting it into the expressions obtained above for the first three equations
of the system yield∫

RN
∇ψ̂∗1 · ln(ψ̂1 + (ψ̂2 − ψ̂1)c2 + (ψ̂3 − ψ̂1)c3)∇∆

(
ψ̂1 + (ψ̂2 − ψ̂1)c2

+ (ψ̂3 − ψ̂1)c3
)

+ µ1,2 − c2µ1,2 − c3µ1,2 −
α2

4

∫
RN

ψ̂∗1y · ∇ψ̂1

+
α2

4

∫
RN

ψ̂∗1y · ((∇ψ̂1 −∇ψ̂2)c2 + (∇ψ̂1 −∇ψ̂3)c3) = 0,∫
RN
∇ψ̂∗2 · ln(ψ̂1 + (ψ̂2 − ψ̂1)c2 + (ψ̂3 − ψ̂1)c3)∇∆

(
ψ̂1

+ (ψ̂2 − ψ̂1)c2 + (ψ̂3 − ψ̂1)c3
)

+ c2µ1,2 −
α2

4

∫
RN

ψ̂∗2y · ∇ψ̂1

+
α2

4

∫
RN

ψ̂∗2y · ((∇ψ̂1 −∇ψ̂2)c2 + (∇ψ̂1 −∇ψ̂3)c3) = 0,∫
RN
∇ψ̂∗3 · ln(ψ̂1 + (ψ̂2 − ψ̂1)c2 + (ψ̂3 − ψ̂1)c3)∇∆

(
ψ̂1

+ (ψ̂2 − ψ̂1)c2 + (ψ̂3 − ψ̂1)c3
)

+ c3µ1,2 −
α2

4

∫
RN

ψ̂∗3y · ∇ψ̂1

+
α2

4

∫
RN

ψ̂∗3y · ((∇ψ̂1 −∇ψ̂2)c2 + (∇ψ̂1 −∇ψ̂3)c3) = 0.

(4.25)

Now, adding the first equation of (4.25) to the other two, we have∫
RN

(∇ψ̂∗1 +∇ψ̂∗2) · ln(ψ̂1 + (ψ̂2 − ψ̂1)c2 + (ψ̂3 − ψ̂1)c3)∇∆
(
ψ̂1
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+ (ψ̂2 − ψ̂1)c2 + (ψ̂3 − ψ̂1)c3
)

+ µ1,2 − c3µ1,2 −
α2

4

∫
RN

(ψ̂∗1 + ψ̂∗2)y · ∇ψ̂1

+
α2

4

∫
RN

(ψ̂∗1 + ψ̂∗2)y · ((∇ψ̂1 −∇ψ̂2)c2 + (∇ψ̂1 −∇ψ̂3)c3) = 0,

∫
RN

(∇ψ̂∗1 +∇ψ̂∗3) · ln(ψ̂1 + (ψ̂2 − ψ̂1)c2 + (ψ̂3 − ψ̂1)c3)∇∆
(
ψ̂1

+ (ψ̂2 − ψ̂1)c2 + (ψ̂3 − ψ̂1)c3
)

+ µ1,2 − c2µ1,2 −
α2

4

∫
RN

(ψ̂∗1 + ψ̂∗3)y · ∇ψ̂1

+
α2

4

∫
RN

(ψ̂∗1 + ψ̂∗3)y · ((∇ψ̂1 −∇ψ̂2)c2 + (∇ψ̂1 −∇ψ̂3)c3) = 0.

Subsequently, subtracting those equations yields

µ1,2 =
1

c3 − c2
[ ∫

RN
(∇ψ̂∗2 −∇ψ̂∗3) ln Ψ∇∆Ψ− α2

4

∫
RN

(ψ̂∗2 − ψ̂∗3)y · ∇ψ̂1

+
α2

4

∫
RN

(ψ̂∗2 − ψ̂∗3)y · ((∇ψ̂1 −∇ψ̂2)c2 + (∇ψ̂1 −∇ψ̂3)c3)
]
,

where Ψ = ψ̂1 + (ψ̂2 − ψ̂1)c2 + (ψ̂3 − ψ̂1)c3. Thus, substituting it into (4.25) (note
that, from the substitution into one of the last two equations, we obtain the same
equation), we arrive at the following system, with c2 and c3 as the unknowns:

c3

∫
RN

(∇ψ̂∗1 −∇ψ̂∗2 +∇ψ̂∗3) ln Ψ∇∆Ψ− c2
∫

RN
(∇ψ̂∗1 +∇ψ̂∗2 −∇ψ̂∗3) ln Ψ∇∆Ψ

+
∫

RN
(∇ψ̂∗2 −∇ψ̂∗3) ln Ψ∇∆Ψ− α2

4

∫
RN

(ψ̂∗2 − ψ̂∗3)y · ∇ψ̂1

+ c2
α2

4
[
∫

RN
(ψ̂∗2 − ψ̂∗3)y · ∇(2ψ̂1 − ψ̂2) +

∫
RN

ψ̂∗1y · ∇ψ̂1]

+ c3
α2

4
[
∫

RN
(ψ̂∗2 − ψ̂∗3)y · ∇(2ψ̂1 − ψ̂3)−

∫
RN

ψ̂∗1y · ∇ψ̂1]

+ c2c3
α2

4
[
∫

RN
ψ̂∗1y · (∇ψ̂3 −∇ψ̂2)−

∫
RN

(ψ̂∗2 − ψ̂∗3)y · (2∇ψ̂1 −∇ψ̂2 −∇ψ̂3)]

+ c23
α2

4

∫
RN

(ψ̂∗1 − ψ̂∗2 + ψ̂∗3)y · (∇ψ̂1 −∇ψ̂3)

− c22
α2

4

∫
RN

(ψ̂∗1 + ψ̂∗2 − ψ̂∗3)y · (∇ψ̂1 −∇ψ̂2) = 0,

c3

∫
RN
∇ψ̂∗2 ln Ψ∇∆Ψ− c2

∫
RN
∇ψ̂∗3 ln Ψ∇∆Ψ− c3

α2

4

∫
RN

ψ̂∗2y · ∇ψ̂1

+ c2
α2

4

∫
RN

ψ̂∗3y · ∇ψ̂1 + c3
α2

4

∫
RN

ψ̂∗2y · ((∇ψ̂1 −∇ψ̂2)c2 + (∇ψ̂1 −∇ψ̂3)c3)

− c2
α2

4

∫
RN

ψ̂∗3y · ((∇ψ̂1 −∇ψ̂2)c2 + (∇ψ̂1 −∇ψ̂3)c3) = 0.

These can be re-written in the form

A1c
2
2 +B1c

2
3 + C1c2 +D1c3 + E1c2c3 + ω1(c2, c3) = 0,

A2c
2
2 +B2c

2
3 + C2c2 +D2c3 + E2c2c3 + ω2(c2, c3) = 0,

(4.26)
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where

ω1(c2, c3) := c3

∫
RN

(∇ψ̂∗1 −∇ψ̂∗2 +∇ψ̂∗3) ln Ψ∇∆Ψ

− c2
∫

RN
(∇ψ̂∗1 +∇ψ̂∗2 −∇ψ̂∗3) ln Ψ∇∆Ψ

+
∫

RN
(∇ψ̂∗2 −∇ψ̂∗3) · ln Ψ∇∆Ψ− α2

4

∫
RN

(ψ̂∗2 − ψ̂∗3)y · ∇ψ̂1,

and

ω2(c2, c3) := c3

∫
RN
∇ψ̂∗2 · ln Ψ∇∆Ψ− c2

∫
RN
∇ψ̂∗3 · ln Ψ∇∆Ψ,

are the perturbations of the quadratic polynomials

Fi(c2, c3) := Aic
2
2 +Bic

2
3 + Cic2 +Dic3 + Eic2c3,

with i = 1, 2. The coefficients of those quadratic expressions are

A1 := −α2

4

∫
RN

(ψ̂∗1 + ψ̂∗2 − ψ̂∗3)y · (∇ψ̂1 −∇ψ̂2),

B1 :=
α2

4

∫
RN

(ψ̂∗1 − ψ̂∗2 + ψ̂∗3)y · (∇ψ̂1 −∇ψ̂3),

C1 :=
α2

4
[
∫

RN
(ψ̂∗2 − ψ̂∗3)y · ∇(2ψ̂1 − ψ̂2) +

∫
RN

ψ̂1y · ∇ψ̂1],

D1 :=
α2

4
[
∫

RN
(ψ̂∗2 − ψ̂∗3)y · ∇(2ψ̂1 − ψ̂3)−

∫
RN

ψ̂1y · ∇ψ̂1],

E1 :=
α2

4
[
∫

RN
ψ̂∗1y · (∇ψ̂3 −∇ψ̂2)−

∫
RN

(ψ̂∗2 − ψ̂∗3)y · (2∇ψ̂1 −∇ψ̂2 −∇ψ̂3)],

A2 := −α2

4

∫
RN

ψ̂∗3y · (∇ψ̂1 −∇ψ̂2),

B2 :=
α2

4

∫
RN

ψ̂∗2y · ((∇ψ̂1 −∇ψ̂3),

C2 :=
α2

4

∫
RN

ψ̂∗3y · ∇ψ̂1, D2 := −α2

4

∫
RN

ψ̂∗2y · ∇ψ̂1,

E2 :=
α2

4

∫
RN

ψ̂∗2y · (∇ψ̂1 −∇ψ̂2)− ψ̂∗3y · (∇ψ̂1 −∇ψ̂3).

Therefore, using the conic classification to solve (4.26), we have the number of
solutions through the intersection of two conics. Then, depending on the type of
conic, we shall always obtain one to four possible solutions for our system. Hence,
somehow, the number of solutions depends on the coefficients we have for the system
and, at the same time, on the eigenfunctions that generate the subspace ker

(
B+ k

4

)
.

Thus, we have the following conditions, which will provide us with the conic
section of each equation of the system (4.26):

(i) If B2
i − 4AiEi < 0, the equation represents an ellipse, unless the conic is

degenerate, for example c22 + c23 + k = 0 for some positive constant k. So,
if Ai = Bj and Ei = 0, the equation represents a circle;

(ii) If B2
i − 4AiEi = 0, the equation represents a parabola;

(iii) If B2
i − 4AiEi > 0, the equation represents a hyperbola. If we also have

Ai+Ei = 0 the equation represents a hyperbola (a rectangular hyperbola).



26 P. ALVAREZ-CAUDEVILLA, V. A. GALAKTIONOV EJDE-2015/90

Consequently, the zeros of the system (4.26) and, hence, of the system (4.24),
adding the “normalizing” constraint (4.13), are ascertained by the intersection of
those two conics in (4.26) providing us with the number of possible n-branches
between one and four. Note that in case those conics are two circles we only have
two intersection points at most. Moreover, due to the dimension of the eigenspaces
it looks like in this case that we have four possible intersection points two of them
will coincide. However, the justification for this is far from clear.

Moreover, as it was done for the previous case when |β| = 1, we need to control
the oscillations of the perturbation functions in order to maintain the number of
solutions. Therefore, imposing that

‖ωi(c2, c3)‖L∞ ≤ Fi(c∗2, c
∗
3), with i = 1, 2,

we ascertain that the number of solutions must be between one and four. This
again gives us an idea of the difficulty of more general multiplicity results.

4.6. Further comments on mathematical justification of existence. We re-
turn to the self-similar nonlinear eigenvalue problem (2.6), associated with (1.1),
which can be written in the form

L(α, n)f +N (n, f) = 0, where N (n, f) := ∇ · ((1− |f |n)∇∆f) .

As we have seen, the main difficulty in justifying the n-branching behaviour con-
cerns the distribution and “transversal topology” of zero surfaces of solutions close
to finite interface hyper-surfaces.

Recall that, as in classic nonlinear operator theory [13,28,32], our analysis above
always assumed that we actually dealt with and performed computations for the
integral equation:

f = −L−1(α, n)N (n, f) ≡ G(n, f), L(α, n) := −∆2 +
1− αn

4
y · ∇+ αI, (4.27)

where L(α, n) is invertible in L2
ρ (this is directly checked via Section 3) and, hence

compact, for a fixed α, and f ∈ C0(RN ) for small n > 0. This confirms that the
zeros of the function F(n, f) are fixed points of the map G(n, f).

Note again that (4.27) is an eigenvalue problem, where admissible real values
of α are supposed to be defined together with its solvability. This makes exis-
tence/multiplicity questions for (4.27) extremely difficult.

There are two cases of this problem. The first and simpler one occurs when the
eigenvalue α is determined a priori, e.g. in the case k = 0, where α0(0) = N/4
denoted as α0(0) = α0, and where, for n > 0, the first nonlinear eigenvalue is given
explicitly (see (2.9)):

α0(n) =
N

4 +Nn
.

Then (4.27) with α = α0(n) for n > 0 becomes a standard nonlinear integral equa-
tion with, however, a quite curious and hard-to-detect functional setting. Indeed,
the right-hand side in (4.27), where the nonlinearity is not in a fully divergent form,
assumes the extra regularity at least such as

f ∈ H3
ρ .

In view of the known good properties of the compact resolvent (L − λI)−1, it is
clear that the action of the inverse one L−1 is sufficient to restore the regularity,
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since locally in RN this acts like ∆−2. Therefore, it is plausible that

G : H3
ρ → H3

ρ ,

and it is not difficult to get an a priori bounds at least for small enough f ’s. The
accompanying analysis as y → ∞ (due to the unbounded domain) assumes no
novelties or special difficulties and is standard for such weighted L2 and Sobolev
spaces.

Therefore, application of Schauder’s fixed point theorem (see e.g. [6, p. 90]) to
(4.27) is the most powerful tool to imply existence of a solution, and moreover a
continuous curve of fixed points Γn = {f : n > 0 small}.

By scaling invariance of the similarity equation, we are obliged to impose the
normalization condition, say,

f(0) = δ0 > 0 sufficiently small.

On the other hand, uniqueness remains a completely open problem (apart from
partial results such as [3] when n is sufficiently close to zero). However, studying
the behaviour of the solution curve Γn as n → 0 and applying (under suitable
hypothesis) the branching techniques developed above, we may conclude that any
such continuous curve must be originated at a properly scaled eigenfunction ψ0 = F ,
so that such a curve is unique due to well-posedness of all the asymptotic expansions.

A possibility of extension of Γn for larger values of n > 0 represents an essentially
more difficult nonlocal open problem. Indeed, via compactness of linear operators
involved in (4.27), one can expect that such a curve can end up at a bifurcation
point only (unless it blows up). However, nonexistence of turning saddle-node
points at some n∗ > 0 (meaning that the n-branch is nonexistent for some n > n∗)
is not that easy to rule out. Moreover, such turning points with thin film operators
involved are actually possible, [21].

After establishing the existence of such solutions for small n > 0, we face the next
problem on their asymptotic properties including the fact that these are compactly
supported. On a qualitative level, these questions were discussed in [15].

In the case of higher-order nonlinear eigenfunctions of (4.27) for k ≥ 1 including
the dipole case k = 1, the parameter α becomes an eigenvalue that is essentially
involved into the problem setting. This assumes the consideration of the equation
(4.27) in the extended space

(f, α) ∈ X = H3
ρ × {α ∈ R} and G : X → X, (4.28)

where proving the latter mapping for some compact subsets becomes a hard open
problem. Note that here even the necessary convexity issue for applying Schauder’s
Theorem can be difficult. We still do not know whether representations such as
(4.28) may lead to any rigorous treatment of the nonlinear eigenvalue problem
(4.27) for k ≥ 1.
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