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HIGH-ORDER TOPOLOGICAL ASYMPTOTIC EXPANSION FOR
STOKES EQUATIONS

MOHAMED ABDELWAHED, MONTASSAR BARHOUMI, NEJMEDDINE CHORFI

Abstract. We use the topological sensitivity analysis method to solve various

optimization problems. It consists of studying the asymptotic expansion of

the objective function relative to a perturbation of the domain topology. This
expansion becomes insufficient in some applications when it is limited to the

first order topological derivative. We present a new topological sensitivity

analysis for the Stokes equations based on a high order asymptotic expansion.
The derived result is valid for different class of shape functions.

1. Introduction

The topological sensitivity technique is an optimization method used for different
applications [1, 2, 3, 4, 13]. The main idea consists on developing of an asymptotic
expansion of the objective function in relation to the domain topological pertur-
bation. Many operators has been studied in the case of this method such as, the
Laplace operator, the Stokes system, the Helmoltz equations, . . . [8, 9, 11, 12]. The
majority of the existing works using topological sensitivity method are limited to
the first order expansion which is sufficient in the case where the size of the domain
to be detected is of infinitesimal size and not close to the boundary. However, In
the case where this constraint is not ensured or if the first order term in the asymp-
totic expansion is equal to zero at some critical points, we need an extension of the
expansion to the high order term. This concept was studied by Rocha et al [5, 6]
in the case of two dimensional Laplace operator and for a second order topological
asymptotic. Hassine et al. [10] generalized this work to three dimensional case and
for higher order development. We present in this work an extension of this concept
to the Stokes equations

−∆u+∇p = F in Ω
∇.u = 0 in Ω
u = 0 on Γ,

where Ω ⊂ R3 with smooth boundary ∂Ω = Γ, u is the velocity, p the pressure and
F is an external force.
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We define ωz,ε a small geometry perturbation of Ω that is centered at z ∈ Ω and
has the form ωz,ε = z + εω, where ω ∈ R3 is a given fixed and bounded regular
domain containing the origin.

Let the shape function j be defined by

j(Ω\ωz,ε) = Jε(uε) (1.1)

where Jε ∈ H1(Ω\ωz,ε)3 and uε the solution to the Stokes problem in the perturbed
domain Ωz,ε = Ω\ωz,ε with homogeneous Dirichlet condition on ∂ωz,ε

−∆uε +∇pε = F in Ωz,ε

∇.uε = 0 in Ωz,ε

uε = 0 on Γ
uε = 0 on ∂ωz,ε.

(1.2)

The weak formulation of (1.2) consists in finding uε ∈ Vε that satisfies

aε(uε, ω) = lε(ω), ∀ω ∈ Vε, (1.3)

where

V0 = {v ∈ (H1
0 (Ωz,ε))3 : ∇ · v = 0}, (1.4)

aε(v, ω) =
∫

Ωz,ε

∇u : ∇v dx =
∫

Ωz,ε

tr(∇u · ∇v) dx, ∀v, ω ∈ V0, (1.5)

lε(ω) =
∫

Ωz,ε

F.ω dx, ∀ω ∈ V0. (1.6)

Note that Problem (1.3) has a unique solution [7].
The aim of this work is to derive a high order topological asymptotic expansion

for j relative to the presence of the geometry perturbation ωz,ε in the domain
Ω. The idea is to develop j(Ωz,ε) − j(Ω) with respect to ε and establishing an
asymptotic formula on the form

j(Ωz,ε)− j(Ω) =
N∑

k=1

fk(ε)δk
j (z) + o(fN (ε)) (1.7)

where

• fk, 1 ≤ k ≤ N are positive scalar functions verifying fk+1(ε) = o(fk(ε))
and

lim
ε→

fk(ε) = 0,

• δk
j denotes the kth topological derivative of the shape function j.

This work is a generalization of the topological sensitivity method. The presented
result is of higher interest and is valid for different shape functions.

We begin by presenting the asymptotic formulation in section 2. Section 3 is
devoted to the main result corresponding to the high order asymptotic expansion
formula. Finally, an application of the developed result is presented for two different
shape function examples.
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2. Asymptotic formula for the velocity variation

In this section, we discuss the influence of the geometry perturbation ωz,ε on the
Stokes solution (uε, pε). More precisely, we derive an asymptotic formula outlining
the velocity field uε (resp. the pressure field pε) variation with respect to the
perturbation size ε. We begin our analysis by the next preliminary estimate

Lemma 2.1. If the perturbation ωz,ε is strictly embedded into Ω, then the perturbed
Stokes solution (uε, pε) satisfies

uε(x)− u0(x) = W0((x− z)/ε) + O(ε) in Ωz,ε,

pε(x)− p0(x) =
1
ε
Q0((x− z)/ε) +O(ε) in Ωz,ε

where the leading term (W0, Q0) is defined as the solution to the Stokes exterior
problem

−∆W0 +∇Q0 = 0 in R3 \ ω,
∇ ·W0 = 0 in R3 \ ω,

W0 → 0 at ∞
W0 = −u0(z) on ∂ω.

(2.1)

The proof of the above lemma is similar to that in [1, Proposition 3.1]; so we
mit it. Next, we will give a generalization of this estimate to the high-order case.
The obtained asymptotic behavior is illustrated by the following result.

Theorem 2.2. If the geometry perturbation ωz,ε = z + εω is strictly embedded in
the fluid flow domain Ω, then the velocity and pressure fields satisfy the following
asymptotic behavior

uε(x) =
N∑

k=0

εk[Uk(x) +Wk((x− z)/ε))] +O(εN+1) in Ωz,ε, (2.2)

pε(x) =
N∑

k=0

εk[Pk(x) +
1
ε
Qk((x− z)/ε))] +O(εN+1) in Ωz,ε, (2.3)

where (Uk, Pk)0≤k≤N are smooth functions, solutions to a sequence of Stokes prob-
lems in Ω, and (Wk, Qk)0≤k≤N are smooth functions, solutions to a sequence of
exterior problems in R3 \ ω.

Proof. The sequences (Uk, Pk)0≤k≤N and (Wk, Qk)0≤k≤N are constructed using an
iterative process with (U0, P0) = (u0, p0) and (W0, Q0) is the solution to (2.1). The
proof is made in three steps.
Step 1: We derive the asymptotic behavior of the functions Wk, 0 ≤ k ≤ N relative
to ε. Due to a single layer potential [7], Wk, 0 ≤ k ≤ N can be written as

Wk(y) =
∫

∂ω

E(y − t) ηk(t)ds(t), ∀y ∈ R3 \ ω,

where E is the fundamental solution of Stokes system in R3 and ηk is the solution
to a boundary integral equation defined on ∂ω. It is easy to see that for each
x ∈ R3 \ ωz,ε we have

Wk((x− z)/ε) =
∫

∂ω

E((x− z)/ε− t)ηk(t)ds(t) = ε

∫
∂ω

E((x− z)− εt)ηk(t)ds(t).
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From the fact that ωz,ε is not close to the boundary ∂Ω, one can remark that for all
t ∈ ∂ω and for all x in a neighborhood of Γ the function Πx−z,t : ε 7→ Πx−z,t(ε) =
εE((x− z)− ε t) is smooth with respect to ε and admits the asymptotic expansion

Πx−z,t(ε) =
N∑

p=1

εp

p!
Π(p)

x−z,t(0) +O(εN+1),

where Π(p)
x−z,t(0) is the p-th derivative of Πx−z,t at ε = 0. It depends on the p-

th derivative of the function E at the point x − z. Consequently, the function
x 7→Wk((x− z)/ε) satisfies the following asymptotic behavior

Wk((x− z)/ε) =
N∑

p=1

εpW
(p)
k (x− z) +O(εN+1), (2.4)

with W
(p)
k is the smooth function defined in R3 \ ω by

W
(p)
k (x− z) =

1
p!

∫
∂ω

Π(p)
x−z,t(0)ηk(t)ds(t), ∀x ∈ R3 \ ω. (2.5)

Step 2: We are now ready to present the leading terms of the expected formulas.
Let us suppose that we have already derived the terms (Ui, Pi) and (Wi, Qi) for all
0 ≤ i ≤ k−1. The k-th order term is described by the function x 7→ (Uk(x), Pk(x))+
(Wk((x− z)/ε), 1

εQk((x− z)/ε)) which is constructed as follows:
• (Uk, Pk) depends on Wj , 0 ≤ j ≤ k − 1 and solves the interior problem

−∆Uk +∇Pk = 0 in Ω,
∇ · Uk = 0 in Ω,

Uk = −
k∑

p=1

W
(p)
k−p(x− z) on Γ,

(2.6)

with W
(p)
j is defined by (2.5).

• (Wk, Qk) depends on Uj , 0 ≤ j ≤ k and solves the exterior problem

−∆Wk +∇Qk = 0 in R3 \ ω,
∇ ·Wk = 0 in R3 \ ω,

Wk → 0 at ∞

Wk = −Uk(z)−
k∑

p=1

1
p!
DpUk−p(z)(yp) on ∂ω,

(2.7)

where DpUk−p(z) is the p-th derivative of the function Uk−p and yp =
(y, . . . , y) ∈ (R3)p.

Step 3: We check that the used iterative process leads to the expected asymptotic
formulas. Posing RN,ε(x) =

∑N
k=0 ε

k[Uk(x) +Wk((x− z)/ε))]− uε and SN,ε(x) =∑N
k=0 ε

k[Pk(x) + 1
εQk((x − z)/ε))] − pε. One can easily verify that (RN,ε, SN,ε)

solves the Stokes system in Ωz,ε

−∆RN,ε +∇SN,ε = 0 in Ωz,ε,

∇ ·RN,ε = 0 in Ωz,ε,
(2.8)
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and satisfies the boundary conditions:
• on ∂ωz,ε: Using the systems (2.6)-(2.7), the multi-linearity of DpUk−p(z),

Taylor’s Theorem and the fact that ‖x−z‖ = O(ε) on ∂ωz,ε, one can derive

RN,ε(x) =
N∑

k=0

εk
[
Uk(x)−

N−k∑
p=0

1
p!
DpUk(z)((x− z)p)

]
= O(εN+1).

• on Γ: From (2.6), (2.7) and the asymptotic expansion (2.4), one can obtain

RN,ε(x) = εNWN ((x− z)/ε) +
N−1∑
k=0

εk
[
Wk((x− z)/ε)

−
N−k∑
p=1

εpW
(p)
k (x− z)

]
= O(εN+1).

�

3. High-order topological asymptotic expansion

We derive in this section a high-order terms in the topological asymptotic ex-
pansion for the Stokes operator. The obtained results are an extension of the the
topological derivative notion for the high-order case and are valid for all shape
function j defined by

j(Ωz,ε) = Jε(uε),
with Jε is a scalar function in H1(Ωz,ε)3, satisfying the following hypothesis:

(H1) The function J0 is differentiable with respect to u.
There exist real numbers δ1J(z), . . . , δNJ(z), such that

J(uε)− J0(u0) = DJ0(u0)(uε − u0) +
N∑

k=1

εkδkJ(z) + o(εN ) , ∀ε > 0.

In the term DJ0(u0)(uε − u0), the velocity field uε is extended by zero inside the
domain ωz,ε. Its extension will be denoted by uε throughout the rest of the paper.

Under hypothesis (H1), the variation of the shape function j reads

j(Ωz,ε)− j(Ω) =
∫

Ωz,ε

∇(u0 − uε) : ∇v0dx+
N∑

k=1

εk δkJ(z) + o(εN ),

where u0 and v0 are respectively solutions to the Stokes and its associated ad-
joint problems. Using Green formula and Theorem 2.2, the integral term can be
decomposed as∫

Ωz,ε

∇(u0 − uε) : ∇v0dx

=
∫

ωz,ε

∇u0 : ∇v0dx−
N∑

k=0

εk

∫
∂ωz,ε

∇xWk((x− z)/ε))n · v0ds

−
N∑

k=1

εk

∫
∂ωz,ε

∇Uk(x)n(x) · v0(x)ds+O(εN+1).

(3.1)

To derive the high-order topological asymptotic expansion for j, we establish an
estimate for all terms on the right side of equality (3.1).
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3.1. Preliminary estimates.

Lemma 3.1. The first integral term in (3.1) satisfies∫
ωz,ε

∇u0 : ∇v0dx =
N∑

k=3

εk G1,k−3
u0,v0

(z) +O(εN+1),

where the functions z 7→ G1,k
u0,v0

(z), 0 ≤ k ≤ N are defined in Ω by

G1,k
u0,v0

(z) =
k∑

p=0

1
p!(k − p)!

∫
ω

∇(p+1)u0(z)(yp) : ∇(k−p+1)v0(z)(yk−p)dy, (3.2)

with yk = (y, . . . , y) ∈ (R3)k and ∇(k)w(z) denotes the k-th derivative of the func-
tion w at the point z.

Lemma 3.2. The second integral term in (3.1) satisfies
N∑

k=0

εk

∫
∂ωz,ε

∇xWk((x− z)/ε))n · v0ds = −
N∑

k=1

εkG2,k−1
W,v0

(z) +O(εN+1),

where the functions z 7→ G2,k
W,v0

(z), 0 ≤ k ≤ N are defined in Ω by

G2,k
W,v0

(z) = −
k∑

p=0

1
p!

∫
∂ω

∇yWk−p(y)n(y) · [∇(p)v0(z)(yp)]ds(y). (3.3)

Lemma 3.3. The third integral term in (3.1) satisfies
N∑

k=1

εk

∫
∂ωz,ε

∇Uk(x)n(x) · v0(x)ds = −
N∑

k=3

εkG3,k−3
U,v0

(z) +O(εN+1).

where the functions z 7→ G3,k
U,v0

(z), 0 ≤ k ≤ N are defined in Ω by

G3,k
U,v0

(z)

= −
k∑

p=0

p∑
q=0

1
q!(p− q)!

∫
∂ω

[∇(q+1)Uk−p+1(z)(yq)]n(y) · [∇(p−q)v0(z)(yp−q)]ds(y).

3.2. Asymptotic expansion. Based on the previous estimates, we derive in the-
orem 3.4 a high-order topological asymptotic expansion valid for all shape function
that meets hypothesis (H1). Propositions 3.5 and 3.6 are devoted to two particular
examples of shape functions.

Theorem 3.4. Let ωz,ε = z + εω be a geometry perturbation strictly embedded in
Ω. If Jε satisfies (H1), then the associated shape function j satisfies

j(Ωz,ε)− j(Ω) =
N∑

k=1

εkδkj(z) + o(εN ),

where δkj is the k−th topological derivative order, defined in Ω by

δkj(z) =

{
G2,k−1

W,v0
(z) + δkJ(z) if k = 1, 2

G1,k−3
u0,v0

(z) + G2,k−1
W,v0

(z) + G3,k−3
U,v0

(z) + δkJ(z) if 3 ≤ k ≤ N.
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To discuss hypothesis (H1). We consider two examples of shape functions satis-
fying (H1) and we derive their variations δ1J , δ2J , . . . , and δNJ .

Proposition 3.5. Let g ∈ L2(Ω)3 be a given function. The function u 7→ Jε(u) =∫
Ωz,ε

g · udx, for u ∈ H1(Ωz,ε) satisfies (H1) with

DJ0(w) =
∫

Ω

g · w dx, ∀w ∈ H1(Ω),

and δkJ(z) = 0 in Ω k = 1, . . . , N .

Proposition 3.6. Let Ud be a given desired state, smooth in ωz,ε. The function
u 7→ Jε(u) =

∫
Ωz,ε
|∇u−∇Ud|2 dx, u ∈ H1(Ωz,ε) satisfies (H1) with

DJ0(w) = 2
∫

Ω

∇(u0 − Ud) : ∇wdx, ∀w ∈ H1(Ω),

and

δkJ(z) =

{
G2,k−1

W,u0
(z) if k = 1, 2

G2,k−1
W,u0

(z) + G1,k−3
u0,u0

(z) + G1,k−3
Ud,Ud

(z) + G3,k−3
U,u0

(z) if 3 ≤ k ≤ N.

Conclusion. The present work generalizes the topological derivative notion for
the high-order case. The obtained results are based on the asymptotic formulas
describing the variations of the velocity and pressure fields relative to the presence
of a geometry perturbation ωz,ε = z+εω in the fluid flow domain Ω. The presented
mathematical analysis is general. It can be extended to different partial differential
equations.
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