CRITICAL QUASILINEAR SCHRÖDINGER EQUATION WITH SIGN-CHANGING POTENTIAL

LI-LI WANG, ZHI-QING HAN

Abstract

We study the existence of nontrivial solutions for a class of quasilinear Schrödinger equations in \mathbb{R}^{N} with critical nonlinearity, where the potential is allowed to change signs. The quasilinear equations are reduced to semilinear equations by using a change of variable. The geometric hypotheses of a mountain pass theorem without compactness conditions are satisfied so that the equation possesses a nontrivial solution.

1. Introduction

In this article we discuss the existence of nontrivial solutions for quasilinear Schrödinger equation

$$
\begin{equation*}
-\Delta u+V(x) u-\Delta\left(u^{2}\right) u=f(x, u), \quad x \in \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

which has atracted a great deal of attention during recent years (see [2, 3, 4, 5, 6, 7. 8, 9, 10, 11, 12, 14, 17), because not only it provides an important model for developing mathematical methods but it represents a special case of modeling for many physical phenomena, see [2, 12] for an explanation. Some existence results for (1.1) have been concluded when the potential $V(x)$ is bounded from below or coercive, we refer to [7, 9, 12] where they have focused on the existence of solutions for (1.1) in the subcritical case when $f(x, u)=|u|^{p-1} u, 4 \leq p+1<22^{*}, N \geq 3$, and have suggested the results by using direct variational methods, such as constrained minimization arguments. To overcome the undefiniteness of natural functional associated to (1.1), we rewrite the functional with a new variable which reduces the problem to looking for solutions of an auxiliary semilinear equation by employing the ideas in [4, 14, 7]. We establish a new potential function $V(x)$ which can be sign-changing and may be unbounded from below without any periodic hypotheses. A new nonlinearity $f(x, u)=K(x)|u|^{22^{*}-2} u+g(x, u)+h(x)$ is established which is more general than in other papers, for example [3, 6, 7, 9, 12, 16, 19 .

First we consider the following quasilinear Schrödinger equation with critical growth

$$
\begin{equation*}
-\Delta u+V(x) u-\Delta\left(u^{2}\right) u=K(x)|u|^{22^{*}-2} u+g(x, u)+h(x), \quad x \in \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

where the functions $V, K, h: \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{N} \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous and satisfy the following assumptions:

[^0](A1) $\int|\nabla u|^{2}+V(x) u^{2}>0$ for all $u \in E \backslash\{0\}$.
(A2) $V(x)$ is sign-changing, $V^{+}(x) \in L^{\infty}\left(\mathbb{R}^{N}\right), \lim _{|x| \rightarrow+\infty} V^{+}(x)=a_{0}>0$ and $\left\|V^{-}\right\|_{N / 2}<\frac{S(\theta-4)}{\theta-2}$, where $V^{ \pm}(x):=\max \{ \pm V(x), 0\}, S$ denotes the Sobolev optimal constant and θ is the constant in (A6).
(A3) $0<C \leq K(x) \in L^{\infty}\left(\mathbb{R}^{N}\right)$.
(A4) $g(x, u)=o(u)$ uniformly in $x \in \mathbb{R}^{N}$ as $u \rightarrow 0^{+}$.
(A5) There are constants $a_{1}, a_{2}>0$ and $4 \leq p<22^{*}$ such that
$$
|g(x, u)| \leq a_{1}+a_{2}|u|^{p-1}, \quad \forall(x, u) \in \mathbb{R}^{N} \times[0,+\infty)
$$
(A6) There exists a constant $\theta \in\left(4,22^{*}\right)$ satisfying
$$
0<G(x, u) \leq \frac{1}{\theta} g(x, u) u, \quad \forall(x, u) \in \mathbb{R}^{N} \times(0,+\infty)
$$
where $G(x, u):=\int_{0}^{u} g(x, s) d s$.
(A7) $h \not \equiv 0$ and $\|h\|_{2 N /(N+2)}<\frac{\alpha}{4} S^{1 / 2} \rho$, where α and ρ are given in Lemma 3.2 , We remark that the potential may be unbounded from below and the associated functional does not satisfy any compactness conditions. Note that $22^{*}=\frac{4 N}{N-2}$, here and in the sequel, $N \geq 3$. Let
$$
E:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right): \int V^{+}(x) u^{2}<\infty\right\}
$$
we observe that E is a Hilbert space equipped with the inner product
$$
(u, v):=\int \nabla u \nabla v+V^{+}(x) u v
$$
and the norm $\|u\|=(u, u)^{1 / 2}$. Obviously, it follows from (A2) that $\|\cdot\|$ is an equivalent norm with the standard one in $H^{1}\left(\mathbb{R}^{N}\right)$ and hence E is continuously embedded into $L^{p}\left(\mathbb{R}^{N}\right), 2 \leq p \leq 2^{*}$, i.e., there is a constant $\tau_{p}>0$ such that
\[

$$
\begin{equation*}
\|u\|_{p} \leq \tau_{p}\|u\|, \quad \forall u \in E \tag{1.3}
\end{equation*}
$$

\]

where $\|\cdot\|_{p}$ is used for the usual norm in $L^{p}\left(\mathbb{R}^{N}\right)$. Now we state our main result.
Theorem 1.1. If the conditions (A1)-(A7) hold. Then problem 1.2 possesses a nontrivial nonnegative solution in E.

Also, we consider a more general problem

$$
\begin{equation*}
-\Delta u+V(x) u-\Delta\left(u^{2}\right) u=|u|^{22^{*}-2} u+g(u), \quad x \in \mathbb{R}^{N} \tag{1.4}
\end{equation*}
$$

under hypotheses (A1) and
(A8) $V(x)$ is sign-changing, $\lim _{|x| \rightarrow+\infty} V^{+}(x)=V^{+}(\infty)>0, V^{+}(x) \leq V^{+}(\infty)$ in \mathbb{R}^{N} and $\left\|V^{-}\right\|_{N / 2}<\frac{S(\theta-4)}{\theta-2}$.
(A4') $g(u)=o(u)$ as $u \rightarrow 0^{+}$.
(A5') There are constants $a_{1}, a_{2}>0$ and $4 \leq p<22^{*}$ such that

$$
|g(u)| \leq a_{1}+a_{2}|u|^{p-1}, \forall u \in[0,+\infty)
$$

(A6') There exists a constant $\theta \in\left(4,22^{*}\right)$ with

$$
0<G(u) \leq \frac{1}{\theta} g(u) u, \forall u \in(0,+\infty)
$$

where $G(u)=\int_{0}^{u} g(s) d s$.
(A9) (i) $G(u) /\left(u^{22^{*}-1}\right) \rightarrow+\infty$ as $u \rightarrow+\infty$, if $3 \leq N<10$;
(ii) $G(u) / u^{4} \rightarrow+\infty$ as $u \rightarrow+\infty$, if $N \geq 10$.
(A10) The function $\frac{g(u)}{u^{3}}$ is nondecreasing for all $u>0$.
Now we state the second main result.
Theorem 1.2. Assume that (A1), (A8), (A4')-(A6'), (A9), (A10) are satisfied. Then problem (1.4) admits a nontrivial nonnegative solution in E.

Remark 1.3. Regarding the the results suggested in [6], Theorems 1.1 and 1.2 give an extension from their results to quasilinear Schrödinger equation including critical terms case.

Remark 1.4. A problem of type 1.4 for $N=2$ was studied in 11 where V and g are two continuous 1-periodic functions, V is nonnegative and bounded from below and g is critical growth. Moreover in [15] a similar result to Theorem 1.2 is provided under a more restricted hypotheses on the periodic potential V. While our results in both Theorems 1.1 and 1.2 do not need any periodic conditions and the potential $V(x)$ may be unbounded from below. Also, the method of our proof is different from that in [15].

The article is organized as follows: in Section 2, we reduce the quasilinear problem into a semilinear one by the dual method and show some preliminary results. Section 3 is devoted to prove that the mountain pass level of I is well defined, show the boundedness for the $(P S)_{c}$ sequence of the associated functional, and finish Theorem 1.1. Finally we bring results that complete the proof of Theorem 1.2 in Section 4.

Throughout this article, C will denote various positive constants whose exact value is not essential. The domain of an integral is \mathbb{R}^{N} unless otherwise indicated. $\int f(x) d x$ is abbreviated to $\int f(x)$.

2. Preliminary Results

We show that the energy functional corresponding to 1.2 given by

$$
\begin{aligned}
J(u):= & \frac{1}{2} \int\left(1+2 u^{2}\right)|\nabla u|^{2}+\frac{1}{2} \int V(x) u^{2}-\frac{1}{22^{*}} \int K(x)|u|^{22^{*}} \\
& -\int G(x, u)-\int h(x) u
\end{aligned}
$$

which is not well defined in general, such as in $H^{1}\left(\mathbb{R}^{N}\right)$. To avoid this trouble, we use of the change of variable $v:=f^{-1}(u)$ introduced by [7, where f is defined by

$$
f^{\prime}(t)=\frac{1}{\sqrt{1+2 f^{2}(t)}} \text { on }[0,+\infty) \text { and } f(t)=-f(-t) \text { on }(-\infty, 0]
$$

We list some properties of f, and the proofs of which may be found in 4, 14].
Lemma 2.1. The function f satisfies the following properties:
(1) f is uniquely defined, C^{∞} and invertible;
(2) $\left|f^{\prime}(t)\right| \leq 1$ for all $t \in \mathbb{R}$;
(3) $|f(t)| \leq|t|$ for all $t \in \mathbb{R}$;
(4) $f(t) / t \rightarrow 1$ as $t \rightarrow 0$;
(5) $f(t) / \sqrt{t} \rightarrow 2^{1 / 4}$ as $t \rightarrow+\infty$;
(6) $f(t) / 2 \leq t f^{\prime}(t) \leq f(t)$ for all $t \geq 0$;
(7) $|f(t)| \leq 2^{1 / 4}|t|^{1 / 2}$ for all $t \in \mathbb{R}$;
(8) there exists a positive constant C such that $|f(t)| \geq C|t|$ for $|t| \leq 1$ and $|f(t)| \geq C|t|^{1 / 2}$ for $|t| \geq 1$;
(9) $\left|f(t) f^{\prime}(t)\right|<1 / \sqrt{2}$ for all $t \in \mathbb{R}$;
(10) the function $f(t) t^{-1}$ is nonincreasing for all $t \in \mathbb{R} \backslash\{0\}$;
(11) the function $f(t) f^{\prime}(t) t^{-1}$ is decreasing for all $t>0$;
(12) the function $f^{3}(t) f^{\prime}(t) t^{-1}$ is increasing for all $t>0$;
(13) the function $f^{22^{*}-1}(t) f^{\prime}(t) t^{-1}$ is increasing for all $t>0$.

After the change of variable we obtain the functional

$$
\begin{aligned}
I(v):= & \frac{1}{2} \int|\nabla v|^{2}+\frac{1}{2} \int V(x) f^{2}(v)-\frac{1}{22^{*}} \int K(x)|f(v)|^{22^{*}} \\
& -\int G(x, f(v))-\int h(x) f(v)
\end{aligned}
$$

Then I is well-defined on E and belongs to C^{1} in view of the hypotheses (A2)-(A5) and (A7). Furthermore, it is easy to check that

$$
\begin{aligned}
\left\langle I^{\prime}(v), w\right\rangle= & \int \nabla v \nabla w+\int V(x) f(v) f^{\prime}(v) w-\int K(x)|f(v)|^{22^{*}-2} f(v) f^{\prime}(v) w \\
& -\int g(x, f(v)) f^{\prime}(v) w-\int h(x) f^{\prime}(v) w, \quad \forall v, w \in E
\end{aligned}
$$

and the critical point of I are weak solutions of the problem

$$
-\Delta v+V(x) f(v) f^{\prime}(v)=K(x)|f(v)|^{22^{*}-2} f(v) f^{\prime}(v)+g(x, f(v)) f^{\prime}(v)+h(x) f^{\prime}(v)
$$

for $x \in \mathbb{R}^{N}$. We observe that if $v \in E$ is a critical point of the functional I, then the function $u=f(v) \in E$ is a solution of 1.2 (cf:4]). To obtain a nonnegative solution for 1.2 , we set $g(x, u)=0$ for all $x \in \mathbb{R}^{N}$ and $u \leq 0$. By (A4) and (A5) we also see that, given $\varepsilon>0$ there exists a constant $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
|g(x, u)| \leq \varepsilon|u|+C_{\varepsilon}|u|^{p-1}, \quad \forall(x, u) \in \mathbb{R}^{N} \times \mathbb{R} \tag{2.1}
\end{equation*}
$$

3. Proof of Theorem 1.1

In this section we assume that (A1)-(A7) are satisfied. The following lemmas are crucial for the proof of Theorem 1.1.
Lemma 3.1. There exist constants $\rho, \alpha>0$ such that $\int|\nabla v|^{2}+V(x) f^{2}(v) \geq \alpha\|v\|^{2}$, whenever $\|v\|=\rho$.

The proof of the above lemma is similar to that of [6, Lemma 3.1]. So we omit it.

Lemma 3.2. For the above ρ, there exists a constant $\beta>0$ such that $\inf _{\|v\|=\rho} I(v) \geq$ β.
Proof. By (A3), Lemma 2.1.(7) and the Sobolev imbedding inequality, it is easy to obtain

$$
\begin{aligned}
\int K(x)|f(v)|^{22^{*}} & \leq 2^{2^{*} / 2}\|K\|_{\infty} \int|v|^{2^{*}} \\
& \leq 2^{2^{*} / 2}\|K\|_{\infty} S^{-2^{*} / 2}\left(\int|\nabla v|^{2}\right)^{2^{*} / 2} \\
& \leq 2^{2^{*} / 2}\|K\|_{\infty} S^{-2^{*} / 2}\|v\|^{2^{*}}
\end{aligned}
$$

By (2.1), Lemma 2.1 (3,7) and (1.3), we have

$$
\begin{aligned}
\int G(x, f(v)) & \leq \frac{\varepsilon}{2} \int|f(v)|^{2}+\frac{C_{\varepsilon}}{p} \int|f(v)|^{p} \\
& \leq \frac{\varepsilon}{2} \int|v|^{2}+C_{\varepsilon} \int|v|^{p / 2} \\
& \leq \frac{\varepsilon}{2} \tau_{2}^{2}\|v\|^{2}+C_{\varepsilon}\|v\|^{p / 2} .
\end{aligned}
$$

It follows from (A7), Lemma 2.1(3), the Hölder inequality and the Sobolev imbedding inequality that

$$
\int h(x) f(v) \leq\|h\|_{\frac{2 N}{N+2}}\|v\|_{2^{*}} \leq\|h\|_{\frac{2 N}{N+2}} S^{-1 / 2}\left(\int|\nabla v|^{2}\right)^{1 / 2} \leq\|h\|_{\frac{2 N}{N+2}} S^{-1 / 2}\|v\| .
$$

Therefore, combining the above inequalities with Lemma 3.1. we obtain
$I(u) \geq \frac{\alpha}{2}\|v\|^{2}-\frac{2^{2^{*} / 2}}{22^{*}}\|K\|_{\infty} S^{-2^{*} / 2}\|v\|^{2^{*}}-\frac{\varepsilon}{2} \tau_{2}^{2}\|v\|^{2}-C_{\varepsilon}\|v\|^{p / 2}-\|h\|_{\frac{2 N}{N+2}} S^{-1 / 2}\|v\|$.
Choosing $\varepsilon \leq \alpha /\left(2 \tau_{2}^{2}\right)$ and for every $\|v\|=\rho$ we obtain

$$
I(u) \geq \rho\left[\frac{\alpha}{4} \rho-\|h\|_{\frac{2 N}{N+2}} S^{-1 / 2}\right]-\frac{2^{2^{*} / 2}}{22^{*}}\|K\|_{\infty} S^{-2^{*} / 2} \rho^{2^{*}}-C \rho^{p / 2}
$$

For ρ sufficiently small, we derive that there exists a constant $\beta>0$ such that $\inf _{\|v\|=\rho} I(v) \geq \beta$ by (A7).
Lemma 3.3. There exists $v_{0} \in E$ such that $\left\|v_{0}\right\|>\rho$ and $I\left(v_{0}\right)<0$.
Proof. Given $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ with $B:=\operatorname{supp} \varphi$, we derive that $I(t \varphi) \rightarrow-\infty$ as $t \rightarrow+\infty$, which completes the proof if we take $v_{0}=t \varphi$ with t large enough. Note that $0<t \varphi \leq t$ in B and then

$$
\begin{equation*}
f(t \varphi) \geq f(t) \varphi \tag{3.1}
\end{equation*}
$$

by Lemma 2.1(10). It follows from (A2), (A3), (A6), (A7), Lemma 2.1(3) and 3.1) that

$$
\begin{aligned}
I(t \varphi) \leq & \frac{t^{2}}{2} \int_{B}|\nabla \varphi|^{2}+\frac{1}{2} \int_{B} V^{+}(x) f^{2}(t \varphi)-\frac{1}{2} \int_{B} V^{-}(x) f^{2}(t \varphi) \\
& -\frac{C}{22^{*}} \cdot f^{22^{*}}(t) \int_{B}|\varphi|^{22^{*}}+t\|h\|_{\frac{2 N}{N+2}}^{\frac{1}{N+2}}\|\varphi\|_{2^{*}} \\
\leq & \frac{t^{2}}{2}\|\varphi\|^{2}-\frac{C}{22^{*}} \cdot f^{22^{*}}(t) \int_{B}|\varphi|^{22^{*}}+t\|h\|_{\frac{2 N}{N+2}}\|\varphi\|_{2^{*}} \\
\rightarrow & -\infty \quad \text { as } t \rightarrow+\infty
\end{aligned}
$$

since $f^{22^{*}}(t) / t^{2} \rightarrow+\infty$ as $t \rightarrow+\infty$.
Lemma 3.4. The $(P S)_{c}$ sequence $\left(v_{n}\right) \subset E$ is bounded.
Proof. Set $\left(v_{n}\right) \subset E$ be a $(P S)_{c}$ sequence: $I\left(v_{n}\right) \rightarrow c$ and $I^{\prime}\left(v_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Using Lemma 2.1 (3,6), (A3), (A6) and the Sobolev imbedding inequality we easily deduce that

$$
\begin{gathered}
c+o_{n}(1)+o_{n}(1)\left\|v_{n}\right\| \\
=I\left(v_{n}\right)-\frac{2}{\theta} I^{\prime}\left(v_{n}\right) v_{n}
\end{gathered}
$$

$$
\begin{aligned}
\geq & \left(\frac{1}{2}-\frac{2}{\theta}\right) \int\left|\nabla v_{n}\right|^{2}+V^{+}(x) f^{2}\left(v_{n}\right)-\left(\frac{1}{2}-\frac{1}{\theta}\right) \int V^{-}(x) f^{2}\left(v_{n}\right) \\
& -\left(\frac{1}{22^{*}}-\frac{1}{\theta}\right) \int K(x)\left|f\left(v_{n}\right)\right|^{22^{*}}+\frac{1}{\theta} \int g\left(x, f\left(v_{n}\right)\right) f\left(v_{n}\right) \\
& -\int G\left(x, f\left(v_{n}\right)\right)-\left(1+\frac{2}{\theta}\right) \int\left|h(x) f\left(v_{n}\right)\right| \\
\geq & \left(\frac{1}{2}-\frac{2}{\theta}\right) \int\left|\nabla v_{n}\right|^{2}+V^{+}(x) f^{2}\left(v_{n}\right)-\left(\frac{1}{2}-\frac{1}{\theta}\right)\left\|V^{-}\right\|_{N / 2}\left\|v_{n}\right\|_{2^{*}}^{2} \\
& +\left(\frac{1}{\theta}-\frac{1}{22^{*}}\right) \int K(x)\left|f\left(v_{n}\right)\right|^{22^{*}}-\left(1+\frac{2}{\theta}\right)\|h\|_{\frac{2 N}{N+2}}\left\|v_{n}\right\|_{2^{*}} \\
\geq & {\left[\left(\frac{1}{2}-\frac{2}{\theta}\right)-\left(\frac{1}{2}-\frac{1}{\theta}\right)\left\|V^{-}\right\|_{N / 2} S^{-1}\right] \int\left|\nabla v_{n}\right|^{2}+V^{+}(x) f^{2}\left(v_{n}\right) } \\
& +\left(\frac{1}{\theta}-\frac{1}{22^{*}}\right) \int K(x)\left|f\left(v_{n}\right)\right|^{22^{*}}-\left(1+\frac{2}{\theta}\right)\|h\|_{\frac{2 N}{N+2}} S^{-1 / 2}\left(\int\left|\nabla v_{n}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

It follows from (A2) that $\left(\frac{1}{2}-\frac{2}{\theta}\right)-\left(\frac{1}{2}-\frac{1}{\theta}\right)\left\|V^{-}\right\|_{N / 2} S^{-1}>0$ and hence

$$
\begin{gather*}
\int\left|\nabla v_{n}\right|^{2}+V^{+}(x) f^{2}\left(v_{n}\right) \leq C+C\left\|v_{n}\right\| \tag{3.2}\\
\int K(x)\left|f\left(v_{n}\right)\right|^{22^{*}} \leq C+C\left\|v_{n}\right\|
\end{gather*}
$$

From (3.2), we only prove that $\int V^{+}(x) v_{n}^{2} \leq C+C\left\|v_{n}\right\|$. In fact, from (A2), (A3), Lemma 2.1, 8) and (3.2) it follows that

$$
\begin{aligned}
\int_{\left|v_{n}\right| \geq 1} V^{+}(x) v_{n}^{2} & \leq\left\|V^{+}\right\|_{\infty} \int_{\left|v_{n}\right| \geq 1} v_{n}^{2} \leq C\left\|V^{+}\right\|_{\infty} \int\left|f\left(v_{n}\right)\right|^{22^{*}} \\
& \leq C\left\|V^{+}\right\|_{\infty} \int K(x)\left|f\left(v_{n}\right)\right|^{22^{*}} \leq C+C\left\|v_{n}\right\|
\end{aligned}
$$

and

$$
\int_{\left|v_{n}\right| \leq 1} V^{+}(x) v_{n}^{2} \leq C \int_{\left|v_{n}\right| \leq 1} V^{+}(x) f^{2}\left(v_{n}\right) \leq C+C\left\|v_{n}\right\|
$$

Thus we have $\left\|v_{n}\right\|^{2} \leq C+C\left\|v_{n}\right\|$ and then $\left(v_{n}\right) \subset E$ is bounded.
Lemma 3.5. Suppose that $\left(v_{n}\right) \subset E$ is a bounded $(P S)_{c}$ sequence for the functional I, then up to a subsequence, $v_{n} \rightharpoonup v$ in E and v is a nontrivial critical point of the functional I.

Proof. The argument is similar as in [15]. Since $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is dense in $H^{1}\left(\mathbb{R}^{N}\right)$, we only need to show that $\left\langle I^{\prime}(v), \varphi\right\rangle=0$ for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$. Notice that $\left\langle I^{\prime}\left(v_{n}\right), \varphi\right\rangle \rightarrow$ 0 , for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, it suffices to derive that $\left\langle I^{\prime}\left(v_{n}\right), \varphi\right\rangle \rightarrow\left\langle I^{\prime}(v), \varphi\right\rangle$. In fact,

$$
\begin{aligned}
& \left\langle I^{\prime}\left(v_{n}\right), \varphi\right\rangle-\left\langle I^{\prime}(v), \varphi\right\rangle-\int\left(\nabla v_{n}-\nabla v\right) \nabla \varphi \\
& =\int\left[f\left(v_{n}\right) f^{\prime}\left(v_{n}\right)-f(v) f^{\prime}(v)\right] V^{+}(x) \varphi+\int\left[f(v) f^{\prime}(v)-f\left(v_{n}\right) f^{\prime}\left(v_{n}\right)\right] V^{-}(x) \varphi \\
& \quad+\int\left[|f(v)|^{22^{*}-2} f(v) f^{\prime}(v)-\left|f\left(v_{n}\right)\right|^{22^{*}-2} f\left(v_{n}\right) f^{\prime}\left(v_{n}\right)\right] K(x) \varphi \\
& \quad+\int\left[g(x, f(v)) f^{\prime}(v)-g\left(x, f\left(v_{n}\right)\right) f^{\prime}\left(v_{n}\right)\right] \varphi+\int\left[f^{\prime}(v)-f^{\prime}\left(v_{n}\right)\right] h(x) \varphi
\end{aligned}
$$

Since E is continuously embedded into $H^{1}\left(\mathbb{R}^{N}\right)$, we know that

$$
\int \nabla v_{n} \nabla \varphi \rightarrow \int \nabla v \nabla \varphi
$$

Besides, it follows from $v_{n} \rightharpoonup v$ in E that $v_{n} \rightarrow v$ in $L_{\text {loc }}^{p}\left(\mathbb{R}^{N}\right), p \in\left[1,2^{*}\right)$. Then, up to subsequence, $v_{n} \rightarrow v$ a.e. on $B:=\operatorname{supp} \varphi$ as $n \rightarrow \infty$ and $\left|v_{n}(x)\right| \leq\left|w_{p}(x)\right|$ a.e. on B with $w_{p} \in L^{p}(B)$ for every $n \in \mathbb{N}$. Therefore, we have

$$
\begin{aligned}
f^{\prime}\left(v_{n}\right) & \rightarrow f^{\prime}(v) \quad \text { a.e. on } B \text { as } n \rightarrow \infty, \\
f\left(v_{n}\right) f^{\prime}\left(v_{n}\right) & \rightarrow f(v) f^{\prime}(v) \quad \text { a.e. on } B \text { as } n \rightarrow \infty, \\
\left|f\left(v_{n}\right)\right|^{22^{*}-2} f\left(v_{n}\right) f^{\prime}\left(v_{n}\right) & \rightarrow|f(v)|^{22^{*}-2} f(v) f^{\prime}(v) \quad \text { a.e. on } B \text { as } n \rightarrow \infty, \\
g\left(x, f\left(v_{n}\right)\right) f^{\prime}\left(v_{n}\right) & \rightarrow g(x, f(v)) f^{\prime}(v) \quad \text { a.e. on } B \text { as } n \rightarrow \infty
\end{aligned}
$$

Furthermore, by (A2), (A3), (A7), Lemma $2.1(2,7,9)$ and the Hölder inequality we have

$$
\begin{aligned}
\left|V^{+}(x) f\left(v_{n}\right) f^{\prime}\left(v_{n}\right) \varphi\right| & \leq C\left\|V^{+}\right\|_{\infty}|\varphi| \in L^{1}(B) \\
\left|V^{-}(x) f\left(v_{n}\right) f^{\prime}\left(v_{n}\right) \varphi\right| & \leq\left|V^{-}(x)\right||\varphi| \in L^{1}(B), \\
\left.|K(x)| f\left(v_{n}\right)\right|^{22^{*}-2} f\left(v_{n}\right) f^{\prime}\left(v_{n}\right) \varphi \mid & \leq\|K\|_{\infty} 2^{\frac{2^{*}-1}{2}}\left|w_{2^{*}-1}\right|^{2^{*}-1}|\varphi| \in L^{1}(B), \\
\left|h(x) f^{\prime}\left(v_{n}\right) \varphi\right| & \leq|h(x)||\varphi| \in L^{1}(B)
\end{aligned}
$$

Hence, the Lebesgue Dominated Convergence Theorem implies

$$
\begin{aligned}
\int V^{+}(x) f\left(v_{n}\right) f^{\prime}\left(v_{n}\right) \varphi & \rightarrow \int V^{+}(x) f(v) f^{\prime}(v) \varphi \\
\int V^{-}(x) f\left(v_{n}\right) f^{\prime}\left(v_{n}\right) \varphi & \rightarrow \int V^{-}(x) f(v) f^{\prime}(v) \varphi \\
\int K(x)\left|f\left(v_{n}\right)\right|^{22^{*}-2} f\left(v_{n}\right) f^{\prime}\left(v_{n}\right) \varphi & \rightarrow \int K(x)|f(v)|^{22^{*}-2} f(v) f^{\prime}(v) \varphi \\
\int h(x) f^{\prime}\left(v_{n}\right) \varphi & \rightarrow \int h(x) f^{\prime}(v) \varphi
\end{aligned}
$$

For $\left|v_{n}\right| \leq 1$, by 2.1) and Lemma 2.1 (2,3), we have

$$
\left|g\left(x, f\left(v_{n}\right)\right) f^{\prime}\left(v_{n}\right) \varphi\right| \leq \varepsilon\left|f\left(v_{n}\right)\right||\varphi|+C_{\varepsilon}\left|f\left(v_{n}\right)\right|^{p-1}|\varphi| \leq\left(\varepsilon+C_{\varepsilon}\right)|\varphi|
$$

For $\left|v_{n}\right|>1$, by 2.1) and Lemma 2.1 $2,3,7,9$) we conclude that

$$
\begin{aligned}
\left|g\left(x, f\left(v_{n}\right)\right) f^{\prime}\left(v_{n}\right) \varphi\right| & \leq \varepsilon\left|v_{n}\right||\varphi|+C_{\varepsilon}\left|f\left(v_{n}\right)\right|^{p-1}\left|f^{\prime}\left(v_{n}\right) \| \varphi\right| \\
& \leq \varepsilon\left|w_{2}\right||\varphi|+C_{\varepsilon}\left|f\left(v_{n}\right)\right|^{p-2}|\varphi| \\
& \leq \varepsilon\left|w_{2}\right||\varphi|+C_{\varepsilon}\left|v_{n}\right|^{\frac{p}{2}-1}|\varphi| \\
& \leq \varepsilon\left|w_{2}\right||\varphi|+C_{\varepsilon}\left|w_{2^{*}-1}\right|^{2^{*}-1}|\varphi| .
\end{aligned}
$$

Combining the above facts and using the Lebesgue Dominated Convergence Theorem implies

$$
\int g\left(x, f\left(v_{n}\right)\right) f^{\prime}\left(v_{n}\right) \varphi \rightarrow \int g(x, f(v)) f^{\prime}(v) \varphi
$$

Hence, v is a critical point of I. From the condition (A7), v is nontrivial.

Proof of Theorem 1.1. Lemmas 3.2 and 3.3 imply that the functional I satisfies the mountain pass geometry, thus the $(P S)_{c}$ sequence exists, where

$$
c:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I(\gamma(t)), \quad \Gamma:=\left\{\gamma \in C([0,1], E): \gamma(0)=0, \gamma(1)=v_{0}\right\} .
$$

Assume that $\left(v_{n}\right) \subset E$ is a $(P S)_{c}$ sequence, $\left(v_{n}\right)$ is bounded by Lemma 3.3. Going if necessary to a subsequence, $v_{n} \rightharpoonup v$ in E. We obviously get that v is a nontrivial critical point of the functional I by Lemma 3.5 .

4. Proof of Theorem 1.2

In this section we assume that (A1), (A8), (A4')-(A6'), (A9), (A10) are satisfied. We study the existence of nontrivial critical points for the functional $I_{0} \in C^{1}(E, \mathbb{R})$ given by

$$
I_{0}(v):=\frac{1}{2} \int|\nabla v|^{2}+\frac{1}{2} \int V(x) f^{2}(v)-\frac{1}{22^{*}} \int|f(v)|^{22^{*}}-\int G(f(v))
$$

We also denote the corresponding limiting functional by

$$
I_{1}(v):=\frac{1}{2} \int|\nabla v|^{2}+\frac{1}{2} \int V^{+}(\infty) f^{2}(v)-\frac{1}{22^{*}} \int|f(v)|^{22^{*}}-\int G(f(v)) .
$$

We set $g(u)=0$ if $u \leq 0$. Some propositions and lemmas are needed and their proofs are similar as in [15], we just state them in brief and omit their proofs as follows.

Proposition 4.1. Assume (A8), (A4'), (A5') hold. Let $\left(v_{n}\right) \subset E$ be a $(P S)_{c}$ sequence with $0<c<\frac{1}{2 N} S^{\frac{N}{2}}$, and $v_{n} \rightharpoonup 0$ in E. Then there exist a sequence $\left(y_{n}\right) \subset \mathbb{R}^{N}$ and $r, \eta>0$ such that $\left|y_{n}\right| \rightarrow+\infty$ and

$$
\limsup _{n \rightarrow \infty} \int_{B_{r}\left(y_{n}\right)} v_{n}^{2} \geq \eta>0
$$

Given $\varepsilon>0$, we study the function $w_{\varepsilon}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ defined by

$$
w_{\varepsilon}(x)=C(N) \frac{\varepsilon^{\frac{N-2}{2}}}{\left(\varepsilon^{2}+|x|^{2}\right)^{\frac{N-2}{2}}}
$$

where $C(N)=[N(N-2)]^{\frac{N-2}{4}}$. Recall that by $\left([18,1,13),\left\{w_{\varepsilon}\right\}_{\varepsilon>0}\right.$ is a family of functions on which the infimum, that defines the best constant S, for the Sobolev imbedding $D^{1,2}\left(\mathbb{R}^{N}\right) \subset L^{2^{*}}\left(\mathbb{R}^{N}\right)$, is attained. Moreover, one has

$$
w_{\varepsilon} \in L^{2^{*}}\left(\mathbb{R}^{N}\right), \quad \nabla w_{\varepsilon} \in L^{2}\left(\mathbb{R}^{N}\right), \quad \int\left|\nabla w_{\varepsilon}\right|^{2}=\int\left|w_{\varepsilon}\right|^{2^{*}}=S^{\frac{N}{2}}
$$

We also consider $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N},[0,1]\right), \phi \equiv 1$ in $B_{1}(0), \phi \equiv 0$ in $\mathbb{R}^{N} \backslash B_{2}(0)$ and define

$$
u_{\varepsilon}=\phi w_{\varepsilon}, \quad v_{\varepsilon}=\frac{u_{\varepsilon}}{\left(\int u_{\varepsilon}^{2^{*}}\right)^{1 / 2^{*}}}
$$

Lemma 4.2. There exist positive constants k_{1}, k_{2} and ε_{0} such that

$$
\begin{gathered}
\int_{\mathbb{R}^{N} \backslash B_{1}(0)}\left|\nabla u_{\varepsilon}\right|^{2}=O\left(\varepsilon^{N-2}\right) \quad \text { as } \varepsilon \rightarrow 0^{+} \\
k_{1}<\int u_{\varepsilon}^{2^{*}}<k_{2}, \quad \forall 0<\varepsilon<\varepsilon_{0}
\end{gathered}
$$

$$
\begin{gathered}
\int_{|x| \leq 1}|x|^{N-2} w_{\varepsilon}^{2^{*}}=O\left(\varepsilon^{N-2}\right) \quad \text { as } \varepsilon \rightarrow 0^{+} \\
\int\left|\nabla v_{\varepsilon}\right|^{2} \leq S+O\left(\varepsilon^{N-2}\right) \quad \text { as } \varepsilon \rightarrow 0^{+}
\end{gathered}
$$

Lemma 4.3. As $\varepsilon \rightarrow 0$, we have

$$
\begin{gathered}
\left\|v_{\varepsilon}\right\|_{2}^{2}= \begin{cases}O(\varepsilon), & \text { if } N=3 \\
O\left(\varepsilon^{2}|\log \varepsilon|\right), & \text { if } N=4 \\
O\left(\varepsilon^{2}\right), & \text { if } N \geq 5\end{cases} \\
\left\|v_{\varepsilon}\right\|_{2^{*}-\frac{1}{2}}^{2^{*}-\frac{1}{2}}=O\left(\varepsilon^{\frac{N-2}{4}}\right)
\end{gathered}
$$

Proposition 4.4. If conditions (A4'), (A5'), (A8), (A9) hold. Then there exists $v \in E \backslash\{0\}$ such that

$$
\max _{t \geq 0} I_{0}(t v)<\frac{1}{2 N} S^{\frac{N}{2}}
$$

Lemma 4.5. If $\left\{v_{n}\right\} \subset E$ is a bounded $(P S)_{c}$ sequence for the functional I_{0}, then up to a subsequence, $v_{n} \rightharpoonup v \not \equiv 0$ with $I_{0}^{\prime}(v)=0$.

Proof. Since $\left\{v_{n}\right\}$ is bounded, going if necessary to a subsequence, $v_{n} \rightharpoonup v$ in E. It is obvious that $I_{0}^{\prime}(v)=0$. If $v \not \equiv 0$, the proof is complete.

If $v=0$, we claim that $\left\{v_{n}\right\}$ is also a $(P S)_{c}$ sequence for I_{1}. Indeed, we have

$$
I_{1}\left(v_{n}\right)-I_{0}\left(v_{n}\right)=\frac{1}{2} \int\left[V^{+}(\infty)-V^{+}(x)\right] f^{2}\left(v_{n}\right)+\frac{1}{2} \int V^{-}(x) f^{2}\left(v_{n}\right) \rightarrow 0
$$

using (A8), Lemma 2.1(3) and $v_{n}^{2} \rightharpoonup 0$ in $L^{N /(N-2)}$. Similarly we derive

$$
\begin{aligned}
\sup _{\|u\| \leq 1}\left|\left\langle I_{1}^{\prime}\left(v_{n}\right)-I_{0}^{\prime}\left(v_{n}\right), u\right\rangle\right|= & \sup _{\|u\| \leq 1}\left|\int\left(V^{+}(\infty)-V^{+}(x)\right) f\left(v_{n}\right) f^{\prime}\left(v_{n}\right) u\right| \\
& +\sup _{\|u\| \leq 1}\left|\int V^{-}(x) f\left(v_{n}\right) f^{\prime}\left(v_{n}\right) u\right| \rightarrow 0
\end{aligned}
$$

In view of Proposition 4.4 we observe that $0<\beta_{0} \leq c<\frac{1}{2 N} S^{\frac{N}{2}}$, where the constant β_{0} will be stated in the proof of Theorem 1.2. Furthermore, by Proposition 4.1. there exists a sequence $\left(y_{n}\right) \subset \mathbb{R}^{N}$ and $r, \eta>0$ such that $\left|y_{n}\right| \rightarrow+\infty$ and

$$
\limsup _{n \rightarrow \infty} \int_{B_{r}\left(y_{n}\right)} v_{n}^{2} \geq \eta>0, \forall n \in \mathbb{N}
$$

Defining $u_{n}(x)=v_{n}\left(x+y_{n}\right)$, we know $\left\{u_{n}(x)\right\}$ is also a $(P S)_{c}$ sequence for I_{1}. Thus, going to a subsequence if necessary, there exists $u \in E$ such that $u_{n} \rightharpoonup u$ in E and $I_{1}^{\prime}(u)=0$ with $u \not \equiv 0$. We obtain that by Fatou's Lemma

$$
c=\limsup _{n \rightarrow \infty}\left[I_{1}\left(u_{n}\right)-\frac{1}{2} I_{1}^{\prime}\left(u_{n}\right) u_{n}\right] \geq I_{1}(u)-\frac{1}{2} I_{1}^{\prime}(u) u=I_{1}(u)
$$

Our next task is to verify that $\max _{t \geq 0} I_{1}(t u)=I_{1}(u) \leq c$. For that, we define the function $\eta(t):=I_{1}(t u)$ for $t \geq 0$. Since u is a critical point of I_{1}, it follows that $u>0$ (see the proof in [15]). Then we obtain

$$
\eta^{\prime}(t)=t \int|\nabla u|^{2}+\int V^{+}(\infty) f(t u) f^{\prime}(t u) u
$$

$$
\begin{aligned}
& -\int|f(t u)|^{22^{*}-2} f(t u) f^{\prime}(t u) u-\int g(f(t u)) f^{\prime}(t u) u \\
= & t\left\{\int|\nabla u|^{2}-\int\left[\frac{|f(t|u|)|^{22^{*}-2} f(t|u|) f^{\prime}(t|u|)}{t|u|}\right.\right. \\
& \left.\left.+\frac{g(f(t|u|)) f^{\prime}(t|u|)}{t|u|}-\frac{V^{+}(\infty) f(t|u|) f^{\prime}(t|u|)}{t|u|}\right] u^{2}\right\}
\end{aligned}
$$

Note that, fixed $x \in \mathbb{R}^{N}$, the function $\vartheta:(0,+\infty) \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
\vartheta(s) & =\frac{f^{22^{*}-1}(s) f^{\prime}(s)}{s}+\frac{g(f(s)) f^{\prime}(s)}{s}-\frac{V^{+}(\infty) f(s) f^{\prime}(s)}{s} \\
& =\frac{f^{22^{*}-1}(s) f^{\prime}(s)}{s}+\frac{g(f(s))}{f^{3}(s)} \cdot \frac{f^{3}(s) f^{\prime}(s)}{s}+V^{+}(\infty)\left(-\frac{f(s) f^{\prime}(s)}{s}\right)
\end{aligned}
$$

is increasing by Lemma $2.1(11,12,13)$ and (A10). Now we observe that $\eta^{\prime}(1)=0$, since u is a critical point of I_{1}. Moreover, we have that $\eta^{\prime}(t)>0$ for $0<t<1$ and $\eta^{\prime}(t)<0$ for $t>1$. Therefore, $I_{1}(u)=\eta(1)=\max _{t \geq 0} \eta(t)=\max _{t \geq 0} I_{1}(t u)$ and then

$$
c \leq \max _{t \geq 0} I_{0}(t u) \leq \max _{t \geq 0} I_{1}(t u)=I_{1}(u) \leq c
$$

This implies that there exists a way $r_{0} \in \Gamma$ such that $c=\max _{t \in[0,1]} I_{0}\left(r_{0}(t)\right)>0$, and hence, I_{0} possesses a critical point v on level c. It follows from $c \geq \beta_{0}>0=$ $I_{0}(0)$ that v is a nonzero critical point of I_{0}.

Proof of Theorem 1.2. The proof is similar as the one of Theorem 1.1. Only we modify the proof of Lemma 3.2 that

$$
I_{0}(v) \geq \frac{\alpha}{2} \rho^{2}-\frac{\varepsilon}{2} \tau_{2}^{2} \rho^{2}-\frac{2^{2^{*} / 2}}{22^{*}} S^{-2^{*} / 2} \rho^{2^{*}}-C_{\varepsilon} \rho^{p / 2}
$$

for every $\|v\|=\rho$. Choosing for all $\varepsilon \in\left(0, \frac{\alpha}{\tau_{2}^{2}}\right)$ and ρ sufficiently small, we derive that there exists a constant β_{0} such that $\inf _{\|v\|=\rho}^{\tau_{2}} I_{0}(v) \geq \beta_{0}>0$. Combining this fact with Lemma 3.3 , the functional I_{0} has a mountain pass geometry. So the $(P S)_{c}$ sequence $\left(v_{n}\right)$ exists, where

$$
c:=\inf _{r \in \Gamma} \max _{t \in[0,1]} I_{0}(r(t)), \quad \Gamma:=\left\{r \in C([0,1], E): r(0)=0, I_{0}(r(1))<0\right\} .
$$

It follows from Lemma 3.4 that $\left(v_{n}\right)$ is a bounded $(P S)_{c}$ sequence for the functional I_{0}. Lemma 4.5 ensures that $I_{0}^{\prime}(v)=0$ and $v \not \equiv 0$.

Acknowledgments. This research was supported by the NSFC 11171047.

References

[1] Antonio Ambrosetti and Andrea Malchiodi; Nonlinear analysis and semilinear elliptic problems, vol. 104, Cambridge University Press, 2007.
[2] Daniele Cassani, Abbas Moameni, et al.; Existence and concentration of solitary waves for a class of quasilinear schrödinger equations, Commun. Pure Appl. Anal. 9 (2010), 281-306.
[3] Mathieu Colin et al.; Stability of stationary waves for a quasilinear schrödinger equation in space dimension 2, Advances in Differential Equations 8 (2003), no. 1, 1-28.
[4] Mathieu Colin, Louis Jeanjean; Solutions for a quasilinear schrödinger equation: a dual approach, Nonlinear Analysis: Theory, Methods \& Applications 56 (2004), no. 2, 213-226.
[5] Y.B. Deng, S. J. Peng, J. X. Wang; Infinitely many sign-changing solutions for quasilinear schrödinger equations in rn, Commun. Math. Sci 9 (2011), no. 3, 859-878.
[6] Xiang-Dong Fang, Zhi-Qing Han; Existence of nontrivial solutions for a quasilinear schrodinger equations with sign-changing potential, Electronic Journal of Differential Equations 2014 (2014), no. 05, 1-8.
[7] Jia-quan Liu, Ya-qi Wang, Zhi-Qiang Wang; Soliton solutions for quasilinear schrödinger equations, ii, Journal of Differential Equations 187 (2003), no. 2, 473-493.
[8] Jia-quan Liu, Ya-qi Wang, Zhi-Qiang Wang; Solutions for quasilinear schrödinger equations via the nehari method, Communications in partial differential equations 29 (2004), no. 5-6, 879-901.
[9] Jiaquan Liu, Zhi-Qiang Wang; Soliton solutions for quasilinear schrödinger equations, I, Proceedings of the American Mathematical Society (2003), 441-448.
[10] Abbas Moameni; Existence of soliton solutions for a quasilinear schrödinger equation involving critical exponent in rn, Journal of Differential Equations 229 (2006), no. 2, 570-587.
[11] Abbas Moameni; On a class of periodic quasilinear schrödinger equations involving critical growth in r2, Journal of mathematical analysis and applications 334 (2007), no. 2, 775-786.
[12] Markus Poppenberg, Klaus Schmitt, Zhi-Qiang Wang; On the existence of soliton solutions to quasilinear schrödinger equations, Calculus of Variations and Partial Differential Equations 14 (2002), no. 3, 329-344.
[13] Paul H Rabinowitz et al.; Minimax methods in critical point theory with applications to differential equations, no. 65, American Mathematical Soc., 1986.
[14] Uberlandio Severo et al.; Solitary waves for a class of quasilinear schrödinger equations in dimension two, Calculus of Variations and Partial Differential Equations 38 (2010), no. 3-4, 275-315.
[15] Elves A. B. Silva, Gilberto F. Vieira; Quasilinear asymptotically periodic schrödinger equations with critical growth, Calculus of Variations and Partial Differential Equations 39 (2010), no. 1-2, 1-33.
[16] X. H. Tang; Infinitely many solutions for semilinear schrödinger equations with sign-changing potential and nonlinearity, Journal of Mathematical Analysis and Applications 401 (2013), no. 1, 407-415.
[17] Youjun Wang, Wenming Zou; Bound states to critical quasilinear schrödinger equations, NoDEA: Nonlinear Differential Equations and Applications 19 (2012), no. 1, 19-47.
[18] Michel Willem; Minimax theorems, vol. 24, Springer Science \& Business Media, 1997.
[19] Qingye Zhang, Bin Xu; Multiplicity of solutions for a class of semilinear schrödinger equations with sign-changing potential, Journal of Mathematical Analysis and Applications 377 (2011), no. 2, 834-840.

Li-Li Wang
School of Mathematical Sciences, Dalian University of Technology, 116024 Dalian, China.
School of Mathematics, Tonghua Normal Uninversity, 134002 Tonghua, Jilin, China
E-mail address: lili_wang@aliyun.com
Zhi-Qing Han (corresponding author)
School of Mathematical Sciences, Dalian University of Technology, 116024 Dalian, China

E-mail address: hanzhiq@dlut.edu.cn

[^0]: 2010 Mathematics Subject Classification. 35A01, 35A15, 35Q55.
 Key words and phrases. Quasilinear Schrödinger equation; critical growth; sign-changing potential; mountain pass theorem; $(P S)_{c}$ sequence. (C) 2016 Texas State University.

 Submitted December 24, 2014. Published June 28, 2016.

