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LIMIT CYCLES FOR Z2n-EQUIVARIANT SYSTEMS
WITHOUT INFINITE EQUILIBRIA

ISABEL S. LABOURIAU, ADRIAN C. MURZA

Abstract. We analyze the dynamics of a class of Z2n-equivariant differential

equations of the form ż = pzn−1z̄n−2 +sznz̄n−1− z̄2n−1, where z is complex,
the time t is real, while p and s are complex parameters. This study is the

generalisation to Z2n of previous works with Z4 and Z6 symmetry. We reduce

the problem of finding limit cycles to an Abel equation, and provide criteria
for proving in some cases uniqueness and hyperbolicity of the limit cycle that

surrounds either 1, 2n + 1 or 4n + 1 equilibria, the origin being always one of

these points.

1. Introduction and statement of main results

Hilbert XVIth problem was the motivation for a large number of articles over
the last century, and remains one of the open questions in mathematics. The study
of this problem in the context of equivariant dynamical systems is a new branch of
analysis, based on the development of equivariant bifurcation theory, by Golubitsky,
Stewart and Schaeffer, [9, 10]. Many other authors, for example Chow and Wang [6],
have considered this theory when studying the limit cycles and related phenomena
in systems with symmetry.

In this paper we analyze the Z2n-equivariant system

ż =
dz

dt
= pzn−1z̄n−2 + sznz̄n−1 − z̄2n−1 = f(z), (1.1)

for n > 3, where p = p1 + ip2, s = s1 + is2, p1, p2, s1, s2 ∈ R, t ∈ R.
The general form of the Zq-equivariant equation is

ż = zA(|z|2) +Bz̄q−1 +O(|z|q+1),

where A is a polynomial on the variable |z|2 whose degree is the integer part of
(q − 1)/2. This class of equations is studied, for instance in the books [4, 6], when
the resonances are strong, i.e. q < 4 or weak q > 4. A partial treatment of the
special case q = 4 is given, for instance, in the article [13], and in the book [6]
that is concerned with normal forms and bifurcations in general. A more complete
treatment of the case q = 4 appears in the article [1], while the case q = 6 appears
in [2]. All mentioned articles claim the fact that, since the equivariant term z̄q−1

is not dominant with respect to the function on z̄2, they are easier to study than
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other cases. While this argument works for obtaining the bifurcation diagram near
the origin, it is no longer helpful for a global analysis or if the analysis is focused
on the study of limit cycles. The aim of the present work is to study the global
phase portrait of (1.1) on the Poincaré compactifiction of the plane; we devote
especial interest to analysing the existence, location and uniqueness of limit cycles
surrounding 1, 2n+ 1 or 4n+ 1 equilibria. Our method uses some of the techniques
developed in [1] and includes transforming (1.1) into a scalar Abel equation followed
by its analysis.

The main results of this article are Theorems 1.1 and 1.2 below. Consider the
quadratic form

Q(p1, p2) = p2
1 + p2

2 − (p1s2 − p2s1)2 = (1− s2
2)p2

1 + (1− s2
1)p2

2 + 2s1s2p1p2. (1.2)

Theorem 1.1. For |s2| > 1 and for any s1 6= 0, p 6= 0, if p2s2 ≥ 0 the only
equilibrium of (1.1) is the origin. If p2s2 < 0 then the number of equilibria of (1.1)
is determined by the quadratic form Q(p1, p2) defined in (1.2) and is:

(1) exactly one equilibrium (the origin) if Q(p1, p2) < 0;
(2) exactly 2n + 1 equilibria (the origin and one saddle-node per region (k −

1)π/n ≤ θ < kπ/n, k ∈ Z) if Q(p1, p2) = 0;
(3) exactly 4n+ 1 equilibria (the origin and two equilibria in each region (k −

1)π/n ≤ θ < kπ/n, k ∈ Z) if Q(p1, p2) > 0.

Theorem 1.2. For |s2| > 1 and for any s1 6= 0, and p 6= 0, consider the conditions:
(i) Q(p1, p2) ≤ 0,
(ii) Q(2p1, p2) ≤ 0.

Then:
(a) If either condition (i) or (ii) holds, then equation (1.1) has at most one limit

cycle surrounding the origin, and when the limit cycle exists it is hyperbolic.
(b) There are parameter values where Q(p1, p2) < 0 for which there is a stable

limit cycle surrounding the origin.
(c) There are parameter values where Q(p1, p2) = 0 for which there is a limit

cycle surrounding the 2n+ 1 equilibria given by Theorem 1.1.
(d) There are parameter values where Q(2p1, p2) ≤ 0 for which there is a limit

cycle surrounding either the 2n+ 1 or the 4n+ 1 equilibria given by Theo-
rem 1.1.

This article is organised as follows. After some preliminary results in Section 2,
the number of equilibria is treated in Section 3, as well as the proof of the Theorem
1.1. The Abel equation is obtained in Section 4 and the proof of the Theorem 1.2
is completed in Section 5.

2. Preliminary results

Let Γ be a closed subgroup of O(2). A system of differential equations dx/dt =
f(x) in the plane is said to have symmetry Γ (or to be Γ-equivariant) if f(γx) =
γf(x), ∀γ ∈ Γ. Here we are concerned with Γ = Z2n, acting on C ∼ R2 by
multiplication by γk = exp(kπi/n), k = 0, 1, . . . , 2n − 1. For equation (1.1) we
obtain the following result.

Proposition 2.1. Equation (1.1) is Z2n-equivariant.
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Figure 1. The regions defined in Theorems 1.1 and 1.2: blue
when Q(p1, p2) ≥ 0, yellow when Q(2p1, p2) ≥ 0, green in the
intersection of the two regions. Top: diagram on the (p1, s1)-plane,
with p2 = 1 and s2 = 4. Bottom: diagrams on the (p1, p2)-plane,
with s1 = 1/2, s2 = 4 on the left, and with s1 = 6, s2 = 4 on the
right. There are 4n + 1 equilibria on the interior of the blue and
green regions when p2s2 < 0 (darker colours).

Proof. The monomials in z, z̄ that appear in the expression of f are z̄2n−1 and
zl+1z̄l. The first of these is γk-equivariant, while monomials of the form zl+1z̄l are
Z2n-equivariant for all n. �

The next step is to identify the parameter values for which (1.1) is Hamiltonian.

Proposition 2.2. Equation (1.1) is Hamiltonian if and only if p1 = 0 = s1.

Proof. The equation ż = F (z, z̄) is Hamiltonian when ∂F
∂z + ∂F̄

∂z̄ = 0. For equation
(1.1) we have

∂F

∂z
= (n− 1)(p1 + ip2)zn−2z̄n−2 + n(s1 + is2)zn−1z̄n−1

∂F̄

∂z̄
= (n− 1)(p1 − ip2)zn−2z̄n−2 + n(s1 − is2)zn−1z̄n−1

and consequently it is Hamiltonian precisely when p1 = s1 = 0. �

The expression of equation (1.1) in polar coordinates will be useful. Writing

z =
√
r(cos(θ) + i sin(θ))

and rescaling time as dt
ds = rn−2, we obtain

ṙ = 2r (p1 + rs1 − r cos(2nθ))

θ̇ = p2 + rs2 + r sin(2nθ).
(2.1)

The symmetry means that for most of the time we only need to study the dynamics
of (2.1) in the fundamental domain for the Z2n-action, an angular sector of π/n.
It will often be convenient to look instead at the behaviour of a rescaled angular
variable φ = nθ in intervals of length π, where the equation (2.1) takes the form

ṙ = 2r (p1 + rs1 − r cos(2φ))

nφ̇ = p2 + rs2 + r sin(2φ).
(2.2)
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One possible argument for existence of a limit cycle is to show that, in the
Poincaré compactification, there are no critical points at infinity and that infinity
and the origin have the same stability. The next result is a starting point for this
analysis.

Lemma 2.3. In the Poincaré compactification, equation (1.1) satisfies:
(1) there are no equilibria at infinity if and only if |s2| > 1;
(2) when |s2| > 1, infinity is an attractor when s1s2 > 0 and a repeller when

s1s2 < 0.

Proof. The proof is similar to that of Lemma 2.2 in [1]. Using the change of variable
R = 1/r in (2.1) and reparametrising time by dt

ds = R, we obtain

R′ =
dR

ds
= −2R (s1 − cos(2nθ))− 2p1R

2

θ′ =
dθ

ds
= s2 + sin(2nθ) + p2R.

The invariant set {R = 0} corresponds to infinity in (2.1). Hence, there are no
equilibria at infinity if and only if |s2| > 1. The stability of infinity in this case (see
[11]) is given by the sign of∫ 2π

0

−2(s1 − cos(2nθ))
s2 + sin(2nθ)

dθ =
−sgn(s2)4πs1√

s2
2 − 1

,

and the result follows. Note that since we are assuming |s2| > 1, the integral above
is always well defined. �

3. Analysis of equilibria

In this section we describe the number of equilibria of (1.1). We start with the
origin, that is an equilibrium for all values of the parameters. First we show that
there is no trajectory of the differential equations that approaches the origin with
a definite limit direction: the origin is monodromic

Lemma 3.1. If p2 6= 0 then the origin is a monodromic equilibrium of (1.1). It is
unstable if p1 > 0, asymptotically stable if p1 < 0. If p1 = 0 it is unstable if s1 > 1,
asymptotically stable if s1 < −1.

Note that if p1 = s1 = 0, equation (1.1) is Hamiltonian. In this case the origin
is a centre. In Section 4 below we obtain better estimates for the case p1 = 0.

Proof. To show that the origin is monodromic we compute the arriving directions
of the flow to the origin, see [3, Chapter IX] for details. We look for solutions that
arrive at the origin tangent to a direction α that are zeros of r2α̇ = R(x, y) =
yP (x, y) + xQ(x, y). If the term of lowest degree in the polynomial R(x, y) =
−yP (x, y) + xQ(x, y) has no real roots then the origin is monodromic.

The term of lowest degree in (1.1) is pzn−1z̄n−2 = P (x, y) + iQ(x, y), with real
part

P (x, y) = −p2y(x2 + y2)n−2 + p1x(x2 + y2)n−2 (3.1)

and imaginary part

Q(x, y) = p2x(x2 + y2)n−2 + p1y(x2 + y2)n−2. (3.2)
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Then we have that R(x, y) = −yP (x, y) + xQ(x, y) is given by

R(x, y) = p2(x2 + y2)(x2 + y2)n−2 = p2(x2 + y2)n−1 (3.3)

which has no nontrivial real roots if p2 6= 0, so the origin is monodromic.
From the expression for ṙ in (2.1) it follows that if p1 > 0 then for r close to 0,

we have ṙ > 0, hence the origin is unstable. Similarly, if p1 < 0 then ṙ < 0 for r
close to 0, and the origin is asymptotically stable. When p1 = 0 the expression for
ṙ is ṙ = 2r2 (s1 − cos(2nθ)), the origin is unstable if s1 > 1, stable if s1 < −1. �

We now look for conditions under which (1.1) has nontrivial equilibria. We use
equation (2.2) with the variable φ = nθ to obtain simpler expressions, and analyse
two open sets that cover the fundamental domain 0 ≤ φ < π.

Lemma 3.2. If |s2| > 1 and p1 6= 0 then equilibria of (2.2) with r > 0 exist if and
only if ∆ = p2

1 + p2
2 − (p1s2 − p2s1)2 ≥ 0.

If T+ = p2 − p1s2 + p2s1 6= 0 then equilibria of (2.2) with −π/2 < φ < π/2
satisfy:

r± =
−p2

s2 + sin (2φ±)
, tan (φ±) =

p1 ±
√

∆
p2 − p1s2 + p2s1

. (3.4)

For equilibria with 0 < φ < π and r 6= 0 the restriction is T− = p2 +p1s2−p2s1 6= 0
and they satisfy

r± =
−p2

s2 + sin (2φ±)
, cot (φ±) =

p1 ±
√

∆
−(p2 + p1s2 − p2s1)

. (3.5)

There is only one equilibrium of (2.2) with r 6= 0 and −π/2 < φ < π/2 when
T+ = 0, and it satisfies tan(φ/2) = T−/2p1. Similarly, for T− = 0, there is only
one nontrivial equilibrium with 0 < φ < π, with cot(φ/2) = T+/2p1.

Proof. Let −π/2 < φ < π/2. The equilibria of (2.2), are the solutions of

0 = 2rp1 + 2r2 (s1 − cos(2φ))

0 = p2 + r (s2 + sin(2φ)) .
(3.6)

For t = tan(φ), we have

sin(2φ) =
2t

1 + t2
cos(2φ) =

1− t2

1 + t2
. (3.7)

Since s2 +sinφ 6= 0, we may eliminate r = −p2/ (s2 + sin(2φ)) from equations (3.6)
to get

(−p2 + p1s2 − p2s1)t2 + 2p1t+ p2 + p1s2 − p2s1 = 0, (3.8)

or, equivalently, T+t
2 − 2p1t + T− = 0. If the coefficient T+ of t2 is zero, then

equation (3.8) is linear in t and hence has only one solution, t = T−/2p1. When
the coefficient of t2 is not zero, solving equation (3.8) for t yields the result.

Finally, consider the interval 0 < φ < π and let τ = cotφ. The expression (3.7)
for sin 2φ is the same, and that of cos 2φ is multiplied by −1. Instead of (3.8) we
obtain T−t

2 − 2p1t+ T+ = 0 and the result follows by the same arguments. �

Note that when both T+ and T− are not zero, the expressions for tan(φ/2) and
cot(φ/2) above define the same angles, since

(p1 ±
√

∆)/T+ = −T−/(p1 ∓
√

∆).
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In Lemma 3.2 we found the number of equilibria of equation (2.1) with r 6= 0
in the regions −π/2 < φ < π/2 and 0 < φ < π. To complete the information
it remains to deal with the case when, for the same value of the parameters, two
equilibria may occur, each in one of these intervals but not in the other.

Lemma 3.3. If |s2| > 1 and p 6= 0, there are no parameter values for which (2.2)
has equilibria with r > 0 simultaneously for φ = 0 and φ = π/2.

Proof. If we solve

0 = p1 + r(s1 − cos(2φ))

0 = p2 + r(s2 + sin(2φ))

for φ = 0, we obtain a solution at r = −p2/s2 subject to the condition T− =
p2 + p1s2 − p2s1 = 0. Solving the same system for φ = π/2 yields an equilibrium
at r = −p2/s2 under the restriction T+ = p2 − p1s2 + p2s1 = 0. The parameter
restrictions for φ = 0 and φ = π/2 are equivalent to p1s2 = p2(s1 − 1) and p1s2 =
p2(s1 + 1), respectively. Hence, in order to have equilibria at φ = 0 and φ = π/2
for the same parameters, it is necessary to have p1 = p2 = 0. �

In the following we summarize the conditions that the parameters have to fulfill
in order that (2.1) has exactly one, 2n+ 1 or 4n+ 1 equilibria (see Figure 1).

Proposition 3.4. For |s2| > 1 and p 6= 0, if p2s2 ≥ 0, then the only equilibrium of
(1.1) is the origin. If p2s2 < 0 then the number of equilibria of (1.1) is determined
by the quadratic form Q(p1, p2) defined in (1.2) and is:

(1) exactly one equilibrium (the origin) if Q(p1, p2) < 0;
(2) exactly 2n+ 1 equilibria if Q(p1, p2) = 0;
(3) exactly 4n+ 1 equilibria if Q(p1, p2) > 0;

Since Q is a quadratic form on p1, p2, and since its determinant 1 − s2
1 − s2

2,
is negative when |s2| > 1, then for each choice of s1, s2 with s2 > 1, the points
where Q(p1, p2) is positive lie on two sectors, delimited by the two lines where
Q(p1, p2) = 0. Also Q(p1, 0) = (1 − s2

2)p2
1 < 0 for |s2| > 1, and thus the sectors

where there are two equilibria in each θ = π/n do not include the p1 axis, as in
Figure 1.

Proof. By the Z2n-symmetry, the number of nontrivial equilibria of (1.1) will be 2n
times the number of equilibria of (2.1) with r > 0 and θ ∈ [0, π/n), or equivalently,
2n times the number of equilibria of (2.2) with r > 0 and φ ∈ [0, π).

If p2 and s2 have the same sign, then the expression for r in (3.5) is negative,
and there are no solutions with 0 < φ < π. For φ = 0, Lemma 3.3 gives the value
−p2/s2 for r, that would also be negative, so there are no nontrivial equilibria if
p2s2 > 0.

Suppose now p2s2 < 0. By Lemma 3.2, there are no solutions φ when the
discriminant ∆ is negative, corresponding to Q(p1, p2) < 0 as in assertion (1).
Ignoring for the moment the restriction R− 6= 0, there are exactly 2 solutions
φ ∈ (0, π) if ∆ > 0, that corresponds to Q(p1, p2) < 0, and this gives us assertion
(3).

In order to have exactly 2n nontrivial equilibria, two conditions have to be
satisfied: p2s2 < 0 to ensure positive values of r, and the quantities cot(φ±) have
to coincide, i.e. the discriminant ∆ in Lemma 3.2 has to be zero, hence, r+ = r−
and φ+ = φ−, assertion (2) in the statement.
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Finally, if R− = 0, Lemma 3.2 provides only one solution φ ∈ [0, π), but in this
case φ = 0 is also a solution, by Lemma 3.3. When R− = 0 we have Q(p1, p2) =
p2

1 > 0, so we are in the situation of assertion (1) if p2s2 < 0. �

Lemma 3.5. For |s2| > 1, and p2s2 < 0, if Q(p1, p2) = 0 all the nontrivial
equilibria of (1.1) are saddle-nodes.

Proof. The Jacobian matrix of (2.1) is

J(r,θ) =
(

2p1 + 4r(s1 − cos(2nθ)) 4nr2 sin(2nθ)
s2 + sin(2nθ) 2nr cos(2nθ)

)
. (3.9)

If Q(p1, p2) = 0 there is only one nontrivial equilibrium with −π/n < θ ≤ π/n,
that we denote by (r+, θ+). Substituting the expression (3.4) into the Jacobian
matrix (3.9) and taking into account that ∆ = Q(p1, p2) = 0, the eigenvalues of
the matrix are

λ1 = 0 λ2 = 2p1 − 2p2
(2s1 − n+ 2)T 2

+ + p2
1(2s1 + n− 2)

s2T 2
+ + 2p1T+ + p1s2

, (3.10)

where T+ was defined in Lemma 3.2.
Therefore (r+, θ+) has a zero eigenvalue, and the same holds for its 2n copies

by the symmetry. To show that these equilibria are saddle-nodes we use the well-
known fact that the sum of the indices of all equilibria contained in the interior of
a limit cycle of a planar system is +1 – see for instance [3]. Since we are assuming
|s2| > 1, by Lemma 2.3, there are no equilibria at infinity. Hence, infinity is a
limit cycle of the system and it has 2n + 1 equilibria in its interior: the origin,
that is a focus and hence has index +1, and 2n other equilibria, all of the same
type because of the symmetry. Consequently, the index of these equilibria must be
0. As we have proved that they are semi-hyperbolic equilibria then they must be
saddle-nodes. �

The proof of Theorem 1.1 is now complete.

4. Reduction to the Abel equation

In this section we address the existence of limit cycles for (1.1).

Lemma 4.1. The periodic orbits of (1.1) that surround the origin are in one-to-
one correspondence with the non contractible solutions that satisfy x(0) = x(2π) of
the Abel equation

dx

dθ
= A(θ)x3 +B(θ)x2 + C(θ)x (4.1)

where

A(θ) =
2
p2

(
p1 + p1s

2
2 − p2s1s2 + (−p2s1 + 2p1s2) sin(2nθ)

)
+

2
p2

(−p1 cos(2nθ) + p2s2 + p2 sin(2nθ)) cos(2nθ) ,

B(θ) =
2
p2

(−2p1s2 + p2s1 − 2p1 sin(2nθ)− p2 cos(2nθ)) ,

C(θ) =
2p1

p2
.

(4.2)
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Proof. From (2.1) we obtain

dr

dθ
=

2r(p1 + r (s1 + cos(2nθ)))
p2 + r (s2 + sin(2nθ))

.

Applying the Cherkas transformation x = r
p2+r(s2+sin(2nθ)) , see [5], we obtain the

scalar equation (4.1). The limit cycles that surround the origin of equation (1.1) are
transformed into non contractible periodic orbits of equation (4.1), as they cannot
intersect the set {θ̇ = 0}, where the denominators of dr/dθ and of the Cherkas
transformation vanish. For more details see [7]. �

Corollary 4.2. If p2 6= 0 and p1 = 0 then the origin is an asymptotically stable
equilibrium of (1.1) if s1 < 0, unstable if s1 > 0, .

Proof. The stability of the origin can be determined from the two first Lyapunov
constants. For an Abel equation they are given by

V1 = exp
(∫ 2π

0

C(θ)dθ
)
− 1, V2 =

∫ 2π

0

B(θ)dθ.

Using this, we obtain from the expressions given in (4.2) that if p1 = 0 then C(θ) = 0
implying V1 = 0. On the other hand V2 = 4πs1, and we obtain the result. �

Lemma 4.3. For |s2| > 1 the function A(θ) of Lemma 4.1 changes sign if and
only if Q(p1, p2) > 0, where Q is the quadratic form defined in (1.2).

Proof. Writing x = sin(2nθ), y = cos(2nθ), the function A(θ) in (4.2) becomes

A(x, y) =
2
p2

(
p1 − p2s1s2 + p1s

2
2 + (2p1s2 − p2s1)x+ (p2x− p1y + p2s2)y

)
,

and we solve the set of equations

A(x, y) = 0,

x2 + y2 = 1.

to obtain the solutions

x1 = −s2, y1 =
√

1− s2
2

x2 = −s2, y2 = −
√

1− s2
2

x± =
p1p2s1 − p2

1s2 ± p2

√
Q(p1, p2)

p2
1 + p2

2

y± =
p2

2s1 − p1p2s2 ∓ p1

√
Q(p1, p2)

p2
1 + p2

2

The first two pairs of solutions (x1, y1), (x2, y2) cannot be solutions of A(θ) = 0
since x = sin(2nθ) = −s2 and we are assuming |s2| > 1.

If we look for the intervals where the expression A(x, y) does not change sign
we have two possibilities: either |x±| > 1 (again not compatible with x = sin(2nθ)
nor with x2 + y2 = 1) or the discriminant Q(p1, p2) is negative or zero. In the case
Q(p1, p2) < 0, there will be no real solutions x, y. If Q(p1, p2) = 0, the function
A(θ) will have a double zero and will not change sign. So the only possibility is to
have Q(p1, p2) > 0. �
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Lemma 4.4. For |s2| > 1 the function B(θ) of Lemma 4.1 changes sign if and
only if Q(2p1, p2) > 0, where Q is the quadratic form defined in (1.2).

Proof. Using the substitution of the proof of the previous lemma, x = sin(2nθ),
y = cos(2nθ), we obtain that the solutions of the system

B(x, y) = 0,

x2 + y2 = 1,

are

x± =
2p1p2s1 − 4p2

1s2 ± p2

√
Q(2p1, p2)

4p2
1 + p2

2

,

y± =
p2

2s1 − 2p1p2s2 ∓ 2p1

√
Q(2p1, p2)

4p2
1 + p2

2

.

By the same arguments of the previous proof, we obtain that the function B(θ) will
not change sign if and only if Q(2p1, p2) ≤ 0 �

To complete the proof of Theorem 1.2 in this section, we need some results on
Abel equations proved in [12] and [8], that we summarise in a theorem.

Theorem 4.5 (Pliss 1966, Gasull & Llibre 1990). Consider the Abel equation (4.1)
and assume that either A(θ) 6≡ 0 or B(θ) 6≡ 0 does not change sign. Then it has at
most three solutions satisfying x(0) = x(2π), taking into account their multiplicities.

5. Analysis of limit cycles

Proof of Theorem 1.2. For assertion (a), define the function c(θ) by c(θ) = s2 +
sin(2nθ). Since |s2| > 1, we have c(θ) 6= 0 for all θ ∈ [0, 2π], and a simple calculation
shows that the curve x = 1/c(θ) is a solution of (4.1) satisfying x(0) = x(2π). As
shown in [1], doing the Cherkas transformation backwards we obtain that x = 1/c(θ)
is mapped into infinity of the original differential equation.

Assume that one of conditions (i) or (ii) is satisfied. By Lemma 4.1, we reduce the
study of the periodic orbits of equation (1.1) to the analysis of the non contractible
periodic orbits of the Abel equation (4.1). If Q(p1, p2) ≤ 0, by Lemma 4.3, the
function A(θ) in the Abel equation does not change sign. If Q(2p1, p2) ≤ 0 then
B(θ) does not change sign, by Lemma 4.4. In both cases, Theorem 4.5 ensures that
there are at most three solutions, counted with multiplicities, of (4.1) satisfying
x(0) = x(2π). One of them is trivially x = 0. A second one is x = 1/c(θ). Hence,
there is at most one more contractible solution of (4.1), and by Theorem 4.5, the
maximum number of limit cycles of equation (1.1) is one. Moreover, from the same
theorem it follows that when the limit cycle exists it has multiplicity one and hence
it is hyperbolic. This completes the proof of assertion (a) in Theorem 1.2.

For assertion (b), let s2 > 1, s1 < 0 and choose p1 > 0 and p2 6= 0 in the
region Q(p1, p2) < 0 (for instance, s1 = −1/2, s2 = 2, p1 = p2 = 1, Q(p1, p2) =
−17/4 < 0). By Theorem 1.1 the only equilibrium is the origin, and by Lemma 3.1
it is a repeller since p2 6= 0 and p1 > 0. Infinity is also a repeller by Lemma 2.3,
because s1s2 < 0. By the Poincaré-Bendixson Theorem and by the first part of
the proof of this theorem, there is exactly one hyperbolic limit cycle surrounding
the origin. Moreover, this limit cycle is stable. An unstable limit cycle may be
obtained changing the signs of p1, s1 and s2.
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For assertion (c), we take s2 > 1, s1 < 0 and choose p1 > 0 and p2 < 0 in one
of the lines Q(p1, p2) = 0 (for instance, s1 = −1/2, s2 = 2, p1 = (2 +

√
13)/6,

p2 = −1, Q(p1, p2) = 0). By the same arguments above, both the origin and
infinity are repellers, since s1s2 < 0, p2 6= 0 and p1 > 0. Also, since p2s2 < 0,
by Theorem 1.1 there is exactly one equilibrium, a saddle-node, in each region
(k − 1)π/n ≤ θ < kπ/n, k ∈ Z. Again by (a) there is at most one limit cycle. In
order to show that this cycle exists and encircles the saddle-nodes, we will construct
a polygonal line from the origin to the saddle-node (r∗, θ∗), −π/n < θ∗ < 0 where
the vector field points outwards, away from the saddle-node, see Figure 2. Copies of
the poligonal by the symmetries will join the origin to the other saddle-nodes and
the union of all these will form a polygon where the vector field points outwards,
away from the saddle-nodes. Since infinity is a repeller and there are no equilibria
outside the polygon, by the Poincaré-Bendixson Theorem there will be a limit cycle
encircling the saddle-nodes.

For the construction of the polygon we need some information on the location
of the saddle-node z∗ = (r∗, θ∗). Solving Q(p1, p2) = 0 for p1 yields

p1 = −p2
s1s2 ±

√
s2

1 + s2
2 − 1

1− s22
.

Choosing the solution with the minus sign and substituting into (3.4), we obtain

1
tan(nθ∗)

=
p2

p1
(1 + s1)− s2 =

(s2
2 − 1)(1 + s1)

s1s2 −
√
s2

1 + s2
2 − 1

− s2 < −1.

Therefore −1 < tan(nθ∗) < 0 and hence −π/4n < θ∗ < 0.
For the first piece of the polygonal we look at the ray θ = −π/4n, where θ̇ < 0

if 0 < r < r0 = −p2/(s2 +
√

2/2). Therefore on the segment 0 < r < r0 the vector
field points away from the saddle-node z∗.

Another piece of the polygonal will be contained in the line z∗+xv where x ∈ R
and v is an eigenvector corresponding to the non-zero eigenvalue of z∗. This line
is tangent to the separatrix of the saddle region of the saddle-node. Let x0 be the
smallest positive value of x for which the vector field is not transverse to this line.

If the ray intersects the tangent to the separatrix at a point with 0 < r < r0 and
with 0 < x < x0, then the polygonal is the union of the two segments, from the
origin to the intersection and from there to z∗. Otherwise, the segment joining the
point z1 = z∗ + x0v to the point z2 with r = r0, θ = −π/4n will also be transverse
to the vector field, and the polygonal will consist of the three segments from the
origin to z2, from there to z1, and whence to z∗. This completes the construction
of the polygonal, and hence, the proof of assertion (c).

Finally, for assertion (d) we start with parameters for which (c) holds with
Q(2p1, p2) < 0. The example given above, s1 = −1/2, s2 = 2, p1 = (2 +√

13)/6, p2 = −1, Q(p1, p2) = 0 satisfies Q(2p1, p2) = −
(
13 + 8

√
13
)
/12 < 0.

By Lemma 4.4, the function B(θ) does not change sign. The hyperbolic limit cycle
persists under small changes of parameters, and Q(2p1, p2) is still negative, while
moving the parameters away from the line Q(p1, p2) = 0. When the parameters
move into the region where Q(p1, p2) > 0, each saddle-node splits into two equi-
libria that are still encircled by the limit cycle. Moving in the opposite direction,
int Q(p1, p2) < 0 destroys all the non-trivial equilibria, and only the origin remains
inside the limit cycle. Thus, all situations of assertion (d) occur. �
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Figure 2. The polygonal curve transverse to the flow of the dif-
ferential equation and the separatrices of the saddle-nodes of (1.1),
for n = 7.
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