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ON THE SCHRÖDINGER EQUATIONS WITH ISOTROPIC AND
ANISOTROPIC FOURTH-ORDER DISPERSION

ELDER J. VILLAMIZAR-ROA, CARLOS BANQUET

Abstract. This article concerns the Cauchy problem associated with the non-

linear fourth-order Schrödinger equation with isotropic and anisotropic mixed
dispersion. This model is given by the equation

i∂tu+ ε∆u+ δAu+ λ|u|αu = 0, x ∈ Rn, t ∈ R,

where A is either the operator ∆2 (isotropic dispersion) or
Pd
i=1 ∂xixixixi ,

1 ≤ d < n (anisotropic dispersion), and α, ε, λ are real parameters. We obtain

local and global well-posedness results in spaces of initial data with low reg-
ularity, based on weak-Lp spaces. Our analysis also includes the biharmonic

and anisotropic biharmonic equation (ε = 0); in this case, we obtain the ex-

istence of self-similar solutions because of their scaling invariance property.
In a second part, we analyze the convergence of solutions for the nonlinear

fourth-order Schrödinger equation

i∂tu+ ε∆u+ δ∆2u+ λ|u|αu = 0, x ∈ Rn, t ∈ R,
as ε approaches zero, in the H2-norm, to the solutions of the corresponding

biharmonic equation i∂tu+ δ∆2u+ λ|u|αu = 0.

1. Introduction

This article is devoted to the study of the Cauchy problem associated with the
fourth-order Schrödinger equation in Rn × R,

i∂tu+ ε∆u+ δAu+ f(|u|)u = 0, x ∈ Rn, t ∈ R,
u(x, 0) = u0(x), x ∈ Rn,

(1.1)

where the unknown u(x, t) is a complex-valued function in space-time Rn×R, n ≥ 1,
u0 denotes the initial data and ε, δ, are real parameters. The operator A is defined
by

Au =

{
∆2u = ∆∆u, (isotropic dispersion),∑d
i=1 uxixixixi , 1 ≤ d < n, (anisotropic dispersion).

(1.2)

The nonlinear term is given by f(|u|)u, where f : R→ R satisfies

|f(x)− f(y)| ≤ Cf |x− y|(|x|α−1 + |y|α−1), (1.3)
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for some 1 ≤ α <∞, f(0) = 0, and the constant Cf > 0 is independent of x, y ∈ R.
A typical case of a function f is f(x) = |x|α.

The class of fourth-order Schrödinger equations has been widely used in many
branches of applied science such as nonlinear optics, deep water wave dynamics,
plasma physics, superconductivity, quantum mechanics and so on [1, 9, 23, 24, 26,
27, 37]. If we consider ε = 0 in (1.1), the resulting equation is the fourth-order
nonlinear Schrödinger equation

i∂tu+ δAu+ f(|u|)u = 0. (1.4)

In particular, if we take A = ∆2 in (1.4) we obtain the well-known biharmonic
equation

i∂tu+ δ∆2u+ f(|u|)u = 0, (1.5)

introduced by Karpman [26], and Karpman and Shagalov [27] to take into ac-
count the role played by the higher fourth-order dispersion terms in formation and
propagation of intense laser beams in a bulk medium with Kerr nonlinearity [24].
Historically, (1.5) has been extensively studied in Sobolev spaces, see for instance
[22, 28, 29, 30, 31, 32, 33, 36, 39] and references therein. Fibich et al [22] estab-
lished sufficient conditions for the existence of global solutions to (1.5), for δ < 0 and
δ > 0, with initial data in H2(Ω) being Ω a smooth bounded domain of Rn. Global
existence and scattering theory for the defocusing biharmonic equation, in H2(Rn),
was established in Pausander [30, 31]. Wang in [36] showed the global existence
of solutions and a scattering result for biharmonic equation (with a nonlinearity
of the form |u|pu) with small initial radial data in the homogeneous Sobolev space
Ḣsc(Rn) and dimensions n ≥ 2. Here sc = n

2 −
4
p and sc > − 3n−2

2n+1 . The main
ingredient of [36] is the improvement of the Strichartz estimatives associated with
(1.5) for radial initial data; see also Zhu, Yang and Zhang [39], where some results
on blow-up solitons for biharmonic equation are established. More recently, Guo in
[17] analyzed the existence of global solutions in Sobolev spaces and the asymptotic
behavior for the Cauchy problem associated with (1.5) with combined power-type
nonlinearities. Finally, we recall a recent result of Miao et al [28] about the defo-
cusing energy-critical nonlinear biharmonic equation iut + ∆2u = −|u|

8
d−4u, which

establishes that any finite energy solution is global and scatters both forward and
backward in time for dimensions d ≥ 9.

When ε 6= 0 and A is the biharmonic operator, equation (1.1) corresponds to the
following nonlinear Schrödinger equation with isotropic mixed-dispersion:

i∂tu+ ε∆u+ δ∆2u+ f(|u|)u = 0. (1.6)

This equation was also introduced by Karpman [26], and Karpman and Shagalov
[27], and it has been used as a model to investigate the role played by the higher-
order dispersion terms, in formation and propagation of solitary waves in magnetic
materials where the effective quasi-particle mass becomes infinite. From the math-
ematical point of view, equation (1.6) has been studied extensively in Sobolev and
Besov spaces, see for instance [18, 19, 16, 21, 22] and some references therein.
Fibich et al [22] investigated the existence of global solutions to (1.6) in the class
C(R;H2(Rn)) by using the conservation laws. Moreover, the dynamic of the solu-
tions and numerical simulations were also analyzed. These results were improved
by Guo and Cui in [18]. Local well-posedness of the Cauchy problem associated
with (1.6) in Sobolev spaces Hs(Rn), with f(u) = |u|α, α

2 ≥
4
n , s > s0 := n

2 −
4
α ,
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was obtained by Cui and Guo in [21]. Additionally, by using the local existence
and the conservation laws, a global well-posedness results in H2(Rn) was also es-
tablished. In [19] the authors proved some results of local and global well-posedness
on Besov spaces for dimensions 1 ≤ n ≤ 4; more exactly, the authors proved that
the Cauchy problem associated with (1.6), with f(u) = |u|α, is local well possed in
C([−T, T ]; Ḃsα2,q(Rn)) and C([−T, T ];Bs2,q(Rn)) for some T > 0, where sα = n

2 −
4
α ,

s > sα, 1 ≤ q ≤ ∞. With respect to the global well-posedness in Sobolev space,
Guo in [16], considering f(u) = |u|2m, and using the I-method, proved the existence

of global solutions in Hs(Rn) for s > 1+mn−9+
√

(4m−mn+7)2+16

4m , 4 < mn < 4m+2.
Another important model considered in (1.1) is given by the case of anisotropic

dispersion, that is,

i∂tu+ ε∆u+ δ

d∑
i=1

uxixixixi + f(|u|)u = 0. (1.7)

This model appears in the propagation of ultrashort laser pulses in a planar wave-
guide medium with anomalous time-dispersion, and the propagation of solitons in
fiber arrays (see Wen and Fan [37] and Acevedes et al [1]). Results of local and
global well-posedness for initial data in Hs-spaces were given in [21] and [38]

In this article we are interested in the local and global well-posedness of the
general fourth-order Schrödinger equation outside the framework of finite energy
Hs-spaces. More exactly, we analyze the existence of local and global solutions for
the Cauchy problem (1.1) in a new class of initial data based on weak-Lp spaces.
Weak-Lp spaces, also denoted by L(p,∞), are natural extensions of Lebesgue spaces
Lp, in view of the Chebyshev inequality [4]. They contain singular functions with
infinite L2-mass such as homogeneous functions of degree −np . However, L(p,∞) ⊂
L2

loc for p > 2. Making a comparison between weak-Lp spaces and Hs,l-spaces, it
is known that the continuous inclusion Hs,l(Rn) ⊂ L(p,∞)(Rn) holds for s ≥ 0 and
1
p ≥

1
l −

s
n , and Hs,l-spaces do not contain any weak-Lp spaces if s ∈ R, 1 ≤ l ≤ 2

and l ≤ p. In particular, L(p,∞)(Rn) 6⊂ Hs,2(Rn) = Hs(Rn) for all s ∈ R, when
p ≥ 2. On the other hand, comparing equations (1.4) with (1.6) and (1.7), we
observe that equation (1.4), with f(|u|) = |u|α, unlike equations (1.6) and (1.7), is
invariant under the group of transformations u(x, t) → uλ(x, t), where uλ(x, t) =
λ

4
αu(λx, λ4t), λ > 0. Solutions which are invariant under the transformation u →

uλ are called self-similar solutions. As pointed out in Dudley et al [10] (see also
[13]), self-similarity type properties appear in a wide range of physical situations and
they reproduce the structure of a phenomena in different spatio-temporal scales. A
universal law governing self-similar scale invariance reveals the existence of internal
symmetry and structure in a system. Thus, self-similar solutions naturally provide
such a law for system (1.4). In ultrafast nonlinear optics, self-similar dynamics
have attracted a lot of interest and constitute an increasing field of research (see
[10] and references therein). For instance, in Fermann et al. [11] was showed
that a type of self-similar parabolic pulse is an asymptotic solution to a nonlinear
Schrödinger equation with gain. In order to obtain self-similar solutions we need
to consider a norm ‖ · ‖ defined on a space of initial data u0, which is invariant
with respect to the group of transformations u→ uλ, that is, ‖u0λ‖ = ‖u0‖ for all
λ > 0; therefore u0 must be a homogeneous function of degree − 4

α . However, Hs-
spaces are not well adapted for studying this kind of solutions. This fact represents
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an additional motivation to study the existence of global solutions of the Cauchy
problem associated with (1.4) with initial data outside Hs-spaces, by using norms
based on L(p,∞). As consequence, the existence of forward self-similar solutions for
(1.4) is obtained by assuming u0 a sufficiently small homogeneous function of degree
− 4
λ . Because equation appearing in (1.1) does not verify any scaling symmetries (in

particular equations (1.6) and (1.7)), it is not likely to possess self-similar solutions.
However, by using time decay estimates for the respective fourth-order Schrödinger
group in weak-Lp spaces, we are able to obtain a result of existence of global
solutions for the Cauchy problem (1.1) in a class of function spaces generated by
the scaling of the biharmonic equation (1.5) with f(|u|) = |u|α. In relation to the
existence of local in time solutions for (1.1) and in particular, the Cauchy problem
associated with the equation (1.4), we will prove a result of existence and uniqueness
for a large class of singular initial data, which includes homogeneous functions of
degree −np for adequate values of p. The solutions obtained here can be physically
interesting because, as was said, elements of L(p,∞) have local finite L2-mass (that
is, they belong to L2

loc), for p > 2. In addition, for initial data in Hs(Rn), the
corresponding solution belongs to Hs(Rn), which shows that the constructed data-
solution map in L(p,∞) recovers the Hs-regularity and it is compatible with the
Hs-theory.

It is worthwhile to remark that the existence of local and global solutions for
dispersive equations with initial data outside the context of finite L2-mass, such as
weak-Lr spaces, has been analyzed for the classical Schrödinger equation, coupled
Schrödinger equations, Davey-Stewartson system, which are models characterized
by having scaling relation (cf. [5, 13, 15, 35]). Existence of solutions in the frame-
work of weak-Lr spaces for models which have no scaling relation, have been ex-
plored in the case of Boussinesq and Schorödinger-Boussinesq system in [2, 12] and
more recently, in the context of Klein-Gordon-Schrödinger system [3].

To state our results, we establish the definition of mild solution for the Cauchy
problem (1.1). A mild solution for (1.1) is a function u satisfying the integral
equation

u(x, t) = Gε,δ(t)u0(x) + i

∫ t

0

Gε,δ(t− τ)f(|u(x, τ)|)u(x, τ)dτ, (1.8)

where Gε,δ(t) is the free group associated with the linear Fourth-order Schrödinger
equation, that is,

Gε,δ(t)ϕ =

{
Jε,δ(·, t) ∗ ϕ, if A = ∆2,

Iε,δ(·, t) ∗ ϕ, if A =
∑d
i=1 ∂xixixixi ,

(1.9)

for all ϕ ∈ S ′(Rn), where

Jε,δ(x, t) = (2π)−n
∫

Rn
eixξ−it(ε|ξ|

2−δ|ξ|4)dξ

Iε,δ(x, t) =
(

(2π)−d
d∏
j=1

∫
R
eixjξj−it(εξ

2
j−δξ

4
j )dξj

)
×
(

(2π)−(n−d)
n∏

j=d+1

∫
R
eixjξj−itεξ

2
j dξj

)
≡ I1

ε,δ(x, t)I
2
ε,δ(x, t).
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Before to precise our results, briefly we recall some notation and facts about
Lorentz spaces, see Bergh and Löfström [4], which will be our scenario to establish
existence results. Lorentz spaces L(p,d) are defined as the set of measurable function
g on Rn such that the quantity

‖g‖(p,d) =


(
p
d

∫∞
0

[t1/pg∗∗(t)]d dtt
)1/d

, if 1 < p <∞, 1 ≤ d <∞,
supt>0 t

1/pg∗∗(t), if 1 < p ≤ ∞, d =∞,

is finite. Here g∗∗(t) = 1
t

∫ t
0
g∗(s) ds and

g∗(t) = inf{s > 0 : µ({x ∈ Ω : |g(x)| > s}) ≤ t}, t > 0,

with µ denoting the Lebesgue measure. In particular, Lp(Ω) = L(p,p)(Ω) and,
when d = ∞, L(p,∞)(Ω) are called weak-Lp spaces. Furthermore, L(p,d1) ⊂ Lp ⊂
L(p,d2) ⊂ L(p,∞) for 1 ≤ d1 ≤ p ≤ d2 ≤ ∞. In particular, weak-Lp spaces contain
singular functions with infinite L2-mass such as homogeneous functions of degree
−np . Finally, a helpful fact about Lorentz spaces is the validity of the Hölder
inequality, which reads

‖gh‖(r,s) ≤ C(r)‖g‖(p1,d1)‖h‖(p2,d2),

for 1 < p1 ≤ ∞, 1 < p2, r < ∞, 1
p1

+ 1
p2

< 1, 1
r = 1

p1
+ 1

p2
, and s ≥ 1 satisfies

1
d1

+ 1
d2
≥ 1

s .
In this paper we obtain new results for the existence of local and global solutions

to Schrödinger equations with isotropic and anisotropic fourth-order dispersion.
First, we prove the existence of local-in-time solutions to the integral equation
(1.8) (see Theorem 3.1). For the existence of local solutions, fixed 0 < T <∞, we
consider the space GTβ of Bochner measurable functions u : (−T, T )→ L(p(α+1),∞)

such that
‖u‖GTβ = sup

−T<t<T
|t|β‖u(t)‖(p(α+1),∞),

where

β =


nα

4p(α+1) , if A = ∆2,

(2n−d)α
4p(α+1) , if A =

∑d
i=1 ∂xixixixi ,

(1.10)

and p is such that the pair ( 1
p ,

1
p(α+1) ) belongs to the set Ξ0 \ ∂Ξ0 where Ξ0 is

the quadrilateral R0P0BQ0, with B = (1, 0), P0 = (2/3, 0), Q0 = (1, 1/3) and
R0 = (1/2, 1/2). The exponent β in (1.10), and the restriction of p, correspond to
the time decay of the group Gε,δ(t) on Lorentz spaces (see Proposition 2.3 below).
The initial data is such that ‖Gε,δ(t)u0‖GTβ is finite. As a consequence, some results
of local existence in Sobolev spaces can be recovered (see Remark 3.2).

We also analyze the existence of global-in-time solutions (see Theorem 3.4).
For that we define the space G∞σ as the set of Bochner measurable functions u :
(−∞,∞)→ L(α+2,∞) such that

‖u‖G∞σ = sup
−∞<t<∞

|t|σ‖u(t)‖(α+2,∞) <∞,

where σ is given by

σ =


1
α −

n
4(α+2) , if A = ∆2,

1
α −

2n−d
4(α+2) , if A =

∑d
i=1 ∂xixixixi .

(1.11)
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Observe that the value σ = 1
α−

n
4(α+2) in (1.11) is the unique one such that the norm

‖u‖G∞σ becomes invariant by the scaling of biharmonic equation with f(u) = |u|α.
In order to obtain existence of global solutions, we consider the following class of
initial data

Dσ ≡ {ϕ ∈ S ′(Rn) : sup
−∞<t<∞

tσ‖Gε,δ(t)ϕ‖(α+2,∞) <∞}. (1.12)

Consequently, if we consider the biharmonic or anisotropic biharmonic equation,
that is, ε = 0 in (1.1), we obtain the existence of self-similar solutions by assuming
u0 a sufficiently small homogeneous function of degree − 4

α (see Corollary 3.6).
As it was said, formally, when we drop the second order dispersion term in

i∂tu+ ε∆u+ δ∆2u+ f(|u|)u = 0, that is, taking ε = 0, we obtain the biharmonic
equation i∂tu + δ∆2u + f(|u|)u = 0. However, to the best of our knowledge,
the vanishing second order dispersion limit has not been addressed. We observe
that the analysis of vanishing dispersion limits can be seen as an interesting issue
in dispersive PDE theory, because it permits to describe qualitative properties
between different models. We recall, for instance, that in fluid mechanics, the
vanishing viscosity limit of the incompressible Navier-Stokes equations is a classical
issue [14, 25]. This is the motivation of the second aim of this paper. We study the
convergence as ε goes to zero, in the H2-norm, of the solution of Cauchy problem
(1.1), with A = ∆2, to the corresponding Cauchy problem associated with the
biharmonic equation (1.5). In the anisotropic case, that is, A =

∑d
i=1 ∂xixixixi ,

the vanishing second order dispersion limit is not clear, because we are not able to
bound ‖∇uε‖L2 or ‖uε‖2H1 +

∑d
i=1 ‖uεxixi‖

2
L2 in terms of the conserved quantities

associated to (1.1) and independently of ε (see Remark 4.3). This is an interesting
question to be considered as future research.

The rest of this article is organized as follows. In Section 2 we establish some
linear and nonlinear estimates which are fundamental for obtaining our results of
local and global mild solutions. In Section 3 we state and prove our results of local
and global solutions. Finally, in Section 4, we give a result about vanishing second
order dispersion limit.

2. Linear and nonlinear estimates

In this section we establish some linear and nonlinear estimates which are fun-
damental for obtain our results of local and global mild solutions. We start by
rewriting Theorem 2, Section 3, of Cui [6] for the case n = 1 and Theorem 2, Sec-
tion 3, of Cui [7] for the case n ≥ 2 (see also Lemma 2.1 in Guo and Cui [20, 21]).
For this purpose we denote Ξ0 the quadrilateral R0P0BQ0 in the (1/p, 1/q) plane,
where

B = (1, 0), P0 = (2/3, 0), Q0 = (1, 1/3), R0 = (1/2, 1/2).

Ξ0 comprises the apices B,R0 and all the edges BP0, BQ0, P0R0 and Q0R0, but
does not comprise the apices P0 and Q0.

Proposition 2.1. Given T > 0 and a pair of positive numbers (p, q) satisfying
(1/p, 1/q) ∈ Ξ0, there exists a constant C = C(T, p, q) > 0 such that for any
ϕ ∈ Lp(Rn) and −T ≤ t ≤ T it holds

‖Gε,δ(t)ϕ‖Lq ≤ C|t|−bl‖ϕ‖Lp ,
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where

bl =

{
n
4

(
1
p −

1
q

)
, if A = ∆2,

2n−d
4

(
1
p −

1
q

)
, if A =

∑d
i=1 ∂xixixixi .

(2.1)

Moreover, if ε = 0 the above estimate holds for all t 6= 0.

The above inequality is not convenient to obtain a result of global well-posedness
because the constant C depends on T . To overcome this problem we establish a
different result which follows from a standard scaling argument.

Lemma 2.2. If 1
p+ 1

p′ = 1 with p ∈ [1, 2], then there exists a constant C independent
of ε, δ and t such that

‖Gε,δ(t)ϕ‖Lp′ ≤ C|t|
−bg‖ϕ‖Lp , ϕ ∈ Lp(Rn),

for all t 6= 0, where

bg =

{
n
4 ( 2

p − 1), if A = ∆2,

2n−d
4 ( 2

p − 1), if A =
∑d
i=1 ∂xixixixi .

(2.2)

Proof. It is clear that ‖Gε,δ(t)ϕ‖L2 = ‖ϕ‖L2 , in both cases, the isotropic and
anisotropic dispersion. Now, for the isotropic case, we define h(ξ) := zξ

t −(εξ2−δξ4)
and since |h(4)(ξ)| = 24, we can use [34, Proposition VIII. 2] to obtain∣∣∣ ∫ ∞

−∞
eith(ξ)dξ

∣∣∣ ≤ C|t|−1/4.

Note that the constant C given above does not depend on ε and δ. From Young
inequality we have

‖Gε,δ(t)ϕ‖L∞ ≤ C|t|−1/4‖ϕ‖L1 .

Then the result follows by real interpolation.
The anisotropic case is obtained in a similar way. Indeed, we only need to note

that
|I1
ε,δ(x, t)| ≤ C1|t|−d/4 and |I1

ε,δ(x, t)| ≤ C2|t|−(n−d)/2,

where C1 and C2 are independent of t, ε and δ. Consequently

|Iε,δ(x, t)| = |I1
ε,δ(x, t)I

2
ε,δ(x, t)| ≤ C|t|−

2n−d
4 .

The proof is finished. �

Lemma 2.3. Let T > 0, 1 ≤ d ≤ ∞ and 1 ≤ p, q ≤ ∞ satisfying (1/p, 1/q) ∈
Ξ0 \ ∂Ξ0. Then, there exists a positive constant C = C(T, p, q) > 0 such that

‖Gε,δ(t)ϕ‖(q,d) ≤ C|t|−bl‖ϕ‖(p,d), (2.3)

for all −T ≤ t ≤ T and ϕ ∈ L(p,d). Here bl is defined in (2.1). Moreover, if ε = 0
the above estimate holds for all t 6= 0.

Proof. We prove only the isotropic case; the anisotropic case can be proved in an
analogous way. Since Ξ0 is convex we can chose (1/p0, 1/q0), (1/p1, 1/q1) ∈ Ξ0 such
that 1

p = θ
p0

+ 1−θ
p1

and 1
q = θ

q0
+ 1−θ

q1
, with 0 < θ < 1. From Proposition 2.1 we

have Gε,δ(t) : Lp0 → Lq0 and Gε,δ(t) : Lp1 → Lq1 , with norms bounded by

‖Gε,δ(t)‖p0→q0 ≤ C|t|−n/4(1/p0−1/q0),

‖Gε,δ(t)‖p1→q1 ≤ C|t|−n/4(1/p1−1/q1).
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Since Lp = L(p,p), using real interpolation we obtain

‖Gε,δ(t)‖(p,d)→(q,d) ≤ C|t|−n/4(1/p0−1/q0)θ|t|−n/4(1/p1−1/q1)(1−θ)

= C|t|−n/4(1/p−1/q),

which completes the proof. �

In the same spirit of Lemma 2.3 one can obtain the next result, which gives
a linear estimate in Lorentz spaces. The proof follows from Lemma 2.2 and real
interpolation. We omit it.

Lemma 2.4. Let 1 ≤ d ≤ ∞, 1 < p < 2 and p′ such that 1
p + 1

p′ = 1. Then, there
exists a positive constant C such that

‖Gε,δ(t)ϕ‖(p′,d) ≤ C|t|−bg‖ϕ‖(p,d), (2.4)

for all t 6= 0 and ϕ ∈ L(p,d). Here bg is defined in (2.2).

For the rest of this article, we denote the nonlinear part of the integral equation
(1.8) by

F(u) = i

∫ t

0

Gε,δ(t− τ)f(|u(x, τ)|)u(x, τ)dτ.

In the next lemma we estimate the nonlinear term F(u) in the norm ‖ · ‖G∞σ , which
is crucial in order to obtain existence of global mild solutions.

Lemma 2.5. Let 1 ≤ α <∞ and assume that (α+ 1)σ < 1. Then
(1) If nα

4(α+2) < 1 and A = ∆2, then there exists a constant C1 > 0 such that

‖F(u)−F(v)‖G∞σ
≤ C1 sup

−∞<t<∞
|t|σ‖u− v‖(α+2,∞) sup

−∞<t<∞
|t|ασ

[
‖u‖α(α+2,∞) + ‖v‖α(α+2,∞)

]
, (2.5)

for all u, v such that the right hand side of (2.5) is finite.
(2) If (2n−d)α

4(α+2) < 1 and A =
∑d
i=1 ∂xixixixi , then there exists a constant C2 > 0

such that
‖F(u)−F(v)‖G∞σ
≤ C2 sup

−∞<t<∞
|t|σ‖u− v‖(α+2,∞) sup

−∞<t<∞
|t|ασ

[
‖u‖α(α+2,∞) + ‖v‖α(α+2,∞)

]
, (2.6)

for all u, v such that the right hand side of (2.6) is finite.

Proof. Without loss of generality we consider only the case t > 0. Using Lemma
2.4, the property of f established in (1.3), and the Hölder inequality, we have

‖F(u)−F(v)‖(p′,∞) ≤ C
∫ t

0

(t− τ)−
n(2−p)

4p ‖f(|u|)u− f(|v|)v‖(p,∞)dτ

≤ C
∫ t

0

(t− τ)−
n(2−p)

4p ‖|u− v|(|u|α + |v|α)‖(p,∞)dτ

≤ C
∫ t

0

(t− τ)−
n(2−p)

4p ‖u− v‖(p′,∞)

[
‖u‖α(p′,∞) + ‖v‖α(p′,∞)

]
dτ.

Since 1
p + 1

p′ = 1 and we used the Hölder inequality, we obtain the restriction
p′ = α+ 2. Hence

‖F(u)−F(v)‖(α+2,∞)
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≤ C
∫ t

0

(t− τ)−
nα

4(α+2) ‖u− v‖(α+2,∞)

[
‖u‖α(α+2,∞) + ‖v‖α(α+2,∞)

]
dτ

≤ C sup
t>0

tσ‖u− v‖(α+2,∞) sup
t>0

tασ
[
‖u‖α(α+2,∞) + ‖v‖α(α+2,∞)

]
t−σt1−

nα
4(α+2)−σα.

From 1− nα
4(α+2) − σα = 0, we conclude that

tσ‖F(u)−F(v)‖(α+2,∞)

≤ C sup
t>0

tσ‖u− v‖(α+2,∞) sup
t>0

tασ
[
‖u‖α(α+2,∞) + ‖v‖α(α+2,∞)

]
. (2.7)

Taking the supremum in (2.7) we conclude the proof of the estimate (2.5). The
proof of (2.6) follows in a similar way. �

In the next lemma we estimate the nonlinear term F(u) in the norm ‖ · ‖GTβ ,
which is crucial in order to obtain existence of local-in-time mild solutions. Here
we use the notation A . B which means that there exists a constant c > 0 such
that A ≤ cB.

Lemma 2.6. Let 1 ≤ α <∞, and (1/p, 1/(α+ 1)p) ∈ Ξ0 \ ∂Ξ0.
(1) If nα

4p < 1 and A = ∆2, then there exists a constant C3 > 0 such that

‖F(u)−F(v)‖GTβ
≤ C3 sup

−T<t<T
|t|β‖u− v‖((α+1)p,∞) sup

−T<t<T
|t|βα

[
‖u‖α((α+1)p,∞)

+ ‖v‖α((α+1)p,∞)

]
T 1−β(α+1),

(2.8)

for all u, v such that the right hand side of (2.8) is finite.
(2) If (2n−d)α

4p < 1 and A =
∑d
i=1 ∂xixixixi , then there exists a constant C4 > 0

such that
‖F(u)−F(v)‖GTβ
≤ C4 sup

−T<t<T
|t|β‖u− v‖((α+1)p,∞) sup

−T<t<T
|t|βα

[
‖u‖α((α+1)p,∞)

+ ‖v‖α((α+1)p,∞)

]
T 1−β(α+1),

(2.9)

for all u, v such that the right hand side of (2.9) is finite.

Proof. We only prove the first inequality; the proof of the second one is analogous.
Without loss of generality suppose that t > 0. Then, from Lemma 2.3, the property
of f established in (1.3) and the Hölder inequality, we obtain

‖F(u)−F(v)‖(q,∞) ≤
∫ t

0

(t− τ)−bl‖f(|u|)u− f(|v|)v‖(p,∞)dτ

≤ C
∫ t

0

(t− τ)−bl‖|u− v|(|u|α + |v|α)‖(p,∞)dτ

≤ C
∫ t

0

(t− τ)−bl‖u− v‖(q,∞)

(
‖u‖α(q,∞) + ‖v‖α(q,∞)

)
dτ.

Since we used the Hölder inequality the next restriction appears q = (α + 1)p.
Therefore,

‖F(u)−F(v)‖((α+1)p,∞)
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.
∫ t

0

(t− τ)−
nα

4p(α+1) ‖u− v‖((α+1)p,∞)

(
‖u‖α((α+1)p,∞) + ‖v‖α((α+1)p,∞)

)
dτ

. sup
0<t<T

tβ‖u− v‖((α+1)p,∞) sup
0<t<T

tαβ
[
‖u‖α((α+1)p,∞) + ‖v‖α((α+1)p,∞)

]
t1−β(α+2).

Hence,

tβ‖F(u)−F(v)‖((α+1)p,∞)

≤ C sup
0<t<T

tβ‖u− v‖((α+1)p,∞)

× sup
0<t<T

tβα
[
‖u‖α((α+1)p,∞) + ‖v‖α((α+1)p,∞)

]
T 1−β(α+1).

Taking supremum on t in the last inequality, we obtain the desired result. �

3. Local and global solutions

In this section we prove some results of local and global well-posedness for the
Schrödinger equations with isotropic and anisotropic fourth-order dispersion in the
setting of Lorentz spaces.

3.1. Local-in-time solutions.

Theorem 3.1 (Local-in-time solutions). Let 1 ≤ α < ∞, and (1/p, 1/(α+ 1)p) ∈
Ξ0 \ ∂Ξ0. Consider nα

4p < 1 if A = ∆2, or (2n−d)α
4p < 1 if A =

∑d
i=1 ∂xixixixi . If

u0 ∈ S ′(Rn) such that ‖Gε,δ(t)u0‖GTβ is finite, then there exists 0 < T ∗ ≤ T < ∞
such that the initial value problem (1.1) has a mild solution u ∈ GT∗β , satisfying
u(t) ⇀ u0 in S ′(Rn) as t → 0+. The solution u is unique in a given ball of GT∗β ,
and the data-solution map u0 7→ u into GT∗β is Lipschitz.

Remark 3.2. (i) (Large class of initial data) From the definition of the norm ‖·‖GTβ
and Lemma 2.3, if we take u0 ∈ L(p,∞), the quantity ‖Gε,δ(t)u0‖GTβ is finite.

(ii) (Regularity) If the initial data is such that

sup
−T<t<T

|t|β‖Gε,δ(t)u0‖(p(α+1),d) <∞,

for 1 ≤ d <∞, then the local mild solution satisifes

sup
−T∗<t<T∗

|t|β‖u‖(p(α+1),d) <∞,

(possibly reducing the time of existence T ∗).
(iii) (Finite energy solutions) From Theorem 3.1 some results of local existence

in Sobolev spaces can be recovered. For that, notice that Hs(Rn) ↪→ L(p(α+1),∞),
for s > 0 such that 2 < p(α + 1) ≤ 2n

n−2s if n > 2s (2 < p(α + 1) ≤ ∞ if n < 2s).
Therefore, if u0 ∈ Hs, then

‖Gε,δ(t)u0‖GTβ ≤ C sup
−T<t<T

|t|β‖Gε,δ(t)u0‖Hs

≤ C sup
−T<t<T

|t|β‖u0‖Hs <∞.

Consequently, by Theorem 3.1 there exists a mild solution u : (−T ∗, T ∗) →
L(p(α+1))(Rn) in GT∗β . On the other hand, for the same initial data u0 ∈ Hs(Rn),
suppose v ∈ C([−T0, T0];Hs(Rn)) the unique energy finite solution for some T0

small enough. By the embedding Hs ↪→ L(p(α+1),∞), we obtain that v ∈ GT0
β .
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Thus, taking T0 small enough, the uniqueness of solution given in Theorem 3.1,
implies that u = v on [−T0, T0] and consequently, u ∈ C([−T0, T0];Hs).

Before proving Theorem 3.1, we enunciate a result related to the existence of
radial solutions. First of all, we recall that a solution u in GTβ is said to be radially
symmetric, or simply radial, for a.e. 0 < |t| < T , if u(Rx, t) = u(x, t) a.e. x ∈ Rn
for all n× n-orthogonal matrix R. Then, we have the following corollary.

Corollary 3.3. Under the hypotheses of Theorem 3.1, if the initial data u0 is
radially symmetric, then the corresponding solution u is radially symmetric for a.e.
0 < |t| < T .

Proof of Theorem 3.1. This proof will be obtained as an application of the Banach
fixed point theorem. First, notice that by hypothesis on the initial data, we have

‖Gε,δ(t)u0‖GTβ := sup
−T<t<T

|t|β‖Gε,δ(t)u0‖(p(α+1),∞) ≡
K

2
<∞.

We consider the mapping Υ defined by

Υ(u(t)) = Gε,δ(t)u0 + i

∫ t

0

Gε,δ(t− τ)f(|u(x, τ)|)u(x, s)dτ. (3.1)

Then, we prove that Υ defines a contraction on (BK , d) where BK denotes the
closed ball {u ∈ GT∗β : ‖u‖GT∗β ≤ K} endowed with the complete metric d(u, v) =
‖u − v‖GT∗β for some 0 < T ∗ ≤ T . In fact, let us consider 0 < T ∗ ≤ T such that

C̃Kα(T ∗)1−β(α+1)
< 1

2 where C̃ denotes the constant C3 or C4 in Lemma 2.6.
Then, from Lemma 2.6 with v = 0 we obtain

‖Υ(u)‖GT∗β ≤ ‖Gε,δ(t)u0‖GT∗β + ‖F(u)‖GT∗β

≤ K

2
+ C̃Kα+1(T ∗)1−β(α+1) ≤ K

2
+
K

2
= K,

for all u ∈ BK . Consequently, Υ(BK) ⊂ BK . Now, assuming that u, v ∈ BK , from
Lemma 2.6 we obtain

‖Υ(u(t))−Υ(v(t))‖GT∗β = ‖F(u)−F(v)‖GT∗β
≤ 2C̃Kα(T ∗)1−β(α+1)‖u− v‖GT∗β .

(3.2)

Thus, as C̃Kα(T ∗)1−β(α+1) < 1/2, the map Υ is a contraction on (BK , d). Conse-
quently, the Banach fixed point theorem implies the existence of a unique solution
u ∈ GT∗β . Through standard argument one can prove that u(t) → u0 as t → 0, in
the sense of distributions [15]. On the other hand, in order to prove the local Lips-
chitz continuity of the data-solution map, we consider u, v two local mild solutions
with initial data u0, v0, respectively. Then, as in estimate (3.2) we obtain

‖u− v‖GT∗β = ‖Gε,δ(t)(u0 − v0)‖GT∗β + ‖F(u)−F(v)‖GT∗β
≤ ‖Gε,δ(t)(u0 − v0)‖GT∗β + 2C̃Kα(T ∗)1−β(α+1)‖u− v‖GT∗β .

(3.3)

Since 2C̃Kα(T ∗)1−β(α+1) < 1, from the above inequality, the local Lipschitz conti-
nuity of the data-solution map holds. �
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Proof of Corollary 3.3. From the fixed point argument used in the proof of Theo-
rem 3.1, we can see the local solution u as the limit in GTβ of the Picard sequence

u1 = Gε,δ(t)(u0), uk+1 = u1 + F(uk), k ∈ N. (3.4)

Since the symbol of the group Gε,δ(t) is radially symmetric for each fixed 0 < t < T ,
it follows that Gε,δ(t)u0 is radial, provided that u0 is radial. Furthermore, since the
nonlinear term F(u) is radial when u is radial, an induction argument gives that
the sequence {uk}k∈N given in (3.4) is radial. Since pointwise convergence preserves
radial symmetry, and GTβ implies (up to a subsequence) almost everywhere pointwise
convergence in the variable x, for a.e. fixed t 6= 0, it follows that u(x, t) is radially
symmetric. �

3.2. Global-in-time solutions.

Theorem 3.4. Let 1 ≤ α < ∞ and assume that (α + 1)σ < 1. Consider either
nα

4(α+2) < 1 if A = ∆2, or (2n−d)α
4(α+2) < 1 if A =

∑d
i=1 ∂xixixixi . Suppose further that

ξ > 0 and M > 0 satisfy the inequality ξ + C̃Mα+1 ≤M where C̃ = C̃(α, n) is the
constant C1 or C2 in Lemma 2.5. If u0 ∈ Dσ, with supt>0 t

σ‖Gε,δ(t)u0‖(α+2,∞) < ξ,
then the initial value problem (1.1) has a unique global-in-time mild solution u ∈ G∞σ
with ‖u‖G∞σ ≤ M , such that limt→0 u(t) = u0 in distribution sense. Moreover, if
u, v are two global mild solutions with respective initial data u0, v0, then

‖u− v‖G∞σ ≤ C‖Gε,δ(t)(u0 − v0)‖G∞σ . (3.5)

Additionally, if Gε,δ(t)(u0 − v0) satisifes the stronger decay

sup
t>0
|t|σ(1 + |t|)ς‖Gε(t)(u0 − v0)‖(α+2,∞) <∞,

for some ς > 0 such that σ(α+ 1) + ς < 1, then
sup
t>0
|t|σ(1 + |t|)ς‖u(t)− v(t)‖(α+2,∞)

≤ C sup
t>0
|t|σ(1 + |t|)ς‖Gε(t)(u0 − v0)‖(α+2,∞).

(3.6)

Remark 3.5. (i) (Regularity) In addition to the assumptions of Theorem 3.4, if
we consider that the initial data satisifes

sup
−∞<t<∞

tσ‖G0,δ(t)u0‖(α+2,d) <∞

for some 1 ≤ d <∞, then there exists ξ0 such that if

sup
−∞<t<∞

tσ‖G0,δ(t)u0‖(α+2,d) ≤ ξ0,

then global solution provided in Theorem 3.4 satisfies that

sup
−∞<t<∞

tσ‖u(t)‖(α+2,d) <∞.

(ii) (Radial solutions) As in Corollary 3.3, if the initial data u0 is radially sym-
metric, then the global-in-time solution u is radially symmetric for a.e. t 6= 0.

(iii) (Asymptotic stability) Following the proof of (3.6) we can obtain that if u, v
are global mild solutions of the Cauchy problem (1.1) given by Theorem 3.4, with
initial data u0, v0 ∈ Dσ respectively, satisfying

lim
t→∞

tσ(1 + t)ς‖Gε(t)(u0 − v0)‖(α+2,∞) = 0,

then limt→∞ tσ(1 + t)ς‖u(t)− v(t)‖(α+2,∞) = 0.
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(iv) (biharmonic and anisotropic biharmonic global solutions) Theorem 3.4 gives
existence of global mild solution for Cauchy problem associated with equation (1.4)
in the class G∞σ . The proof was based on the time-decay estimate of the group
G0,δ(t) given in Lemma 2.4. However, taking into account that if ε = 0 the time-
decay estimate in Lemma 2.3 holds true for all t 6= 0, we are able to prove the
existence of global-in-time mild solutions for the Cauchy problem associated with
equation (1.4) in the class G∞σ(p) defined as the set of Bochner measurable functions
u : (−∞,∞)→ L(p(α+1),∞) such that

‖u‖G∞
σ(p)

= sup
−∞<t<∞

|t|σ(p)‖u(t)‖(p(α+1),∞) <∞,

where

σ(p) =

{
1
α −

n
4p(α+1) , if A = ∆2,

1
α −

2n−d
4p(α+1) , if A =

∑d
i=1 ∂xixixixi .

(3.7)

Here p, α must verify 1 ≤ α < ∞, (1/p, 1/(α+ 1)p) ∈ Ξ0 \ ∂Ξ0 and 4p
nα < 1 <

4p(α+1)
nα if A = ∆2 or, 4p

(2n−d)α < 1 < 4p(α+1)
(2n−d)α if A =

∑d
i=1 ∂xixixixi.

Corollary 3.6 (Biharmonic and anisotropic biharmonic self-similar solutions).
Let ε = 0, 1 ≤ α <∞ and assume that (α+ 1)σ < 1. Consider either nα

4(α+2) < 1 if

A = ∆2, or (2n−d)α
4(α+2) < 1 if A =

∑d
i=1 ∂xixixixi . Assume that the initial data u0 is a

homogeneous function of degree −4
α . Then the solution u(t, x) provided by Theorem

3.4 is self-similar, that is, u(t, x) = λ
4
αu(λ4t, λx) for all λ > 0, almost everywhere

for x ∈ Rn and t > 0.

Remark 3.7. An admissible class of initial data for the existence of self-similar
solutions in Corollary 3.6 is given by the set of functions u0(x) = Pm(x)|x|−m− 4

α

where Pm(x) is a homogeneous polynomial of degree m.

Proof of Theorem 3.4. It will be also obtained as an application of the Banach fixed
point Theorem. We denote by BM the set of u ∈ G∞σ such that

‖u‖G∞σ ≡ sup
−∞<t<∞

|t|σ‖u(t)‖(α+2,∞) ≤M,

endowed with the complete metric d(u, v) = sup−∞<t<∞ |t|σ‖u(t) − v(t)‖(α+2,∞).
We will show that the mapping

Υ(u(t)) = Gε,δ(t)u0 + i

∫ t

0

Gε,δ(t− τ)f(|u(x, τ)|)u(x, s)dτ, (3.8)

is a contraction on (BM , d). From the assumptions on the initial data and Lemma
2.5 (with v = 0), we have (for all u ∈ BM )

‖Υ(u)‖G∞σ ≤ ‖Gε,δ(t)u0‖G∞σ + ‖F(u)‖G∞σ
≤ ξ + C̃‖u‖α+1

G∞σ

≤ ξ + C̃Mα+1 ≤M,

because M and ξ satisfy ξ+ C̃Mα+1 ≤M . Thus, Υ maps BM itself. On the other
hand, Lemma 2.5, we obtain

‖Υ(u)−Υ(v)‖G∞σ ≤ ‖F(u)−F(v)‖G∞σ ≤ 2C̃Mα‖u− v‖G∞σ . (3.9)
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Since C̃Mα < 1, it follows that Υ is a contraction on (BM , d) and consequently,
the Banach fixed point theorem implies the existence of a unique global solution
u ∈ G∞σ . To prove the continuous dependence of the mild solutions with respect to
the initial data, it suffices to observe that (3.9) implies that

‖u− v‖G∞σ ≤ ‖Gε,δ(t)u0 −Gε,δ(t)v0‖Gσ + CMα‖u− v‖G∞σ .

Thus, as C̃Mα < 1, then ‖u − v‖G∞σ ≤ C‖Gε,δ(t)u0 − Gε,δ(t)v0‖G∞σ . Finally, to
prove the stronger decay, notice that

tσ(1 + t)ς‖u(t)− v(t)‖(α+2,∞)

≤ C sup
t>0

tσ(1 + t)ς‖Gε,δ(t)(u0 − v0)‖(α+2,∞) + tσ(1 + t)ς‖F(u)−F(v)‖(α+2,∞).

(3.10)
Since ‖u‖G∞σ , ‖v‖G∞σ ≤ M , using the change of variable τ 7→ τt and noting that
(1 + t)ς(1 + tτ)−ς ≤ tς(tτ)−ς for τ ∈ [0, 1], we obtain

tσ(1 + t)ς‖F(u)−F(v)‖(α+2,∞)

≤ tσ(1 + t)ς
∫ t

0

(t− τ)−
nα

4(α+2) τ−σ(α+1)(1 + τ)ς

× (τσ(1 + τ)ς‖u(τ)− v(τ)‖(α+2,∞))
[
τσ‖u(τ)‖α(α+2,∞) + τσ‖v(τ)‖α(α+2,∞)

]
ds

≤ 2Mα

∫ 1

0

(1− τ)−
nα

4(α+2) τ−σ(α+1)(1 + t)ς(1 + tτ)−ς((tτ)σ(1 + (tτ))ς

× ‖u(tτ)− v(tτ)‖(α+2,∞))ds

≤ 2Mα

∫ 1

0

(1− τ)−
nα

4(α+2) τ−σ(α+1)τ−ς((tτ)σ(1 + (tτ))ς

× ‖u(tτ)− v(tτ)‖(α+2,∞))dτ.
(3.11)

Therefore, by denoting A = supt>0 t
σ(1 + t)ς‖u(t)− v(t)‖(α+2,∞), from (3.10) and

(3.11) we obtain

A ≤ C sup
t>0

tσ(1 + t)ς‖Gε,δ(t)(u0 − v0)‖(α+2,∞)

+
(

2Mα

∫ 1

0

(1− τ)−
nα

4(α+2) τ−σ(α+1)τ−ςdτ

)
A.

Choosing M small enough such that 2Mα
∫ 1

0
(1− τ)−

nα
4(α+2) τ−σ(α+1)τ−ςdτ < 1, we

conclude the proof. �

Proof of Corollary 3.6. We recall that by the fixed point argument used in the proof
of Theorem 3.4, the solution u is the limit in G∞σ of the Picard sequence

u1 = G0,δ(t)u0, uk+1 = u1 + F(uk), k ∈ N. (3.12)

Notice that the initial data u0 satisfying u0(λx) = λ−
4
αu0(x) belongs to the class

Dσ (see [15, Corollary 2.6]). Since ε = 0, we obtain

u1(λx, λ4t) = λ−
4
αu1(x, t) (3.13)

and then u1 is invariant by the scaling

u(x, t)→ uλ(x, t) := λ
4
λu(λx, λ4t), λ > 0. (3.14)



EJDE-2016/13 FOURTH-ORDER SCHRÖDINGER EQUATION 15

Moreover, the nonlinear term F(u) is invariant by scaling (3.14) when u is also.
Therefore, we can employ an induction argument in order to obtain that all elements
uk have the scaling invariance property (3.14). Because the norm of G∞α is scaling
invariant, we obtain that the limit u also is invariant by the scaling transformation
u→ uλ, as required. �

4. Vanishing dispersion limit

This section is devoted to the analysis of the solutions of (1.1) as the second
order dispersion vanishes. More exactly, we study the convergence, ε → 0, of the
solutions of the Cauchy problem

i∂tu+ ε∆u+ δAu+ λ|u|αu = 0, x ∈ Rn, t ∈ R,
u(x, 0) = u0(x), x ∈ Rn,

(4.1)

to the solutions of

i∂tu+ δAu+ λ|u|αu = 0, x ∈ Rn, t ∈ R,
u(x, 0) = u0(x), x ∈ Rn.

(4.2)

in the framework of the H2(Rn) space. Throughout this section we consider α as a
positive even integer. Before to establish our main results, we give some preliminary
facts. First, we recall the following conserved quantities of (4.1):

M(u) = ‖u‖2L2(Rn); (4.3)

Eε,δ,λ(u) = δ‖∆u‖2L2 − ε‖∇u‖2L2 +
2λ
α+ 2

‖u‖α+2
Lα+2 , if A = ∆2; (4.4)

Eε,δ,λ(u) = δ

d∑
i=1

‖uxixi‖2L2 − ε‖∇u‖2L2 + 2λ
α+2‖u‖

α+2
Lα+2 , if A =

d∑
i=1

∂xixixixi .

(4.5)

According to the signs of the pair (δ, λ), we have two cases: Case 1: δλ > 0 and
ε ∈ R. Case 2: δλ < 0 and ε ∈ R. Thus we have the next result.

Proposition 4.1. Fix δ = ±1, λ = ±1 and let uε ∈ C([−T, T ];H2(Rn)) be the
local solution of (4.1) with initial data u0 ∈ H2(Rn) and A = ∆2. Assume that

• (ε, δ, λ) is as in Case 1 or
• (ε, δ, λ) is as in Case 2, nα < 8, nα

4(α+2) ≤ 1, if n 6= 2, 4, and 0 ≤ nα
4(α+2) < 1

if n = 2, 4.

Then the following estimate holds

‖uε(t)‖H2(Rn) ≤ C(‖u0‖H2 , ‖u0‖Lα+2). (4.6)

Proof. First we consider Case 1. Using the conserved quantities of (4.1) given in
(4.3)-(4.4), we obtain

‖uε(t)‖2L2 + ‖∆uε(t)‖2L2

= M(u0) + δ−1Eε,δ,λ(u0) + δ−1ε‖∇uε‖2L2 −
2δ−1λ

α+ 2
‖uε‖α+2

Lα+2

≤M(u0) + δ−1Eε,δ,λ(u0) + δ−1ε‖∇uε(t)‖2L2 .

(4.7)
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At this point we have to consider two subcases. If δ−1ε < 0, taking 0 < |ε| < 1
2 , we

arrived at

‖uε(t)‖2L2 + ‖∆uε(t)‖2L2 ≤M(u0) + δ−1Eε,δ,λ(u0) ≤M(u0) + E− 1
2 ,1,δ

−1λ(u0).

On the other hand, if δ−1ε > 0, from (4.7) we have

‖uε(t)‖2H2 ≤ C(‖uε(t)‖2L2 + ‖∆uε(t)‖2L2)

≤ CM(u0) + CE0,1,δ−1λ(u0) + δ−1εC‖uε(t)‖2H2 .

Again, consider 0 < |ε| < 1
2C to arrive at

‖uε(t)‖2H2 .M(u0) + E0,1,δ−1λ(u0).

In both subcases we obtain the desired result.
Now, we consider the Case 2. Consider the restrictions nα < 8, 0 ≤ nα

4(α+2) ≤ 1 if
n 6= 2, 4, and 0 ≤ nα

4(α+2) < 1 if n = 2, 4. Thus, by applying the Douglas-Niremberg
and Young inequalities we obtain

‖uε(t)‖2L2 + ‖∆uε(t)‖2L2

= M(u0) + δ−1Eε,δ,λ(u0) + δ−1ε‖∇uε(t)‖2L2 −
2δ−1λ

α+ 2
‖uε(t)‖α+2

Lα+2

≤M(u0) + δ−1Eε,δ,λ(u0) + δ−1ε‖∇uε(t)‖2L2 + C1‖uε(t)‖
nα
4
H2‖uε(t)‖

α+2−nα4
L2

= M(u0) + δ−1Eε,δ,λ(u0) + δ−1ε‖∇uε(t)‖2L2 + C1‖uε(t)‖
nα
4
H2‖u0‖

α+2−nα4
L2

≤M(u0) + δ−1Eε,δ,λ(u0) + δ−1ε‖∇uε(t)‖2L2 + C1µ0‖uε(t)‖2H2

+ C(µ0)‖u0‖κL2 ,

(4.8)

with κ = 8(α+2)−8nα
8−nα . Taking 0 < µ0 <

1
2C1

, from (4.8) we obtain

‖uε(t)‖2H2 .M(u0) + δ−1Eε,δ,λ(u0) + δ−1ε‖∇uε(t)‖2L2 + C(‖u0‖L2). (4.9)

Again, we have two subcases. If δ−1ε < 0, it is easy to see that for 0 < |ε| < 1
2 ,

‖uε(t)‖2H2 .M(u0) + E− 1
2 ,1,δ

−1λ(u0) + C(µ0, ‖u0‖L2). (4.10)

Finally, if δ−1ε > 0, we use that δ−1ε‖∇uε(t)‖2L2 ≤ 1
2‖uε(t)‖

2
H2 for 0 < |ε| < 1

2 in
(4.9) to obtain again inequality (4.10). �

Now we are in a position to establish our main result of this section.

Theorem 4.2. Consider uε and u in C([−T, T ];H2(Rn)), the solutions of (4.1)
and (4.2) respectively, with common initial data u0 ∈ H2(Rn) and A = ∆2. Here
[−T, T ] is the common interval of local existence for uε and u. Suppose n < 4, if
δλ < 0 assume that nα < 8, nα

4(α+2) ≤ 1, if n 6= 2, and 0 ≤ nα
4(α+2) < 1 if n = 2.

Then
lim
ε→0
‖uε(t)− u(t)‖H2 = 0,

for all t ∈ [−T, T ].

Remark 4.3. A version of Theorem 4.2 for the anisotropic dispersion case, A =∑d
i=1 ∂xixixixi , by replacing the norm convergence in H2 by the natural norm

H2(Rd)H1(Rn−d), is not clear. In fact, we are not able to bound ‖∇uε‖L2 or
‖uε‖2H1 +

∑d
i=1 ‖uεxixi‖

2
L2 in terms of the conserved quantities associated to (4.1)

and independently of ε.
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Proof of Theorem 4.2. As usual, the mild solutions associated with (4.2) satisfy the
integral equation

u(x, t) = G0,δ(t)u0(x) + i

∫ t

0

G0,δ(t− τ)f(|u(x, τ)|)u(x, τ)dτ, (4.11)

where G0,δ is defined in (1.9) with ε = 0. Computing the difference between the
integral equations (1.8) and (4.11) we obtain

‖uε(t)− u(t)‖H2

≤ ‖[Gε,δ(t)−G0,δ(t)]u0‖H2

+ ‖
∫ t

0

Gε,δ(t− τ)|uε(τ)|αuε(τ)dτ −
∫ t

0

G0,δ(t− τ)|u(τ)|αu(τ)dτ‖H2

≤
∫ t

0

‖Gε,δ(t− τ)[|uε(τ)|αuε(τ)− |u(τ)|αu(τ)]‖H2dτ + ‖[Gε,δ(t)−G0,δ(t)]u0‖H2

+
∫ t

0

‖[Gε,δ(t− τ)−G0,δ(t− τ)]|u(τ)|αu(τ)‖H2dτ

Since Gε,δ(t) is a unitary group on H2, from last inequality we obtain

‖uε(t)− u(t)‖H2

≤
∫ t

0

‖[|uε(τ)|αuε(τ)− |u(τ)|αu(τ)]‖H2dτ + ‖[Gε,δ(t)−G0,δ(t)]u0‖H2

+
∫ t

0

‖[Gε,δ(t− τ)−G0,δ(t− τ)]|u(τ)|αu(τ)‖H2dτ

≤
∫ t

0

‖|uε(τ)− u(τ)|(|uε(τ)|α + |u(τ)|α)‖H2dτ + ‖[Gε,δ(t)−G0,δ(t)]u0‖H2

+
∫ t

0

‖[Gε,δ(t− τ)−G0,δ(t− τ)]|u(τ)|αu(τ)‖H2dτ.

(4.12)
From (4.12) and Proposition 4.1 we have

‖uε(t)− u(t)‖H2 ≤ C
∫ t

0

‖uε(τ)− u(τ)‖H2dτ + ‖[Gε,δ(t)−G0,δ(t)]u0‖H2

+
∫ t

0

‖[Gε,δ(t− τ)−G0,δ(t− τ)]|u(τ)|αu(τ)‖H2dτ.

(4.13)

From the Gronwall inequality we arrived at

‖uε(t)− u(t)‖H2 ≤ Ψε,δ(t) + C

∫ t

0

Ψε,δ(τ)eC(t−τ)dτ,

where

Ψε,δ(t) = ‖[Gε,δ(t)−G0,δ(t)]u0‖H2

+
∫ t

0

‖[Gε,δ(t− τ)−G0,δ(t− τ)]|u(τ)|αu(τ)‖H2dτ.

Note that because α is a positive integer, we have

Ψε,δ(t) ≤ ‖u0‖H2 +
∫ t

0

‖|u(τ)|αu(τ)‖H2dτ
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≤ ‖u0‖H2 +
∫ t

0

‖u(τ)‖α+1
H2 dτ

≤ ‖u0‖H2 + t‖u0‖α+1
H2 .

Thus |Ψε,δ(τ)eC(t−τ)| . eC(t−τ). Since eC(t−τ) ∈ L1(0, T ), to obtain our result we
just have to show that Ψε,δ(t)→ 0 as ε→ 0, for any t ∈ [0, T ]. First, observe that

‖[Gε,δ(t)−G0,δ(t)]u0‖2H2 =
∫

Rn
〈ξ〉4|e−itε|ξ|

2
− 1|2|û0(ξ)|2dξ.

Since
〈ξ〉4|e−itε|ξ|

2
− 1|2|û0(ξ)|2 . 〈ξ〉4|û0(ξ)|2 in L1(Rn)

and 〈ξ〉4|e−itε|ξ|2−1|2|û0(ξ)|2 → 0, as ε→ 0, a.e. on Rn, by the Lebesgue dominated
convergence theorem we have

lim
ε→0
‖[Gε,δ(t)−G0,δ(t)]u0‖H2 = 0 .

From Proposition 4.1 we obtain

‖[Gε,δ(t− τ)−G0,δ(t− τ)]|u(τ)|αu(τ)‖H2 ≤ ‖|u(τ)|αu(τ)‖H2 ≤ ‖u(τ)‖α+1
H2

. [C(‖u0‖H2 , ‖u0‖Lα+2)]α+1.

Moreover, ‖[Gε,δ(t− τ)−G0,δ(t− τ)]|u(τ)|αu(τ)‖H2 → 0, as ε→ 0; then we arrived
at

lim
ε→0

∫ t

0

‖[Gε,δ(t− τ)−G0,δ(t− τ)]|u(τ)|αu(τ)‖H2dτ = 0,

which completes the proof. �
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