Mifodijus Sapagovas, Olga Stikoniene, Regimantas Ciupaila, Zivile Joksiene
Abstract:
In this article, we consider the convergence of iterative method for the
system of difference equations, approximating the elliptic two-dimensional
equations with variable coefficients and integral boundary conditions.
We investigate how convergence of iterative method depends on the structure
of spectrum for difference operator with nonlocal conditions.
The main goal of the paper is to analyze the influence of the monotonicity
of the coefficient in the differential equation to extension (or reduction)
of the region of convergence.
Submitted March 14, 2016. Published May 11, 2016.
Math Subject Classifications: 35J25, 65N06, 65N22, 35P15.
Key Words: Elliptic equation; finite-difference method; iterative method;
integral boundary conditions; eigenvalue problem; region of convergence.
Show me the PDF file (278 KB), TEX file for this article.
Mifodijus Sapagovas Institute of Mathematics and Informatics Vilnius University, Akademijos 4 LT-08663 Vilnius, Lithuania email: mifodijus.sapagovas@mii.vu.lt | |
Olga Stikoniene Institute of Mathematics and Informatics Vilnius University, Akademijos 4 LT-08663 Vilnius, Lithuania email: olga.stikoniene@mif.vu.lt | |
Regimantas Ciupaila Institute of Mathematics and Informatics Vilnius University, Akademijos 4 LT-08663 Vilnius, Lithuania email: regimantas.ciupaila@vgtu.lt | |
Zivile Joksiene Institute of Mathematics and Informatics Vilnius University, Akademijos 4 LT-08663 Vilnius, Lithuania email: zivile.joksiene@fc.lsmuni.lt |
Return to the EJDE web page