EXISTENCE AND EXPONENTIAL STABILITY OF
ANTI-PERIODIC SOLUTIONS IN CELLULAR NEURAL
NETWORKS WITH TIME-VARYING DELAYS AND
IMPULSIVE EFFECTS

CHANGJIN XU

Abstract. In this article we study a cellular neural network with impulsive
effects. By using differential inequality techniques, we obtain verifiable crite-
rria on the existence and exponential stability of anti-periodic solutions. An
example is included to illustrate the feasibility and of our main results.

1. Introduction

Because of the wide range of applications in neurobiology, image processing, ev-
olutionary theory, pattern recognition and optimization and so on, cellular neural
networks have attracted much attention in recent years [9]. It is well known that im-
ulsive differential equations are mathematical apparatus for simulation of process
and phenomena observed in control theory, physics, chemistry, population dynam-
ics, biotechnologies, industrial robotics, economics, etc. [3, 18, 35]. Therefore many
results on the existence and stability of an equilibrium point of cellular neural net-
works with impulses have been reported (see [14, 16, 17, 29, 39, 41, 42, 44, 52]). In
applied sciences, the existence of anti-periodic solutions plays a key role in charac-
terizing the behavior of nonlinear differential equations [11, 21, 22, 36]. For example,
high-order Hopfield neural networks can be analog voltage transmission, and voltage
transmission process can be described as an anti-periodic process [30]. anti-periodic
trigonometric polynomials play an important role in interpolation problems [10],
and anti-periodic wavelets were investigated in [7], in neural networks, the global
stable anti-periodic solution can reveal the characteristic and stability of signal [37].
Recently, there are some papers that deal with the problem of existence and stabil-
ity of anti-periodic solutions (see [12, 13, 15, 19, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 50, 51]). In addition, we know that many evolutionary processes ex-
hbit impulsive effects which are usually subject to short time perturbations whose
durations may be neglected in comparison with durations of the processes [38].
This motivates us to consider the existence and stability of anti-periodic solutions
for cellular neural networks with impulses. To the best of our knowledge, very few

2010 Mathematics Subject Classification. 34C25, 34K13, 34K25.
Key words and phrases. Cellular neural network; anti-periodic solution; impulse;
exponential stability; time-varying delay.
©2016 Texas State University.
authors have focused on the problems of anti-periodic solutions for such impulsive cellular neural networks. In this paper, we consider the anti-periodic solution of the following cellular neural network with delays and impulses

\[
\dot{x}_i(t) = -c_i(t)x_i(t) + \sum_{j=1}^{n} a_{ij}(t)f_j(x_j(t)) + \sum_{j=1}^{n} b_{ij}(t)f_j(x_j(t - \tau_{ij}(t))) + u_i(t),
\]

where \(i = 1, 2, \ldots, n\) and \(x_i(t)\) represent the state vector of the \(i\)th unit at time \(t\), \(c_i, a_{ij}, b_{ij}, f_j, g_j, u_i, \tau_{ij}\) are the connection weights between \(i\)th unit and \(j\)th unit at time \(t\), \(b_{ij}\) is the connection weights between \(i\)th unit and \(j\)th unit at time \(t - \tau_{ij}\), \(f_j\) and \(g_j\) are the activation function, \(u_i\) are the external input to the \(i\)th unit, \(\tau_{ij}\) is the time-varying delay and satisfy \(0 \leq \tau_{ij} \leq \tau\), \(\tau\) is a positive constant, \(t_k\) are the impulsive moments and satisfy \(0 < t_1 < t_2 < \cdots < t_k < \cdots\), \(\lim_{k \to \infty} t_k = \infty\), \(\delta_{ik}\) characterize the impulsive at jumps at time \(t_k\) for \(i\)th unit.

The main purpose of this article is to give the sufficient conditions of existence and exponential stability of anti-periodic solution of system (1.1). Some new sufficient conditions for the existence, unique and exponential stability of anti-periodic solutions of system (1.1) are established. Our results not only can be applied directly to many concrete examples of cellular neural networks, but also extend, to a certain extent, the results in some previously known ones. In addition, an example is presented to illustrate the effectiveness of our main results.

For convenience, we introduce the following notation

\[
\begin{align*}
\alpha_{ij}^+ &= \sup_{t \in \mathbb{R}} |a_{ij}(t)|, & b_{ij}^+ &= \sup_{t \in \mathbb{R}} |b_{ij}(t)|, & u_i^+ &= \sup_{t \in \mathbb{R}} |u_i(t)|,
\end{align*}
\]

\[
\begin{align*}
c_i^- &= \min_{t \in \mathbb{R}} c_i(t), & \tau &= \sup_{t \in \mathbb{R}} \max_{1 \leq i, j \leq n} \{\tau_{ij}(t)\}.
\end{align*}
\]

We assume the following hypothesis:

\[\text{(H1) For } i, j = 1, 2, \ldots, n, \ a_{ij}, b_{ij}, u_i, f_j, g_j : \mathbb{R} \to \mathbb{R}, \ c_i, \tau_{ij} : \mathbb{R} \to [0, +\infty) \text{ are continuous functions, and there exist a constant } T > 0 \text{ such that}
\]

\[
\begin{align*}
c_i(t + T) &= c_i(t), & \tau_{ij}(t + T) &= \tau_{ij}(t), & u_i(t + T) &= -u_i(t), & a_{ij}(t + T)f_j(u) &= -a_{ij}(t)f_j(-u), & b_{ij}(t + T)g_j(u) &= -b_{ij}(t)g_j(-u),
\end{align*}
\]

for all \(t, u \in \mathbb{R}\).

\[\text{(H2) For each } j \in \{1, 2, \ldots, n\}, \text{ the activation function } f_j : \mathbb{R} \to \mathbb{R} \text{ is continuous and there exists an nonnegative constant } L_j^f \text{ such that}
\]

\[
f_j(0) = 0, \ |f_j(u) - f_j(v)| \leq L_j^f |u - v|
\]

for all \(u, v \in \mathbb{R}\).

\[\text{(H3) } \prod_{0 \leq t_k < T(1 + \delta_{ik})} (i = 1, 2, \ldots, n, \ k = 1, 2, \ldots) \text{ are periodic functions of period } T \text{ and } \delta_{ik} > -1.
\]

\[\text{(H4) For } i = 1, 2, \ldots, n, \ k = 1, 2, \ldots, \text{ there exist positive constants } m \text{ and } M \text{ such that } m \leq \prod_{0 \leq t_k < T} (1 + \delta_{ik}) \leq M.
\]
Let $x = (x_1, x_2, \ldots, x_n)^T \in \mathbb{R}^n$, in which T denotes the transposition. We define $|x| = (|x_1|, |x_2|, \ldots, |x_n|)^T$ and $\|x\| = \max_{1 \leq i \leq n} |x_i|$. Obviously, the solution $x(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T$ of (1.1) has components $x_i(t)$ piece-wise continuous on $(-\tau, +\infty)$, $x(t)$ is differentiable on the open intervals (t_{k-1}, t_k) and $x(t_k^+)$ exists.

Definition 1.1. Let $u(t) : R \rightarrow R$ be piece-wise continuous function having countable number of discontinuous $\{t_k\}_{k=1}^{+\infty}$ of the first kind. It is said to be T-anti-periodic on R if

\[
u(t + T) = -u(t), \quad t \neq t_k,
\]

\[
u((t_k + T)^+) = -u(t_k), \quad k = 1, 2, \ldots.
\]

Definition 1.2. Let $x^*(t) = (x_1^*(t), x_2^*(t), \ldots, x_n^*(t))^T$ be an anti-periodic solution of (1.1) with initial value $\varphi^* = (\varphi_1^*(t), \varphi_2^*(t), \ldots, \varphi_n^*(t))^T$. If there exist constants $\lambda > 0$ and $M > 1$ such that for every solution $x(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T$ of (1.1) with an initial value $\varphi = (\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t))^T$, $|x_i(t) - x_i^*(t)| \leq M\|\varphi - \varphi^*\|e^{-\lambda t}$, for all $t > 0$, $i = 1, 2, \ldots, n$, where

\[
\|\varphi - \varphi^*\| = \sup_{-\tau \leq s \leq 0} \max_{1 \leq i \leq n} |\varphi_i(s) - \varphi_i^*(s)|.
\]

Then $x^*(t)$ is said to be globally exponentially stable.

The rest of this article is organized as follows. In the next section, we give some preliminary results. In Section 3, we derive the existence of T-anti-periodic solution, which is globally exponential stable. In Section 4, we present an example to illustrate the effectiveness of our main results.

2. Preliminaries

In this section, we firstly establish a fundamental theorem that enable us to reduce the existence of solution of system (1.1) to the corresponding problem for a delayed differential equation without impulses. Consider the following non-impulsive delayed differential system

\[
\begin{align*}
\dot{y}_i(t) &= -c_i(t)y_i(t) + \prod_{0 \leq t_k < t} (1 + \delta_{ik})^{-1}\left(\sum_{j=1}^{n} a_{ij}(t)f_j\left(\prod_{0 \leq t_k < t} (1 + \delta_{jk})y_j(t)\right)\right) \\
&\quad + \sum_{j=1}^{n} b_{ij}(t)f_j\left(\prod_{0 \leq t_k < -\tau_{ij}(t)} (1 + \delta_{jk})y_j(t - \tau_{ij}(t))\right) \\
&\quad + \prod_{0 \leq t_k < t} (1 + \delta_{ik})^{-1}u_i(t), \quad t > 0
\end{align*}
\]

(2.1)

with initial condition $y_i(s) = \varphi_i(s)$, $s \in [-\tau, 0]$, $i = 1, 2, \ldots, n$.

In this section, we present three important lemmas which are used to prove our main results in Section 3.
Lemma 2.1. Assume that (H3) holds. (i) If \(y = (y_1, y_2, \ldots, y_n) \) is a solution of (2.1), then
\[
x = \left(\prod_{0 \leq t_k < t} (1 + \delta_{ik})y_1, \prod_{0 \leq t_k < t} (1 + \delta_{ik})y_2, \ldots, \prod_{0 \leq t_k < t} (1 + \delta_{ik})y_n \right)
\]
is a solution of (2.1).
(ii) If \(x = (x_1, x_2, \ldots, x_n) \) is a solution of (2.1), then
\[
y = \left(\prod_{0 \leq t_k < t} (1 + \delta_{ik})^{-1}x_1, \prod_{0 \leq t_k < t} (1 + \delta_{ik})^{-1}x_2, \ldots, \prod_{0 \leq t_k < t} (1 + \delta_{ik})^{-1}x_n \right)
\]
is a solution of (2.1).

The proof of the above lemma is similar to that in Li et al [20]. We omit it here.

Lemma 2.2. Let (H1)–(H4) hold. Suppose that \(y(t) = (y_1(t), y_2(t), \ldots, y_n(t))^T \) is a solution of (2.1) with initial conditions
\[
y_i(s) = \varphi_i(s), \quad |\varphi_i(s)| < \gamma, \quad s \in [-\tau, 0], \quad i = 1, 2, \ldots, n.
\]
Then
\[
|y_i(t)| < \gamma, \quad \forall t \geq 0, \quad i = 1, 2, \ldots, n,
\]
where
\[
\gamma > \frac{u_i^+}{mc_i^- - M\left[\sum_{j=1}^n (a_{ij}^+ - b_{ij}^-)L_j \right]}.
\]

Proof. For any given initial condition, hypotheses (H2) and (H4) guarantee the existence and uniqueness of \(y(t) \), the solution to (2.1) in \([-\tau, +\infty)\). By way of contradiction, we assume that (2.3) does not hold. Then there must exist \(i \in \{1, 2, \ldots, n\} \) and \(\theta_0 > 0 \) such that
\[
|y_i(\theta_0)| = \gamma, \quad |y_j(\theta_0)| < \gamma \quad \text{for all} \quad t \in (-\tau, \theta_0), \quad j = 1, 2, \ldots, n.
\]
By computing the upper left derivative of \(|y_i(t)| \), together with the assumptions (2.3), (2.4), (2.5), (H2) and (H4), we have
\[
0 \leq D^+|y_i(\theta_0)|
\]
\[
\leq -c_i(\theta_0)|y_i(\theta_0)| + \prod_{0 \leq t_k < \theta_0} (1 + \delta_{ik})^{-1}\left[\sum_{j=1}^n a_{ij}(\theta_0)f_j \left(\prod_{0 \leq t_k < \theta_0} (1 + \delta_{jk})y_j(\theta_0) \right) \right]
\]
\[
+ \sum_{j=1}^n b_{ij}(\theta_0)f_j \left(\prod_{0 \leq t_k < \theta_0 - \tau_{ij}(\theta_0)} (1 + \delta_{jk})y_j(\theta_0 - \tau_{ij}(\theta_0)) \right)
\]
\[
+ \prod_{0 \leq t_k < \theta_0} (1 + \delta_{ik})^{-1}u_i(\theta_0)
\]
\[
\leq -c_i|y_i(\theta_0)| + \prod_{0 \leq t_k < \theta_0} (1 + \delta_{ik})^{-1}\left[\sum_{j=1}^n |a_{ij}(\theta_0)|f_j \left(\prod_{0 \leq t_k < \theta_0} (1 + \delta_{jk})y_j(\theta_0) \right) \right]
\]
\[
+ \sum_{j=1}^n |b_{ij}(\theta_0)|f_j \left(\prod_{0 \leq t_k < \theta_0 - \tau_{ij}(\theta_0)} (1 + \delta_{jk})y_j(\theta_0 - \tau_{ij}(\theta_0)) \right) \]
Lemma 2.3. Suppose that (H1)--(H5) hold. Let \(y^*(t) = (y_1^*(t), y_2^*(t), \ldots, y_n^*(t))^T \) be the solution of (2.1) with initial value \(\varphi^* = (\varphi_1^*(t), \varphi_2^*(t), \ldots, \varphi_n^*(t))^T \), and let \(y(t) = (y_1(t), y_2(t), \ldots, y_n(t))^T \) be the solution of (2.1) with initial value \(\varphi = (\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t))^T \). Then there exist constants \(\lambda > 0 \) and \(M > 1 \) such that

\[
|y_i(t) - y_i^*(t)| \leq M\|\varphi - \varphi^*\|e^{-\lambda t}, \quad \text{for all } t > 0, \ i = 1, 2, \ldots, n.
\]

Proof. Let \(u(t) = \{u_1(t)\} = \{y_i(t) - y_i^*(t)\} = y(t) - y^*(t) \). Then

\[
u_i(t) = -c_i(t)u_i(t) + \left(\prod_{0 \leq t_k < t} (1 + \delta_{ik})^{-1} \right) \left\{ \sum_{j=1}^{n} a_{ij}(t) \left[f_j \left(\prod_{0 \leq t_k < t} (1 + \delta_{jk})y_j(t) \right) \right. \right.
\]

\[\left. \left. - f_j \left(\prod_{0 \leq t_k < t} (1 + \delta_{jk})y_j^*(t) \right) \right] + \sum_{j=1}^{n} b_{ij}(t) \left[f_j \left(\prod_{0 \leq t_k < t - \tau_{ij}(t)} (1 + \delta_{jk})y_j(t - \tau_{ij}(t)) \right) \right. \right.
\]

\[\left. \left. - f_j \left(\prod_{0 \leq t_k < t - \tau_{ij}(t)} (1 + \delta_{jk})y_j^*(t - \tau_{ij}(t)) \right) \right] \right\},
\]

where \(i = 1, 2, \ldots, n \). Next, we define a Lyapunov functional

\[
V_i(t) = |u_i(t)|e^{\lambda t}, \quad i = 1, 2, \ldots, n.
\]

It follows from (2.7) and (2.8) that

\[
D^+ \left(V_i(t) \right)
\]

\[
\leq D^+ \left(|u_i(t)| \right) e^{\lambda t} + \lambda |u_i(t)| e^{\lambda t}
\]

\[
\leq (\lambda - c_i) |u_i(t)| e^{\lambda t} + \left(\prod_{0 \leq t_k < t} (1 + \delta_{ik})^{-1} \right) \left\{ \sum_{j=1}^{n} |a_{ij}(t)| \left| f_j \left(\prod_{0 \leq t_k < t} (1 + \delta_{jk})y_j(t) \right) \right. \right.
\]

\[\left. \left. - f_j \left(\prod_{0 \leq t_k < t} (1 + \delta_{jk})y_j^*(t) \right) \right\} \right)
\]

This completes the proof. □
\[
+ \sum_{j=1}^{n} |b_{ij}(t)| f_j \left(\prod_{0 \leq t_k < t} \left(1 + \delta_{jk} \right) g_j(t - \tau_{ij}(t)) \right)
- f_j \left(\prod_{0 \leq t_k < t} \left(1 + \delta_{jk} \right) g_j^*(t - \tau_{ij}(t)) \right) \bigg] e^{\lambda t} \\
\leq (\lambda - c_i^-)|u_i(t)| e^{\lambda t} + \left(\prod_{0 \leq t_k < t} \left(1 + \delta_{ik} \right)^{-1} \right) \left[\sum_{j=1}^{n} a_{ij}^+ L_j^f \left(\prod_{0 \leq t_k < t} \left(1 + \delta_{jk} \right) \right) |u_j(t)| \right.
\left. + \sum_{j=1}^{n} b_{ij}^+ L_j^f \left(\prod_{0 \leq t_k < t - \tau_{ij}(t)} \left(1 + \delta_{jk} \right) \right) |u_j(t - \tau_{ij}(t))| \right] e^{\lambda t},
\]

where \(i = 1, 2, \ldots, n \). Let \(M > 1 \) denote an arbitrary real number and set
\[
\|\varphi - \varphi^*\| = \sup_{-\tau \leq s \leq 0} \max_{1 \leq j \leq n} |\varphi_j(s) - \varphi_j^*(s)| > 0, \quad j = 1, 2, \ldots, n.
\]

Then by (2.10), we have
\[
V_i(t) = |u_i(t)| e^{\lambda t} < M \|\varphi - \varphi^*\| \quad \text{for all } t \in [-\infty, 0], \; i = 1, 2, \ldots, n.
\]

Thus we can claim that
\[
V_i(t) = |u_i(t)| e^{\lambda t} < M \|\varphi - \varphi^*\|, \quad \text{for all } t > 0, \; i = 1, 2, \ldots, n.
\]

Otherwise, there must exist \(i \in \{1, 2, \ldots, n\} \) and \(t_i > 0 \) such that
\[
V_i(t_i) = M \|\varphi - \varphi^*\|, \quad V_j(t) < M \|\varphi - \varphi^*\| \quad \text{for all } t \in [-\tau, t_i), \; j = 1, 2, \ldots, n.
\]

Combining (2.10) with (2.12), we obtain
\[
0 \leq D^+(V_i(t_i) - M \|\varphi - \varphi^*\|) = D^+(V_i(t_i))
\leq (\lambda - c_i^-)|u_i(t_i)| e^{\lambda t_i}
+ \left(\prod_{0 \leq t_k < t_i} \left(1 + \delta_{ik} \right)^{-1} \right) \left[\sum_{j=1}^{n} a_{ij}^+ L_j^f \left(\prod_{0 \leq t_k < t_i} \left(1 + \delta_{jk} \right) \right) |u_j(t_i)| e^{\lambda \tau_{0}} \right.
\left. + \sum_{j=1}^{n} b_{ij}^+ L_j^f \left(\prod_{0 \leq t_k < t_i - \tau_{ij}(t_i)} \left(1 + \delta_{jk} \right) \right) |u_j(t_i - \tau_{ij}(t_i))| e^{\lambda \tau_{0}} \right] \\
= (\lambda - c_i^-)|u_i(t_i)| e^{\lambda t_i}
+ \left(\prod_{0 \leq t_k < t_i} \left(1 + \delta_{ik} \right)^{-1} \right) \left[\sum_{j=1}^{n} a_{ij}^+ L_j^f \left(\prod_{0 \leq t_k < t_i} \left(1 + \delta_{jk} \right) \right) |u_j(t_i)| e^{\lambda t_i} \right.
\left. + \sum_{j=1}^{n} b_{ij}^+ L_j^f \left(\prod_{0 \leq t_k < \tau_{0} - \tau_{ij}(t_i)} \left(1 + \delta_{jk} \right) \right) |u_j(t_i - \tau_{ij}(t_i))| e^{\lambda (t_i - \tau_{ij}(t_i))} e^{\lambda \tau_{0}} \right] \\
\leq (\lambda - c_i^-)M \|\varphi - \varphi^*\|
+ \left(\prod_{0 \leq t_k < t_i} \left(1 + \delta_{ik} \right)^{-1} \right) \left[\sum_{j=1}^{n} a_{ij}^+ L_j^f \left(\prod_{0 \leq t_k < t_i} \left(1 + \delta_{jk} \right) \right) M \|\varphi - \varphi^*\| \right.
\left. + \sum_{j=1}^{n} b_{ij}^+ L_j^f \left(\prod_{0 \leq t_k < t_i - \tau_{ij}(t_i)} \left(1 + \delta_{jk} \right) \right) e^{\lambda \tau} M \|\varphi - \varphi^*\| \right]
Then

\[\left\{ (\lambda - c_i^-) + \left(\prod_{0 \leq t_k < t_i} (1 + \delta_{ik})^{-1} \right) \left[\sum_{j=1}^{n} a_{ij} L_j^f \left(\prod_{0 \leq t_k < t_i} (1 + \delta_{jk}) \right) \right] \right. \]

\[+ \left. \sum_{j=1}^{n} b_{ij} L_j^f \left(\prod_{0 \leq t_k < t_i - \tau_{ij}(t_i)} (1 + \delta_{jk}) \right) e^{\lambda \tau} \right\} M \| \varphi - \varphi^* \| \]

\leq \left\{ (\lambda - c_i^-) + \frac{M}{m} \left[\sum_{j=1}^{n} (a_{ij}^+ + b_{ij}^+) L_j^f \right] e^{\lambda \tau} \right\} M \| \varphi - \varphi^* \|.

Thus

\[\lambda - c_i^- + \frac{M}{m} \left[\sum_{j=1}^{n} (a_{ij}^+ + b_{ij}^+) L_j^f \right] e^{\lambda \tau} > 0, \]

which contradicts (H5), then (2.12) holds. In view of (2.11), we know that

\[V_i(t) = |u_i(t)| e^{\lambda t} < M \| \varphi - \varphi^* \|, i = 1, 2, \ldots, n. \]

Namely,

\[|y_i(t) - y_i^*(t)| = |u_i(t)| < M \| \varphi - \varphi^* \| \quad \text{for all} \ t > 0, \ i = 1, 2, \ldots, n. \]

This completes the proof. \(\square \)

Remark 2.4. If \(y^*(t) = (y^*_1(t), y^*_2(t), \ldots, y^*_n(t))^T \) is a \(T \)-anti-periodic solution of (2.1), it follows from Lemma 2.2 and Definition 1.2 that \(y^*(t) \) is globally exponentially stable.

3. Main results

In this section, we present our main result that there exists the exponentially stable anti-periodic solution of (1.1).

Theorem 3.1. Assume that (H1)–(H5) are satisfied. Then (1.1) has exactly one \(T \)-anti-periodic solution \(x^*(t) \). Moreover, this solution is globally exponentially stable.

Proof. Let \(v(t) = (v_1(t), v_2(t), \ldots, v_n(t))^T \) be a solution of (2.1) with initial conditions

\[v_i(s) = \varphi_i^0(s), |\varphi_i^0(s)| < \gamma, \quad s \in (-\tau, 0], \ i = 1, 2, \ldots, n. \quad (3.1) \]

Thus according to Lemma 2.2 the solution \(v(t) \) is bounded and

\[|v_i(t)| < \gamma \quad \text{for all} \ t \in R, \ i = 1, 2, \ldots, n. \quad (3.2) \]

From (2.1), we obtain

\[\left((-1)^{p+1} v_i(t + (p+1)T) \right)' \]

\[= (-1)^{p+1} \left\{ -c_i(t + (p+1)T) v_i(t + (p+1)T) \right. \]

\[+ \left. \prod_{0 \leq t_k < t + (p+1)T} (1 + \delta_{ik})^{-1} \left[\sum_{j=1}^{n} a_{ij}(t + (p+1)T) \right] \right. \]

\[\times f_j \left(\prod_{0 \leq t_k < t + (p+1)T} (1 + \delta_{jk}) v_j(t + (p+1)T) \right) \]

\[+ \sum_{j=1}^{n} b_{ij}(t + (p+1)T) f_j \left(\prod_{0 \leq t_k < t + (p+1)T - \tau_{ij}(t + (p+1)T)} (1 + \delta_{jk}) v_j(t + (p+1)T) \right) \]
for any natural number \(p \) such that

\[
\text{Hence}
\]

\[
\forall \mathcal{C} \subseteq \mathbb{R}, \quad \text{uniformly converges to a piece-wise continuous function on any compact subset of}
\]

where \(i = 1, 2, \ldots, n \). Thus \((-1)^{p+1}v_i(t + (p + 1)T)\) are the solutions of (2.1) on \(R \) for any natural number \(p \). Then, from Lemma 2.3 there exists a constant \(M > 1 \) such that

\[
|(-1)^{p+1}v_i(t + (p + 1)T) - (-1)^{k}v_i(t + pT)|
\leq Me^{-\lambda(t+pT)} \sup_{-\tau \leq t \leq 0} \max_{1 \leq i \leq n} |v_i(s + T) + v_i(s)|
\leq 2e^{-\lambda(t+pT)}M_p,
\]

where \(i = 1, 2, \ldots, n \). Thus, for any natural number \(q \), we have

\[
(-1)^{q+1}v_i(t+(q+1)T) = v_i(t) + \sum_{k=0}^{q}|(-1)^{k+1}v_i(t+(k+1)T) - (-1)^k v_i(t+kT)|. \quad (3.5)
\]

Hence

\[
|(-1)^{q+1}v_i(t + (q + 1)T)|
\leq |v_i(t)| + \sum_{k=0}^{q}|(-1)^{k+1}v_i(t + (k + 1)T) - (-1)^k v_i(t + kT)|, \quad (3.6)
\]

where \(i = 1, 2, \ldots, n \). From (3.4), (3.6) it follows that \((-1)^{q+1}v_i(t+(q+1)T)\) is a fundamental sequence on any compact set of \(R \). Obviously, \((-1)^q v(t+qT)\) converges uniformly to a piece-wise continuous function \(y^*(t) = (y_1^*(t), y_2^*(t), \ldots, y_n^*(t))^T \) on any compact set of \(R \).

Now we show that \(y^*(t) \) is \(T \)-anti-periodic solution of (2.1). Firstly, \(y^*(t) \) is \(T \)-anti-periodic, since

\[
y^*(t + T) = \lim_{q \to -\infty} (-1)^q v(t + T + qT)
\]

\[
= - \lim_{(q+1) \to -\infty} (-1)^{q+1} v(t + (q + 1)T) = -y^*(t). \quad (3.7)
\]

In the sequel, we prove that \(y^*(t) \) is a solution of \((2.1) \). Noting that the right-hand side of \((2.1) \) is piece-wise continuous, (3.3) implies that \(\{(−1)^{q+1}v(t+(q+1)T)\} \) uniformly converges to a piece-wise continuous function on any compact subset of
R. Thus, letting \(q \to \infty \), we can easily obtain

\[
\dot{y}_i^*(t) = -c_i(t)y_i^*(t) + \prod_{0 \leq t_k < t} (1 + \delta_{ik})^{-1} \left[\sum_{j=1}^n a_{ij}(t)f_j \left(\prod_{0 \leq t_k < t} (1 + \delta_{jk})y_j^*(t) \right) \\
+ \sum_{j=1}^n b_{ij}(t)f_j \left(\prod_{0 \leq t_k < t - \tau_{ij}(t)} (1 + \delta_{jk})y_j^*(t - \tau_{ij}(t)) \right) \\
+ \prod_{0 \leq t_k < t} (1 + \delta_{ik})^{-1}u_i(t), \quad t > 0,\]

(3.8)

where \(i = 1, 2, \ldots, n \). Therefore, \(y^*(t) \) is a solution of (2.1). Applying Lemma 2.1, Definition 1.2 and Lemma 2.3, we can easily check that \(x^*(t) \) is globally exponentially stable. The proof is complete.

Shi and Dong [38] investigated the following Hopfield neural networks with impulses:

\[
\dot{x}_i(t) = -c_i(t)x_i(t) + \sum_{j=1}^n b_{ij}(t)f_j(x_j(t)) + I_i(t), \quad t \neq t_k, \tag{3.9}
\]

\[
x_i(t_k^+) = (1 + d_{ik})x_i(t_k), \quad k = 1, 2, \ldots, \]

where \(i = 1, 2, \ldots, n \). About the manning of the parameters, one can see [38]. By some analytical technique and by upper left derivative of the Lyapunov functional with \(t \neq t_k \) and \(t = t_k \), Shi and Dong [38] obtained some sufficient conditions which ensure the existence and the global exponential stability of anti-periodic solution of system (3.9). In this paper, we consider a more general neural networks with delays and impulses. Moreover, the research technique is different from that of [38]. By transforming the neural networks with impulses into an equivalent form without impulses and constructing the Lyapunov functional, we obtain the sufficient conditions which ensure the existence and global exponential stability of anti-periodic solution of the model. From this viewpoint, we say that the results obtained in this paper complement the previous results in [38].

In [13, 22, 23, 30, 33, 34, 36, 47, 51], authors considered the anti-periodic solution of neural networks without impulses. In [31, 57, 40, 49], authors investigated the global exponential stability of anti-periodic solution of neural networks with impulses by upper left derivative of the Lyapunov functional with \(t \neq t_k \) and \(t = t_k \). In [21], author studied the existence and global exponential stability anti-periodic solution of neural networks with impulses by the method of coincidence degree theory and Lyapunov functions. In this paper, we firstly transform the neural networks with impulses into an equivalent neural networks without impulses, then consider the existence and global exponential stability of anti-periodic solution of the equivalent model by constructing a suitable Lyapunov functional. To the best of our knowledge, there are very few papers that deal with this aspect. Moreover, all the results in [13, 22, 23, 30, 31, 33, 34, 36, 37, 45, 46, 47, 48, 49, 51] and the references therein cannot applicable to system (1.1) to obtain the existence and global exponential stability of anti-periodic solutions. Therefore the results obtained in this paper are essentially new and complement the previous publications.
4. An Example

In this section, we illustrate the results obtained in previous sections. Let \(n = 2 \), consider the cellular neural networks with time-varying delays and impulsive effects

\[
\dot{x}_1(t) = -c_1(t)x_1(t) + \sum_{j=1}^{2} a_{1j}(t)f_j(x_j(t)) \\
+ \sum_{j=1}^{2} b_{1j}(t)f_j(x_j(t - \tau_{1j}(t))) + u_1(t), \quad t \neq t_k,
\]

\[
\dot{x}_2(t) = -c_2(t)x_2(t) + \sum_{j=1}^{2} a_{2j}(t)f_j(x_j(t)) \\
+ \sum_{j=1}^{2} b_{2j}(t)f_j(x_j(t - \tau_{2j}(t))) + u_2(t), \quad t \neq t_k,
\]

\[
x_1(t_k^+) = (1 + \delta_{1k})x_1(t_k), \quad k = 1, 2, \ldots,
\]

\[
x_2(t_k^+) = (1 + \delta_{2k})x_1(t_k), \quad k = 1, 2, \ldots,
\]

which is equivalent to

\[
\dot{y}_1(t) = -c_1(t)y_1(t) + \prod_{0 \leq t_k < t} (1 + \delta_{1k})^{-1} \left[\sum_{j=1}^{2} a_{ij}(t)f_j \left(\prod_{0 \leq t_k < t} (1 + \delta_{jk})y_j(t - \tau_{1j}(t)) \right) \right] \\
+ \prod_{0 \leq t_k < t} (1 + \delta_{1k})^{-1}u_1(t), \quad t > 0
\]

\[
\dot{y}_2(t) = -c_2(t)y_2(t) + \prod_{0 \leq t_k < t} (1 + \delta_{2k})^{-1} \left[\sum_{j=1}^{2} a_{2j}(t)f_j \left(\prod_{0 \leq t_k < t} (1 + \delta_{jk})y_j(t - \tau_{2j}(t)) \right) \right] \\
+ \prod_{0 \leq t_k < t} (1 + \delta_{2k})^{-1}u_2(t), \quad t > 0,
\]

where \(f_j(u) = \frac{1}{2}(|u + 1| - |u - 1|) \) \((j = 1, 2) \), \(u_1(t) = 0.1 \sin t \), \(u_2(t) = 0.2 \cos t \) and

\[
\begin{bmatrix}
 c_1(t) & c_2(t) \\
 u_1(t) & u_2(t)
\end{bmatrix}
= \begin{bmatrix}
 3 + |\cos t| & 3 + |\sin t| \\
 2\sin t & 3\sin t
\end{bmatrix},
\]

\[
\begin{bmatrix}
 a_{11}(t) & a_{12}(t) \\
 a_{21}(t) & a_{22}(t)
\end{bmatrix}
= \begin{bmatrix}
 \frac{1}{2} |\sin t| & \frac{1}{2} |\cos t| \\
 \frac{1}{2} |\cos t| & \frac{1}{2} |\sin t|
\end{bmatrix},
\]

\[
\begin{bmatrix}
 b_{11}(t) & b_{12}(t) \\
 b_{21}(t) & b_{22}(t)
\end{bmatrix}
= \begin{bmatrix}
 \frac{1}{5} |\sin t| & \frac{1}{5} |\cos t| \\
 \frac{1}{5} |\cos t| & \frac{1}{5} |\sin t|
\end{bmatrix},
\]

\[
\begin{bmatrix}
 \tau_{11}(t) & \tau_{12}(t) \\
 \tau_{21}(t) & \tau_{22}(t)
\end{bmatrix}
= \begin{bmatrix}
 0.05 |\sin t| & 0.05 |\sin t| \\
 0.04 |\cos t| & 0.04 |\cos t|
\end{bmatrix}.
\]
Then \(L_f = 1, c_i^- = c_i^+ = 2, a_{ij}^+ = 0.2, a_{ij}^- = 0.25, b_{ij}^+ = 0.25, b_{ij}^- = 0.2, \tau = 0.05. \) Let \(\eta = 0.6, \lambda = 0.5, m = 1 \) and \(M = 2. \) Then

\[
\lambda - c_i^- + \frac{M}{m} \left[\sum_{j=1}^{2} (a_{ij}^+ + b_{ij}^+) L_f \right] e^{\lambda \tau} < 0.5 - 3 + 0.9 \times 2 \times e^{0.05 \times 0.5} = -0.6544 < -0.6 < 0,
\]

which implies that system (4.2) satisfies all the conditions in Theorem 3.1. Thus we can conclude that (4.1) has exactly one \(\pi \)-anti-periodic solution. Moreover, this solution is globally exponentially stable. The results are verified by the numerical simulations in Figure 1.

![Figure 1. Time response of state variables \(x_1(t) \) (red) and \(x_2(t) \) (blue).](image)

Conclusion. In this paper, we investigated the asymptotical behavior of a cellular neural networks with time-varying delays and impulsive effects. Applying the fundamental theorem, we reduce the existence of solution of system (1.1) to the corresponding problem for a delayed differential equation without impulses and derive a series of new sufficient conditions to guarantee the existence and global exponential stability of an anti-periodic solution for the cellular neural networks with time-varying delays and impulsive effects. The obtained conditions are easily to check in practice. Finally, an example is given to illustrate the feasibility and effectiveness. To the best of our knowledge, there are only few papers that focus on the anti-periodic solution problem of cellular neural networks with impulsive effects by reducing the impulsive cellular neural networks to the cellular neural networks without impulse. Thus our work is new and an excellent complement of previously known results.

Acknowledgments. This work was supported by the National Natural Science Foundation of China (Nos. 11261010, 11201138, 11101126), by the Natural Science and Technology Foundation of Guizhou Province (J[2015]2025), by the 125 Special Major Science and Technology of Department of Education of Guizhou.
Province ([2012]011), and by the Natural Science Innovation Team Project of Guizhou Province ([2013]14).

References

Changjin Xu
Guizhou Key Laboratory of Economics System Simulation, School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550004, China
E-mail address: xcj403@126.com