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GROWTH OF SOLUTIONS TO SYSTEMS OF q-DIFFERENCE
DIFFERENTIAL EQUATIONS

HONG-YAN XU, JIN TU

Abstract. In this article we study the growth and poles of solutions to sys-

tems of complex q-difference differential equations. We give growth estimates
for the solutions, and give examples showing the existence of solutions to such

systems.

1. Introduction and statement of main results

The purpose of this paper is to study the growth of meromorphic solutions to sys-
tems of complex q-difference differential equations. We use the fundamental results
and the standard notation of the Nevanlinna value distribution theory for meromor-
phic functions (see [14, 22, 23]). For a meromorphic function f in the whole complex
plane C, S(r, f) denotes any quantity satisfying S(r, f) = o(T (r, f)) for all r out-
side a possible exceptional set E of finite logarithmic measure limr→∞

∫
[1,r)∩E

dt
t <

∞. A meromorphic function a(z) is called a small function with respect to f if
T (r, a(z)) = S(r, f). We use ρ(f), µ(f) to denote the order and the lower order of
f , which are defined by

ρ(f) = lim sup
r→+∞

log T (r, f)
log r

, µ(f) = lim inf
r→+∞

log T (r, f)
log r

.

In 2007, Barnett, Halburd, Korhonen and Morgan [2] established an analogue
of the Logarithmic Derivative Lemma on q-difference operators. Applying their
results, a number of papers focused on the growth of meromorphic solutions to
complex q-difference equations, and on the value distribution of difference products
and q-differences in the complex plane C, analogous to the Nevanlinna’s theory
[4, 13, 16, 19, 25].

In 2010, Zheng and Chen [26] further considered the growth of meromorphic
solutions to q-difference equations and obtained some results which extended the
theorems by Heittokangas et al [15].

Theorem 1.1 ([26, Theorem 2]). Suppose that f is a transcendental meromorphic
solution of

n∑
j=1

aj(z)f(qjz) = R(z, f(z)) =
P (z, f(z))
Q(z, f(z))

.
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where q ∈ C, |q| > 1, the coefficients aj(z), bi(z) are rational functions, and P,Q
are relatively prime polynomials in f over the field of rational functions satisfying
p = degf P, t = degf Q, d = p − t ≥ 2. If f has infinitely many poles, then for

sufficiently large r, n(r, f) ≥ Kd
log r

n log |q| holds for some constant K > 0. Thus, the
lower order of f , which has infinitely many poles, satisfies µ(f) ≥ log d

n log |q| .

Recently, Gao [6, 7, 8] and Xu [20, 21] investigated the growth and existence
of meromorphic solutions to systems of complex difference equations, and obtained
some existence theorems and estimates on the proximity functions and the counting
functions of solutions of some systems.

In 2013, Wang, Huang and Xu [18] investigated the growth and poles of mero-
morphic solutions to systems of complex q-difference equations and obtained the
following result.

Theorem 1.2 ([18, Theorem 1.5]). Suppose that (f1, f2) is a pair of transcendental
meromorphic functions that satisfy the system of q-shift difference equations

n1∑
j=1

a1
j (z)f1(qjz + cj) =

P2(z, f2(z))
Q2(z, f2(z))

,

n2∑
j=1

a2
j (z)f2(qjz + cj) =

P1(z, f1(z))
Q1(z, f1(z))

,

where cj ∈ C \ {0}, q ∈ C, |q| > 1, the coefficients atj(z), t = 1, 2 are rational
functions, and Pt, Qt are relatively prime polynomials in ft over the field of rational
functions satisfying pt = degft

Pt, lt = degft
Qt, dt = pt − lt ≥ 2, t = 1, 2. If ft

(t = 1, 2) have infinitely many poles, then for sufficiently large r,

n(r, ft) ≥ Kt(d1d2)
log r

(n1+n2) log |q| , t = 1, 2,

and

µ(f1) + µ(f2) ≥ 2(log d1 + log d2)
(n1 + n2) log |q|

.

In 2012, Beardon [3] studied entire solutions of the generalized functional equa-
tion

f(qz) = qf(z)f ′(z), f(0) = 0, (1.1)

where q is a non-zero complex number. To state the results of Beardon [3], we
firstly introduce some notation as follows.

Let the formal series O and I be defined by

O := 0 + 0z + 0z2 + . . . , I := 0 + 1z + 0z2 + 0z3 + . . . .

Let Kp = {z : zp = p + 2}, (p = 1, 2, . . .), and K = K1 ∪ K2 ∪ . . . . Based on the
above definitions, Beardon obtained two main theorems as follows.

Theorem 1.3 ([3]). Any transcendental solution f of (1.1) is of the form

f(z) = z + z(bzp + . . . ),

where p is a positive integer, b 6≡ 0 and q ∈ Kp. In particular, if q 6∈ K, then the
only formal solutions of (1.1) are O and I.
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Theorem 1.4 ([3]). For each positive integer p, there is a unique real entire func-
tion

Fp(z) = z(1 + zp + b2z
2p + b3z

3p + . . . ),

which is a solution of (1.1) for each q ∈ Kp. Further, if q ∈ Kp, then the only
transcendental solutions of (1.1) are the linear conjugates of Fp.

In 2013, Zhang [24] further studied the growth of solutions of (1.1) and prove
the following theorem.

Theorem 1.5 ([24, Theorem 1.1]). Suppose that f is a transcendental solution of
(1.1) for q ∈ K, then the order of f satisfies

ρ(f) ≤ log 2
log |q|

.

Inspired by the ideas of Gao [6, 7, 8], Xu [20, 21] and Beardon [3], we investigate
the growth of solutions of some systems of q-difference-differential equations and
obtain the following results.

Theorem 1.6. Suppose that (f1, f2) are a pair of solutions of system

f1(q1z) = c1f2(z)f ′2(z),

f2(q2z) = c2f1(z)f ′1(z),
(1.2)

where q1, q2, c1( 6= 0), c2(6= 0) ∈ C and |q1| > 1, |q2| > 1. If fi(i = 1, 2) are transcen-
dental entire functions. Then

ρ(fi) ≤
2 log 2

log |q1|+ log |q2|
, i = 1, 2.

We easily see that Theorem 1.6 is an extension of Theorem 1.5. The following
example shows that system (1.2) has a pair of non-transcendental entire solutions.

Example 1.7. Let q1 = q2 = 2 and c1 = 8, c2 = −1. Then (f1(z), f2(z)) =
(z,− 1

2z) satisfies the system

f1(2z) = 8f2(z)f ′2(z),

f2(2z) = −f1(z)f ′1(z).

Remark 1.8. In fact, if f1 and f2 are polynomials, by a simple computation, we
obtain that f1 and f2 are all polynomials of degree 1; that is, f1(z) = a1z+ a0 and
f2(z) = b1z + b0. Thus, we can obtain the forms of f1 and f2 easily.

The following example shows that system (1.2) has a pair of transcendental entire
function solutions.

Example 1.9. Let q1 = q2 = 2 and c1 = 2, c2 = −2. Then (f1(z), f2(z)) =
(sin z,− sin z) satisfy the system

f1(2z) = 2f2(z)f ′2(z),

f2(2z) = −2f1(z)f ′1(z),

and

ρ(fi) = 1 =
2 log 2
2 log 2

, i = 1, 2.



4 H.-Y. XU, J. TU EJDE-2016/106

Remark 1.10. By contrasting the forms of (1.1) and (1.2), we pose the following
question: Does system (1.2) have a pair of transcendental entire (or meromorphic)
solutions with c1 = q1 and c2 = q2 or c1 = q2 and c2 = q1?

The following results show that system (1.2) has a pair of transcendental mero-
morphic solutions when the constants c1, c2 of the right of system (1.2) are replaced
by two functions.

Theorem 1.11. Let (f1, f2) be a pair of transcendental solutions of system

fn1
1 (q1z) = R1(z)f2(z)[f (j)

2 (z)]s1 ,

fn2
2 (q2z) = R2(z)f1(z)[f (j)

1 (z)]s2 ,
(1.3)

where q1, q2 ∈ C and |q1| > 1, |q2| > 1, n1, n2, j, s1, s2 are positive integers and
R1(z), R2(z) are rational functions in z. If fi (i = 1, 2) are entire functions, then
n1n2 ≤ (s1 + 1)(s2 + 1) and

ρ(fi) ≤
log[(s1 + 1)(s2 + 1)]− log(n1n2)

log |q1|+ log |q2|
, i = 1, 2.

Furthermore, if n1 = n2 = 1 and fi(i = 1, 2) are meromorphic functions with
infinitely many poles, then

log[(s1 + 1)(s2 + 1)]
log |q1|+ log |q2|

≤ µ(fi) ≤ ρ(fi) ≤
log[(s1j + s1 + 1)(s2j + s2 + 1)]

log |q1|+ log |q2|
,

for i = 1, 2.

The following example shows that system (1.3) has pairs of transcendental entire
and meromorphic solutions.

Example 1.12. Let q1 = q2 = 2, n1 = n2 = 1 and s1 = s2 = 1, then (f1, f2) =
(ez, zez) satisfies

f1(2z) =
1

z(z + 1)
f2(z)f ′2(z),

f2(2z) = 2zf1(z)f ′1(z),

and
ρ(fi) = 1 ≤ 2 log 2

2 log 2
.

Example 1.13. Let q1 = q2 = 2, n1 = n2 = 1 and s1 = s2 = 1, then (f1, f2) =
( e

z

z ,
ez

z2 ) satisfies

f1(2z) =
2z6

z − 2
f2(z)f ′2(z),

f2(2z) =
4z5

z − 1
f1(z)f ′1(z),

and
2 log 2
2 log 2

= 1 ≤ µ(fi) = ρ(fi) = 1 ≤ 2 log 3
2 log 2

, i = 1, 2.

Theorem 1.14. Let (f1, f2) be a pair of transcendental solutions of the system

fn1
1 (q1z) = ϕ1(z)f2(z)[f (j)

2 (z)]s1 ,

fn2
2 (q2z) = ϕ2(z)f1(z)[f (j)

1 (z)]s2 ,
(1.4)
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where q1, q2 ∈ C and |q1| > 1, |q2| > 1, n1, n2, j, s1, s2 are positive integers and
ϕt(z) (t = 1, 2) are small functions with respect of fi (i = 1, 2). If fi(i = 1, 2)
are meromorphic functions satisfying N(r, fi) = S(r, fi), (i = 1, 2), then n1n2 ≤
(s1 + 1)(s2 + 1) and fi (i = 1, 2) satisfy

ρ(fi) ≤
log[(s1 + 1)(s2 + 1)]− log(n1n2)

log |q1|+ log |q2|
, i = 1, 2.

Furthermore, if n1 = n2 = 1 and fi(i = 1, 2) have infinitely many poles, and the
number of distinct common poles of fi(i = 1, 2) and 1

ϕt
, (t = 1, 2) are finite, then

we have

µ(fi) = ρ(fi) =
log[(s1 + 1)(s2 + 1)]

log |q1|+ log |q2|
, i = 1, 2. (1.5)

The following example shows a case where equality in (1.5) holds.

Example 1.15. Let q1 = q2 = 2 and s1 = s2 = 3, then (f1, f2) = ( e
z2

z−1 ,
ez2

z ) satisfy
the system

f1(2z) = ϕ1(z)f2(z)[f ′2(z)]3,

f2(2z) = ϕ2(z)f1(z)[f ′1(z)]3,

where

ϕ1(z) =
z7(2z − 1)
(2z2 − 1)3

, ϕ2(z) =
2z(z − 1)4

(2z2 − 2z − 1)3
.

Thus, we have T (r, ϕt) = O(log r) = S(r, fi) and

ρ(fi) = 2 =
log[(3 + 1)(3 + 1)]

2 log 2
, i = 1, 2.

Let p(z) = pkz
k + pk−1z

k−1 + · · ·+ p1z + p0, where pk(6≡ 0), . . . , p0 are complex
constants. Now, we will investigate the growth of solutions of such systems, which
qz is replaced by p(z) in systems (1.2)-(1.4), and obtain the following results.

Theorem 1.16. Let (f1, f2) be a pair of transcendental solutions to the system

f1(p(z))n1 = ϕ1(z)f2(z)[f (j)
2 (z)]s1 ,

f2(p(z))n2 = ϕ2(z)f1(z)[f (j)
1 (z)]s2 ,

(1.6)

where k ≥ 2, n1, n2, j, s1, s2 are positive integers and ϕt(z) (t = 1, 2) are small
functions with respect of fi(i = 1, 2). If fi (i = 1, 2) are transcendental meromorphic
functions and n1n2 < (s1j + s1 + 1)(s2j + s2 + 1), then fi (i = 1, 2) satisfy

T (r, fi) = O((log r)α), i = 1, 2,

where

α =
log(s1j + s1 + 1)(s2j + s2 + 1)− log(n1n2)

2 log k
.

Theorem 1.17. Suppose that (f1, f2) are a pair of transcendental meromorphic
solutions of system

f1(q1z)f ′2(z) = R2(z, f2(z)) =
P2(z, f2(z))
Q2(z, f2(z))

,

f2(q2z)f ′1(z) = R1(z, f1(z)) =
P1(z, f1(z))
Q1(z, f1(z))

,

(1.7)
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where q1, q2 ∈ C, |q1| > 1, |q2| > 1, and Pi, Qi (i = 1, 2) are relatively prime
polynomials in fi over the field of rational functions satisfying pi = degf Pi, ti =
degf Qi, di = pi − ti ≥ 4, (i = 1, 2), where the coefficients of Pi, Qi, (i = 1, 2)
are rational functions in z. If fi(i = 1, 2) have infinitely many poles, then for
sufficiently large r, we get that

n(r, fi) ≥ Ki[(d1 − 1)(d2 − 1)]
log r

log |q1|+log |q2| , i = 1, 2

hold for some constant Ki > 0. Thus, the order and the lower order of fi(i = 1, 2),
which has infinitely many poles, satisfy

ρ(fi) ≥ µ(fi) ≥
log(d1 − 1) + log(d2 − 1)

log |q1|+ log |q2|
, i = 1, 2.

Remark 1.18. Under the conditions of Theorem 1.17, by using the same argument
as in Theorem 1.16, we can get that the lower order, order of fi (i = 1, 2), which
has infinitely many poles, satisfy

log(d1 − 1) + log(d2 − 1)
log |q1|+ log |q2|

≤ µ(fi) ≤ ρ(fi) ≤
log(d1 + 2) + log(d2 + 2)

log |q1|+ log |q2|
,

for i = 1, 2.

The following examples show that (1.7) has a pair of non-transcendental solu-
tions.

Example 1.19. Let q1 = q2 = 2 and d1 = 3, d2 = 4, then (f1, f2) = ( 1
z ,

1
z2 ) satisfies

f1(2z)f ′2(z) = −zf2(z)3,

f2(2z)f ′1(z) = −1
4
f1(z)4.

The following examples show that (1.7) has a pair of transcendental solutions.

Example 1.20. Let q1 = q2 = 2 and d1 = d2 = 3, then (f1, f2) = (sin z, cos z)
satisfies

f1(2z)f ′2(z) = 2f2(z)3 − 2f2(z),

f2(2z)f ′1(z) = f1(z)− 2f1(z)3.

Then we have µ(fi) = ρ(fi) = 1 = log(3−1)
log 2 , i = 1, 2.

Example 1.21. Let q1 = q2 = 2 and d1 = d2 = 5, then (f1, f2) = ( e
z2

z ,
ez2

z−1 )
satisfies the system

f1(2z)f ′2(z) =
1
2z

(z − 1)3(2z2 − 2z − 1)f2(z)5,

f2(2z)f ′1(z) =
1

2z − 1
z3(2z2 − 1)f1(z)5.

Then, we have µ(fi) = ρ(fi) = 2 = log(5−1)
log 2 , i = 1, 2.

Example 1.22. Let q1 = q2 = 2 and d1 = d2 = 3, then (f1, f2) = ( 1
sin z ,−

1
sin z )

satisfy system

f1(2z)f ′2(z) =
1
2
f2(z)3,
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f2(2z)f ′1(z) = −1
2
f1(z)3.

Thus, we have that fi(z), (i = 1, 2) have infinitely many poles and µ(fi) = ρ(f1) =
1 = log(3−1)

log 2 , i = 1, 2.

Comparing with Example 1.22 with Theorem 1.17, there remains open question
whether or not the condition di = pi− ti ≥ 4 may be relaxed to di ≥ 3 or di ≥ 2 in
Theorem 1.16.

2. Some Lemmas

Lemma 2.1 (Valiron-Mohon’ko [17]). Let f(z) be a meromorphic function. Then
for all irreducible rational functions in f ,

R(z, f(z)) =
∑m
i=0 ai(z)f(z)i∑n
j=0 bj(z)f(z)j

,

with meromorphic coefficients ai(z), bj(z), the characteristic function of R(z, f(z))
satisfies

T (r,R(z, f(z))) = dT (r, f) +O(Ψ(r)),
where d = max{m,n} and Ψ(r) = maxi,j{T (r, ai), T (r, bj)}.

Lemma 2.2 ([23, p. 37] or [22]). Let f(z) be a nonconstant meromorphic function
in the complex plane and l be a positive integer. Then

N(r, f (l)) = N(r, f) + lN(r, f), T (r, f (l)) ≤ T (r, f) + lN(r, f) + S(r, f).

Lemma 2.3 ([12]). Let Φ : (1,∞)→ (0,∞) be a monotone increasing function, and
let f be a nonconstant meromorphic function. If for some real constant α ∈ (0, 1),
there exist real constants K1 > 0 and K2 ≥ 1 such that

T (r, f) ≤ K1Φ(αr) +K2T (αr, f) + S(αr, f),

then the order of growth of f satisfies

ρ(f) ≤ logK2

− logα
+ lim sup

r→∞

log Φ(r)
log r

.

Lemma 2.4 ([9]). Let f(z) be a transcendental meromorphic function and p(z) =
pkz

k+pk−1z
k−1 + · · ·+p1z+p0 be a complex polynomial of degree k > 0. For given

0 < δ < |pk|, let λ = |pk| + δ, µ = |pk| − δ, then for given ε > 0 and for r large
enough,

(1− ε)T (µrk, f) ≤ T (r, f ◦ p) ≤ (1 + ε)T (λrk, f).

Lemma 2.5 ([1, 5, 10]). Let g : (0,+∞) → R, h : (0,+∞) → R be monotone
increasing functions such that g(r) ≤ h(r) outside of an exceptional set E with
finite linear measure, or g(r) ≤ h(r), r 6∈ H ∪ (0, 1], where H ⊂ (1,∞) is a
set of finite logarithmic measure. Then, for any α > 1, there exists r0 such that
g(r) ≤ h(αr) for all r ≥ r0.

Lemma 2.6 ([10]). Let ψ(r) be a function of r(r ≥ r0), positive and bounded in
every finite interval.

(i) Suppose that ψ(µrm) ≤ Aψ(r) + B(r ≥ r0), where µ(µ > 0), m(m > 1),
A(A ≥ 1), B are constants. Then ψ(r) = O((log r)α) with α = logA

logm , unless A = 1
and B > 0; and if A = 1 and B > 0, then for any ε > 0, ψ(r) = O((log r)ε).
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(ii) Suppose that (with the notation of (i)) ψ(µrm) ≥ Aψ(r)(r ≥ r0). Then for
all sufficiently large values of r, ψ(r) ≥ K(log r)α with α = logA

logm , for some positive
constant K.

Lemma 2.7 ([4]).
T (r, f(qz)) = T (|q|r, f) +O(1)

holds for any meromorphic function f and any non-zero constant q.

3. Proofs of Theorems 1.6–1.14

Proof of Theorem 1.6. From (1.2), we have

T (r, f1(q1z)) ≤ T (r, f2) + T (r, f (j)
2 (z)) +O(1),

T (r, f2(q2z)) ≤ T (r, f1) + T (r, f (j)
1 (z)) +O(1).

Since fi(i = 1, 2) are transcendental entire functions, then it follows by Lemma 2.2
and Lemma 2.7 that

T (|q1|r, f1(z)) ≤ 2T (r, f2) + S(r, f2),

T (|q2|r, f2(z)) ≤ 2T (r, f1) + S(r, f1).
(3.1)

Thus, from (3.1), we have

T (|q1q2|r, f1(z)) ≤ 4T (r, f1) + S(r, f1),

T (|q1q2|r, f2(z)) ≤ 4T (r, f2) + S(r, f2).
(3.2)

Since |q1| > 1, |q2| > 1 and fi (i = 1, 2) are transcendental, set α = 1
|q1q2| , it follows

from (3.2) that

T (r, fi(z)) ≤ 4T (αr, fi) + S(αr, fi), i = 1, 2.

Since 0 < α < 1, it follows by Lemma 2.3 that ρ(fi) ≤ 2 log 2
log |q1q2| for i = 1, 2.

Proof of Theorem 1.11. Suppose that fi (i = 1, 2) are transcendental meromor-
phic solutions of (1.3). Since Ri(z), (i = 1, 2) are rational functions, then we have
T (r,Ri(z)) = O(log r), (i = 1, 2). By Lemma 2.1 and Lemma 2.2, it follows from
(1.3) that

T (r, f1(q1z)) ≤
1
n1
T (r, f2) +

s1
n1
T (r, f (j)

2 (z)) +O(log r)

≤ s1 + 1
n1

T (r, f2) +
js1
n1

N(r, f2) + S(r, f2),

T (r, f2(q2z)) ≤
1
n2
T (r, f1) +

s2
n2
T (r, f (j)

1 (z)) +O(log r)

≤ s2 + 1
n2

T (r, f1) +
js2
n2

N(r, f1) + S(r, f1).

By Lemma 2.7, we obtain

T (|q1|r, f1(z)) ≤ s1j + s1 + 1
n1

T (r, f2) + S(r, f2),

T (|q2|r, f2(z)) ≤ s2j + s2 + 1
n2

T (r, f1) + S(r, f1).
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Then we have

T (|q1q2|r, fi) ≤
s1j + s1 + 1

n1

s2j + s2 + 1
n2

T (r, fi) + S(r, fi), i = 1, 2. (3.3)

Since |q1| > 1 and |q2| > 1, set α = 1
|q1q2| , then 0 < α < 1. From (3.3), we have

T (r, fi) ≤
s1j + s1 + 1

n1

s2j + s2 + 1
n2

T (αr, fi) + S(αr, fi), i = 1, 2.

Since fi(i = 1, 2) are transcendental functions, then n1n2 ≤ (s1j + s1 + 1)(s2j +
s2 + 1), and by Lemma 2.3, we have

ρ(fi) ≤
log[(s1j + s1 + 1)(s2j + s2 + 1)]

log |q1|+ log |q2|
, i = 1, 2.

If fi (i = 1, 2) are transcendental entire functions, similar to above argument,
we can easily obtain

ρ(fi) ≤
log[(s1 + 1)(s2 + 1)]− log(n1n2)

log |q1|+ log |q2|
, i = 1, 2.

Since R1(z), R2(z) are rational functions, we can choose a sufficiently large con-
stant R > 0 such that R1(z), R2(z) have no zeros or poles in {z ∈ C : |z| > R}.
Since f1 has infinitely many poles, we can choose a pole z0 of f1 of multiplicity
τ ≥ 1 satisfying |z0| > R. Then the right side of the second equation in system
(1.3) has a pole of multiplicity τ ′1 = (s2 + 1)τ + s2j at z0. Then f2 has a pole of
multiplicity τ ′1 at q2z0. Replacing z by q2z0 in the first equation in system (1.3), we
have that f1 has a pole of multiplicity τ1 = (s1 + 1)(s2 + 1)τ + s2(s1 + 1)j + s1j at
q1q2z0. We proceed to follow the step above. Since R1(z), R2(z) have no zeros or
poles in {z ∈ C : |z| > R} and f1, f2 have infinitely many poles, we may construct
poles ζk = |q1q2|kz0 k ∈ N+ of f of multiplicity τk satisfying

τk = (s1 + 1)(s2 + 1)τk−1 + s2(s1 + 1)j + s1j

= [(s1 + 1)(s2 + 1)]kτ + j[s2(s1 + 1) + s1]
{

[(s1 + 1)(s2 + 1)]k−1 + · · ·+ 1
}

= [(s1 + 1)(s2 + 1)]kτ + j[s2(s1 + 1) + s1]
[(s1 + 1)(s2 + 1)]k − 1
(s1 + 1)(s2 + 1)− 1

,

as k →∞, k ∈ N. Since |q| > 1, it follows that |ζk| → ∞ as k →∞, for sufficiently
large k, we have

kτ ≤ τk ≤ τ + τ1 + · · ·+ τk

≤ n(|ζk|, f1) ≤ n(|q1q2|k|z0|, f1).
(3.4)

Thus, for each sufficiently large r, there exists a k ∈ N such that

r ∈ [|q1q2|k|z0|, |q1q2|(k+1)|z0|), i.e. k >
log r − log r0 − log |q1q2|

log |q1q2|
. (3.5)

Thus, it follows from (3.4) and (3.5) that

n(r, f1) ≥ [(s1 + 1)(s2 + 1)]kτ ≥ τ [(s1 + 1)(s2 + 1)]
log r−log r0−log |q1q2|

log |q1q2|

≥ K1[(s1 + 1)(s2 + 1)]
log r

log |q1|+log |q2| ,

where
K1 = τ [(s1 + 1)(s2 + 1)]

− log r0−log |q1|−log |q2|
log |q1|+log |q2| .
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Since for all r ≥ r0,

K1[(s1 + 1)(s2 + 1)]
log r

log |q1|+log |q2 ≤ n(r, f1) ≤ 1
log 2

N(2r, f1) ≤ 1
log 2

T (2r, f1),

we obtain

ρ(f1) ≥ µ(f1) ≥ log[(s1 + 1)(s2 + 1)]
log |q1|+ log |q2|

.

Similar to the above argument, we can also obtain

ρ(f2) ≥ µ(f2) ≥ log[(s1 + 1)(s2 + 1)]
log |q1|+ log |q2|

.

This completes the proof of Theorem 1.11.

Proof of Theorem 1.14. Since ϕ1(z), ϕ2(z) are small functions, and N(r, fi) =
S(r, fi), similar to argument as in Theorem 1.6, we have

T (|q1|r, f1(z)) ≤ 1 + s1
n1

T (r, f2) + S(r, f2),

T (|q2|r, f2(z)) ≤ 1 + s2
n2

T (r, f1) + S(r, f1).
(3.6)

Thus, it follows from (3.6) that

T (|q1q2|r, fi(z)) ≤
1 + s1
n1

1 + s2
n2

T (r, fi) + S(r, fi), i = 1, 2. (3.7)

Since fi, (i = 1, 2) are transcendental functions, it follows from (3.7) that n1n2 ≤
(s1 + 1)(s2 + 1), and by Lemma 2.3, we can also obtain

ρ(fi) ≤
log[(s1 + 1)(s2 + 1)]− log(n1n2)

log |q1|+ log |q2|
, i = 1, 2. (3.8)

Suppose that n1 = n2 = 1 and fi(i = 1, 2) has infinitely many poles. Since the
number of distinct common poles of f1, f2, 1

ϕ1
, and 1

ϕ2
is finite, we can choose a

sufficiently large constant R > 0 such that f1, f2, 1
ϕ1
, and 1

ϕ2
have no common

poles in {z ∈ C : |z| > R}. Thus, we can take a pole z0 of f1 of multiplicity τ ≥ 1
satisfying |z0| > R. By using the same argument as in Theorem 1.6, we obtain

ρ(fi) ≥ µ(fi) ≥
log[(s1 + 1)(s2 + 1)]

log |q1|+ log |q2|
, i = 1, 2. (3.9)

Hence, from (3.8) and (3.9), we have the conclusions of Theorem 1.14.

4. Proof of Theorem 1.16

Since (f1, f2) are a pair of transcendental meromorphic solutions of (1.6), and
ϕ1(z), ϕ2(z) are small functions with respect to f1, f2, similar to the proof of The-
orem 1.14, and by applying Lemma 2.2, we have

T (r, f1(p(z))) ≤ s1 + s1j + 1
n1

T (r, f2(z)) + S(r, f2)

=
(s1 + s1j + 1

n1
+ o(1)

)
T (r, f2),

T (r, f2(p(z))) ≤ s2 + s2j + 1
n2

T (r, f1(z)) + S(r, f1)
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=
(s2 + s2j + 1

n1
+ o(1)

)
T (r, f1).

Then, by Lemma 2.5, for any β1 > 1, β2 > 1 and for all r > r0, we have

T (r, f1(p(z))) ≤
(s1 + s1j + 1

n1
+ o(1)

)
T (β2r, f2),

T (r, f2(p(z))) ≤
(s2 + s2j + 1

n1
+ o(1)

)
T (β1r, f1).

(4.1)

Since p(z) is a polynomial with degz p(z) = k ≥ 2, by Lemma 2.4, for given 0 <
δi < |pk|, we let µi = |pk| − δi, i = 1, 2. For a given ε > 0 and for r large enough,
from (4.1) we have

(1− ε)T (µ1r
k, f1) ≤

(s1 + s1j + 1
n1

+ o(1)
)
T (β2r, f2),

(1− ε)T (µ2r
k, f2) ≤

(s2 + s2j + 1
n2

+ o(1)
)
T (β1r, f1).

Then, we have

(1− ε)2T (µ1r
k2
, f1) ≤

(s1 + s1j + 1
n1

s2 + s2j + 1
n2

+ o(1)
)
T
(
β1(

β2

µ2
)1/kr, f1

)
,

(1− ε)2T (µ2r
k2
, f2) ≤

(s1 + s1j + 1
n1

s2 + s2j + 1
n2

+ o(1)
)
T
(
β2(

β1

µ1
)1/kr, f2

)
,

Set R1 = β1( β2
µ2

)1/kr and R2 = β2( β1
µ1

)1/kr, then we have

(1− ε)2T (µ1(µ2)k(βk1β2)−kRk
2

1 , f1)

≤
(s1 + s1j + 1

n1

s2 + s2j + 1
n2

+ o(1)
)
T (R1, f1),

(1− ε)2T (µ2(µ1)k(β1β
k
2 )−kRk

2

2 , f2)

≤
(s1 + s1j + 1

n1

s2 + s2j + 1
n2

+ o(1)
)
T (R2, f2),

Since n1n2 < (s1 + s1j + 1)(s2 + s2j + 1) and βi > 1, µi > 0, i = 1, 2, we have
(s1+s1j+1)(s2+s2j+1)

n1n2
> 1 and µ1(µ2)k(βk1β2)−k > 0, µ2(µ1)k(β1β

k
2 )−k > 0. Thus,

by Lemma 2.6, letting ε→ 0 and βi → 1, i = 1, 2, we obtain

T (r, fi) = O((log r)α), i = 1, 2,

where

α =
log[(s1 + s1j + 1)(s2 + s2j + 1)]− log(n1n2)

2 log k
.

This completes the proof of Theorem 1.16.

5. Proof of Theorem 1.17

Suppose that (f1, f2) is a pair of transcendental solutions to (1.7). From the
assumption of the coefficients of Pi(z, fi(z)), Qi(z, fi(z)), (i = 1, 2) being rational
functions, we can choose a sufficiently large constant R(> 0) such that the coeffi-
cients of Pi(z, fi(z)), Qi(z, fi(z)), (i = 1, 2) have no zeros or poles in {z ∈ C : |z| >
R}. Since fi (i = 1, 2) have infinitely many poles, we can choose a pole z0 of f1 of
multiplicity τ ≥ 1 satisfying |z0| > R. From the second equation of (1.7), we get
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that f2 has a pole of multiplicity τ ′1 = d1τ − τ − 1 at q2z0. Replacing z by q2z0 in
the first equation of (1.7), then it follows that q1q2z0 is a pole of f1 of multiplicity

τ1 = d2τ
′
1 − τ ′1 − 1 = (d1 − 1)(d2 − 1)τ − (d2 − 1)− 1.

Set H = (d1 − 1)(d2 − 1). We follow the step above. Since f has infinitely
many poles, we may construct poles ζk = (q1q2)kz0 k ∈ N+ of f1 of multiplicity τk
satisfying

τk = Hkτ − d2(Hk−1 + hk−2 + · · ·+ 1)

= Hkτ − d2
Hk − 1
H − 1

= Hk
(
τ − d2

H − 1

)
+

d2

H − 1
.

Since di ≥ 4, i = 1, 2, then d2
H−1 < 1. Thus, it follows from τ ≥ 1 that τ − d2

H−1 > 0.
Since |ζk| → ∞ as k →∞, for sufficiently large k, we have

Hk
(
τ − d2

H − 1

)
< τk ≤ τ1 + τ2 + · · ·+ τk)

≤ n(|ζk|, f1) ≤ n(|q1q2|k|z0|, f1).
(5.1)

Thus, for each sufficiently large r, there exists a k ∈ N+ such that r ∈ [|q1q2|k|z0|,
|q1q2|k+1|z0|), by using the same argument as in the proof of Theorem 1.11, from
(5.1), we have

n(r, f1) ≥ Hk
(
τ − d2

H − 1

)
≥ H

log r−log |z0|−log |q1q2|
log |q1q2|

(
τ − d2

H − 1

)
≥ K1H

log r
log |q1|+log |q2| ,

(5.2)

where

K1 =
(
τ − d2

H − 1

)
H
− log |z0|−log |q1q2|

log |q1q2| .

As in the above argument, we can obtain

n(r, f2) ≥ Hk
(
τ − d1

H − 1

)
≥ H

log r−log |z0|−log |q1q2|
log |q1q2|

(
τ − d1

H − 1

)
≥ K2H

log r
log |q1|+log |q2| ,

(5.3)

where

K2 =
(
τ − d1

H − 1

)
H
− log |z0|−log |q1q2|

log |q1q2| .

Since for all r ≥ r0, we have

KiH
log r

log |q1q2| ≤ n(r, fi) ≤
1

log 2
N(2r, fi) ≤

1
log 2

T (2r, fi), i = 1, 2. (5.4)

Hence, it follows from (5.2)–(5.4) that

ρ(fi) ≥ µ(fi) ≥
log[(d1 − 1)(d2 − 1)]

log |q1|+ log |q2|
.

Thus, we complete the proof of Theorem 1.17.
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