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CRITICAL QUASILINEAR SCHRÖDINGER EQUATION WITH
SIGN-CHANGING POTENTIAL

LI-LI WANG, ZHI-QING HAN

Abstract. We study the existence of nontrivial solutions for a class of quasi-
linear Schrödinger equations in RN with critical nonlinearity, where the po-

tential is allowed to change signs. The quasilinear equations are reduced to

semilinear equations by using a change of variable. The geometric hypotheses
of a mountain pass theorem without compactness conditions are satisfied so

that the equation possesses a nontrivial solution.

1. Introduction

In this article we discuss the existence of nontrivial solutions for quasilinear
Schrödinger equation

−∆u+ V (x)u−∆(u2)u = f(x, u), x ∈ RN , (1.1)

which has atracted a great deal of attention during recent years (see [2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 14, 17]), because not only it provides an important model for
developing mathematical methods but it represents a special case of modeling for
many physical phenomena, see [2, 12] for an explanation. Some existence results
for (1.1) have been concluded when the potential V (x) is bounded from below or
coercive, we refer to [7, 9, 12] where they have focused on the existence of solutions
for (1.1) in the subcritical case when f(x, u) = |u|p−1u, 4 ≤ p+1 < 22∗, N ≥ 3, and
have suggested the results by using direct variational methods, such as constrained
minimization arguments. To overcome the undefiniteness of natural functional
associated to (1.1), we rewrite the functional with a new variable which reduces the
problem to looking for solutions of an auxiliary semilinear equation by employing
the ideas in [4, 14, 7]. We establish a new potential function V (x) which can be
sign-changing and may be unbounded from below without any periodic hypotheses.
A new nonlinearity f(x, u) = K(x)|u|22∗−2u + g(x, u) + h(x) is established which
is more general than in other papers, for example [3, 6, 7, 9, 12, 16, 19].

First we consider the following quasilinear Schrödinger equation with critical
growth

−∆u+ V (x)u−∆(u2)u = K(x)|u|22∗−2u+ g(x, u) + h(x), x ∈ RN , (1.2)

where the functions V , K, h : RN → R and g : RN × R → R are continuous and
satisfy the following assumptions:
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(A1)
∫
|∇u|2 + V (x)u2 > 0 for all u ∈ E \ {0}.

(A2) V (x) is sign-changing, V +(x) ∈ L∞(RN ), lim|x|→+∞ V +(x) = a0 > 0
and ‖V −‖N/2 < S(θ−4)

θ−2 , where V ±(x) := max{±V (x), 0}, S denotes the
Sobolev optimal constant and θ is the constant in (A6).

(A3) 0 < C ≤ K(x) ∈ L∞(RN ).
(A4) g(x, u) = o(u) uniformly in x ∈ RN as u→ 0+.
(A5) There are constants a1, a2 > 0 and 4 ≤ p < 22∗ such that

|g(x, u)| ≤ a1 + a2|u|p−1, ∀(x, u) ∈ RN × [0,+∞).

(A6) There exists a constant θ ∈ (4, 22∗) satisfying

0 < G(x, u) ≤ 1
θ
g(x, u)u, ∀(x, u) ∈ RN × (0,+∞),

where G(x, u) :=
∫ u

0
g(x, s)ds.

(A7) h 6≡ 0 and ‖h‖2N/(N+2) <
α
4S

1/2ρ, where α and ρ are given in Lemma 3.2.
We remark that the potential may be unbounded from below and the associated
functional does not satisfy any compactness conditions. Note that 22∗ = 4N

N−2 , here
and in the sequel, N ≥ 3. Let

E := {u ∈ H1(RN ) :
∫
V +(x)u2 <∞},

we observe that E is a Hilbert space equipped with the inner product

(u, v) :=
∫
∇u∇v + V +(x)uv

and the norm ‖u‖ = (u, u)1/2. Obviously, it follows from (A2) that ‖ · ‖ is an
equivalent norm with the standard one in H1(RN ) and hence E is continuously
embedded into Lp(RN ), 2 ≤ p ≤ 2∗, i.e., there is a constant τp > 0 such that

‖u‖p ≤ τp‖u‖, ∀u ∈ E, (1.3)

where ‖ · ‖p is used for the usual norm in Lp(RN ). Now we state our main result.

Theorem 1.1. If the conditions (A1)–(A7) hold. Then problem (1.2) possesses a
nontrivial nonnegative solution in E.

Also, we consider a more general problem

−∆u+ V (x)u−∆(u2)u = |u|22∗−2u+ g(u), x ∈ RN , (1.4)

under hypotheses (A1) and
(A8) V (x) is sign-changing, lim|x|→+∞ V +(x) = V +(∞) > 0, V +(x) ≤ V +(∞)

in RN and ‖V −‖N/2 < S(θ−4)
θ−2 .

(A4’) g(u) = o(u) as u→ 0+.
(A5’) There are constants a1, a2 > 0 and 4 ≤ p < 22∗ such that

|g(u)| ≤ a1 + a2|u|p−1, ∀u ∈ [0,+∞).

(A6’) There exists a constant θ ∈ (4, 22∗) with

0 < G(u) ≤ 1
θ
g(u)u, ∀u ∈ (0,+∞),

where G(u) =
∫ u

0
g(s)ds.
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(A9) (i)G(u)/(u22∗−1)→ +∞ as u→ +∞, if 3 ≤ N < 10;
(ii)G(u)/u4 → +∞ as u→ +∞, if N ≥ 10.

(A10) The function g(u)
u3 is nondecreasing for all u > 0.

Now we state the second main result.

Theorem 1.2. Assume that (A1), (A8), (A4’)–(A6’), (A9), (A10) are satisfied.
Then problem (1.4) admits a nontrivial nonnegative solution in E.

Remark 1.3. Regarding the the results suggested in [6], Theorems 1.1 and 1.2
give an extension from their results to quasilinear Schrödinger equation including
critical terms case.

Remark 1.4. A problem of type (1.4) for N = 2 was studied in [11] where V
and g are two continuous 1-periodic functions, V is nonnegative and bounded from
below and g is critical growth. Moreover in [15] a similar result to Theorem 1.2 is
provided under a more restricted hypotheses on the periodic potential V . While
our results in both Theorems 1.1 and 1.2 do not need any periodic conditions and
the potential V (x) may be unbounded from below. Also, the method of our proof
is different from that in [15].

The article is organized as follows: in Section 2, we reduce the quasilinear prob-
lem into a semilinear one by the dual method and show some preliminary results.
Section 3 is devoted to prove that the mountain pass level of I is well defined, show
the boundedness for the (PS)c sequence of the associated functional, and finish
Theorem 1.1. Finally we bring results that complete the proof of Theorem 1.2 in
Section 4.

Throughout this article, C will denote various positive constants whose exact
value is not essential. The domain of an integral is RN unless otherwise indicated.∫
f(x)dx is abbreviated to

∫
f(x).

2. Preliminary results

We show that the energy functional corresponding to (1.2) given by

J(u) :=
1
2

∫
(1 + 2u2)|∇u|2 +

1
2

∫
V (x)u2 − 1

22∗

∫
K(x)|u|22∗

−
∫
G(x, u)−

∫
h(x)u,

which is not well defined in general, such as in H1(RN ). To avoid this trouble, we
use of the change of variable v := f−1(u) introduced by [7], where f is defined by

f ′(t) =
1√

1 + 2f2(t)
on [0,+∞) and f(t) = −f(−t) on (−∞, 0].

We list some properties of f , and the proofs of which may be found in [4, 14].

Lemma 2.1. The function f satisfies the following properties:
(1) f is uniquely defined, C∞ and invertible;
(2) |f ′(t)| ≤ 1 for all t ∈ R;
(3) |f(t)| ≤ |t| for all t ∈ R;
(4) f(t)/t→ 1 as t→ 0;
(5) f(t)/

√
t→ 21/4 as t→ +∞;

(6) f(t)/2 ≤ tf ′(t) ≤ f(t) for all t ≥ 0;
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(7) |f(t)| ≤ 21/4|t|1/2 for all t ∈ R;
(8) there exists a positive constant C such that |f(t)| ≥ C|t| for |t| ≤ 1 and
|f(t)| ≥ C|t|1/2 for |t| ≥ 1;

(9) |f(t)f ′(t)| < 1/
√

2 for all t ∈ R;
(10) the function f(t)t−1 is nonincreasing for all t ∈ R\{0};
(11) the function f(t)f ′(t)t−1 is decreasing for all t > 0;
(12) the function f3(t)f ′(t)t−1 is increasing for all t > 0;
(13) the function f22∗−1(t)f ′(t)t−1 is increasing for all t > 0.

After the change of variable we obtain the functional

I(v) :=
1
2

∫
|∇v|2 +

1
2

∫
V (x)f2(v)− 1

22∗

∫
K(x)|f(v)|22∗

−
∫
G(x, f(v))−

∫
h(x)f(v).

Then I is well-defined on E and belongs to C1 in view of the hypotheses (A2)–(A5)
and (A7). Furthermore, it is easy to check that

〈I ′(v), w〉 =
∫
∇v∇w +

∫
V (x)f(v)f ′(v)w −

∫
K(x)|f(v)|22∗−2f(v)f ′(v)w

−
∫
g(x, f(v))f ′(v)w −

∫
h(x)f ′(v)w, ∀v, w ∈ E,

and the critical point of I are weak solutions of the problem

−∆v + V (x)f(v)f ′(v) = K(x)|f(v)|22∗−2f(v)f ′(v) + g(x, f(v))f ′(v) + h(x)f ′(v),

for x ∈ RN . We observe that if v ∈ E is a critical point of the functional I, then
the function u = f(v) ∈ E is a solution of (1.2) (cf:[4]). To obtain a nonnegative
solution for (1.2), we set g(x, u) = 0 for all x ∈ RN and u ≤ 0. By (A4) and (A5)
we also see that, given ε > 0 there exists a constant Cε > 0 such that

|g(x, u)| ≤ ε|u|+ Cε|u|p−1, ∀(x, u) ∈ RN × R. (2.1)

3. Proof of Theorem 1.1

In this section we assume that (A1)–(A7) are satisfied. The following lemmas
are crucial for the proof of Theorem 1.1.

Lemma 3.1. There exist constants ρ, α > 0 such that
∫
|∇v|2+V (x)f2(v) ≥ α‖v‖2,

whenever ‖v‖ = ρ.

The proof of the above lemma is similar to that of [6, Lemma 3.1]. So we omit
it.

Lemma 3.2. For the above ρ, there exists a constant β > 0 such that inf‖v‖=ρ I(v) ≥
β.

Proof. By (A3), Lemma 2.1(7) and the Sobolev imbedding inequality, it is easy to
obtain ∫

K(x)|f(v)|22∗ ≤ 22∗/2‖K‖∞
∫
|v|2

∗

≤ 22∗/2‖K‖∞S−2∗/2
(∫
|∇v|2

)2∗/2

≤ 22∗/2‖K‖∞S−2∗/2‖v‖2
∗
.
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By (2.1), Lemma 2.1(3,7) and (1.3), we have∫
G(x, f(v)) ≤ ε

2

∫
|f(v)|2 +

Cε
p

∫
|f(v)|p

≤ ε

2

∫
|v|2 + Cε

∫
|v|p/2

≤ ε

2
τ2
2 ‖v‖2 + Cε‖v‖p/2.

It follows from (A7), Lemma 2.1(3), the Hölder inequality and the Sobolev imbed-
ding inequality that∫

h(x)f(v) ≤ ‖h‖ 2N
N+2
‖v‖2∗ ≤ ‖h‖ 2N

N+2
S−1/2(

∫
|∇v|2)1/2 ≤ ‖h‖ 2N

N+2
S−1/2‖v‖.

Therefore, combining the above inequalities with Lemma 3.1, we obtain

I(u) ≥ α

2
‖v‖2− 22∗/2

22∗
‖K‖∞S−2∗/2‖v‖2

∗
− ε

2
τ2
2 ‖v‖2−Cε‖v‖p/2−‖h‖ 2N

N+2
S−1/2‖v‖.

Choosing ε ≤ α/(2τ2
2 ) and for every ‖v‖ = ρ we obtain

I(u) ≥ ρ
[α

4
ρ− ‖h‖ 2N

N+2
S−1/2

]
− 22∗/2

22∗
‖K‖∞S−2∗/2ρ2∗ − Cρp/2.

For ρ sufficiently small, we derive that there exists a constant β > 0 such that
inf‖v‖=ρ I(v) ≥ β by (A7). �

Lemma 3.3. There exists v0 ∈ E such that ‖v0‖ > ρ and I(v0) < 0.

Proof. Given ϕ ∈ C∞0 (RN , [0, 1]) with B := suppϕ, we derive that I(tϕ)→ −∞ as
t → +∞, which completes the proof if we take v0 = tϕ with t large enough. Note
that 0 < tϕ ≤ t in B and then

f(tϕ) ≥ f(t)ϕ (3.1)

by Lemma 2.1(10). It follows from (A2), (A3), (A6), (A7), Lemma 2.1(3) and (3.1)
that

I(tϕ) ≤ t2

2

∫
B

|∇ϕ|2 +
1
2

∫
B

V +(x)f2(tϕ)− 1
2

∫
B

V −(x)f2(tϕ)

− C

22∗
· f22∗(t)

∫
B

|ϕ|22∗ + t‖h‖ 2N
N+2
‖ϕ‖2∗

≤ t2

2
‖ϕ‖2 − C

22∗
· f22∗(t)

∫
B

|ϕ|22∗ + t‖h‖ 2N
N+2
‖ϕ‖2∗

→ −∞ as t→ +∞,

since f22∗(t)/t2 → +∞ as t→ +∞. �

Lemma 3.4. The (PS)c sequence (vn) ⊂ E is bounded.

Proof. Set (vn) ⊂ E be a (PS)c sequence: I(vn) → c and I ′(vn) → 0 as n → ∞.
Using Lemma 2.1(3,6), (A3), (A6) and the Sobolev imbedding inequality we easily
deduce that

c+ on(1) + on(1)‖vn‖

= I(vn)− 2
θ
I ′(vn)vn



6 L.-L. WANG, Z.-Q. HAN EJDE-2016/166

≥ (
1
2
− 2
θ

)
∫
|∇vn|2 + V +(x)f2(vn)− (

1
2
− 1
θ

)
∫
V −(x)f2(vn)

− (
1

22∗
− 1
θ

)
∫
K(x)|f(vn)|22∗ +

1
θ

∫
g(x, f(vn))f(vn)

−
∫
G(x, f(vn))− (1 +

2
θ

)
∫
|h(x)f(vn)|

≥ (
1
2
− 2
θ

)
∫
|∇vn|2 + V +(x)f2(vn)− (

1
2
− 1
θ

)‖V −‖N/2‖vn‖22∗

+ (
1
θ
− 1

22∗
)
∫
K(x)|f(vn)|22∗ − (1 +

2
θ

)‖h‖ 2N
N+2
‖vn‖2∗

≥
[
(
1
2
− 2
θ

)− (
1
2
− 1
θ

)‖V −‖N/2S−1
] ∫
|∇vn|2 + V +(x)f2(vn)

+ (
1
θ
− 1

22∗
)
∫
K(x)|f(vn)|22∗ − (1 +

2
θ

)‖h‖ 2N
N+2

S−1/2
(∫
|∇vn|2

)1/2

.

It follows from (A2) that ( 1
2 −

2
θ )− ( 1

2 −
1
θ )‖V −‖N/2S−1 > 0 and hence∫

|∇vn|2 + V +(x)f2(vn) ≤ C + C‖vn‖,∫
K(x)|f(vn)|22∗ ≤ C + C‖vn‖.

(3.2)

From (3.2), we only prove that
∫
V +(x)v2

n ≤ C +C‖vn‖. In fact, from (A2), (A3),
Lemma 2.1(8) and (3.2) it follows that∫

|vn|≥1

V +(x)v2
n ≤ ‖V +‖∞

∫
|vn|≥1

v2
n ≤ C‖V +‖∞

∫
|f(vn)|22∗

≤ C‖V +‖∞
∫
K(x)|f(vn)|22∗ ≤ C + C‖vn‖

and ∫
|vn|≤1

V +(x)v2
n ≤ C

∫
|vn|≤1

V +(x)f2(vn) ≤ C + C‖vn‖.

Thus we have ‖vn‖2 ≤ C + C‖vn‖ and then (vn) ⊂ E is bounded. �

Lemma 3.5. Suppose that (vn) ⊂ E is a bounded (PS)c sequence for the functional
I, then up to a subsequence, vn ⇀ v in E and v is a nontrivial critical point of the
functional I.

Proof. The argument is similar as in [15]. Since C∞0 (RN ) is dense in H1(RN ), we
only need to show that 〈I ′(v), ϕ〉 = 0 for all ϕ ∈ C∞0 (RN ). Notice that 〈I ′(vn), ϕ〉 →
0, for all ϕ ∈ C∞0 (RN ), it suffices to derive that 〈I ′(vn), ϕ〉 → 〈I ′(v), ϕ〉. In fact,

〈I ′(vn), ϕ〉 − 〈I ′(v), ϕ〉 −
∫

(∇vn −∇v)∇ϕ

=
∫

[f(vn)f ′(vn)− f(v)f ′(v)]V +(x)ϕ+
∫

[f(v)f ′(v)− f(vn)f ′(vn)]V −(x)ϕ

+
∫ [
|f(v)|22∗−2f(v)f ′(v)− |f(vn)|22∗−2f(vn)f ′(vn)

]
K(x)ϕ

+
∫ [

g(x, f(v))f ′(v)− g(x, f(vn))f ′(vn)
]
ϕ+

∫
[f ′(v)− f ′(vn)]h(x)ϕ.
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Since E is continuously embedded into H1(RN ), we know that∫
∇vn∇ϕ→

∫
∇v∇ϕ.

Besides, it follows from vn ⇀ v in E that vn → v in Lploc(RN ), p ∈ [1, 2∗). Then,
up to subsequence, vn → v a.e. on B := suppϕ as n → ∞ and |vn(x)| ≤ |wp(x)|
a.e. on B with wp ∈ Lp(B) for every n ∈ N. Therefore, we have

f ′(vn)→ f ′(v) a.e. on B as n→∞,
f(vn)f ′(vn)→ f(v)f ′(v) a.e. on B as n→∞,

|f(vn)|22∗−2f(vn)f ′(vn)→ |f(v)|22∗−2f(v)f ′(v) a.e. on B as n→∞,
g(x, f(vn))f ′(vn)→ g(x, f(v))f ′(v) a.e. on B as n→∞.

Furthermore, by (A2), (A3), (A7), Lemma 2.1(2,7,9) and the Hölder inequality we
have

|V +(x)f(vn)f ′(vn)ϕ| ≤ C‖V +‖∞|ϕ| ∈ L1(B),

|V −(x)f(vn)f ′(vn)ϕ| ≤ |V −(x)||ϕ| ∈ L1(B),

|K(x)|f(vn)|22∗−2f(vn)f ′(vn)ϕ| ≤ ‖K‖∞2
2∗−1

2 |w2∗−1|2
∗−1|ϕ| ∈ L1(B),

|h(x)f ′(vn)ϕ| ≤ |h(x)||ϕ| ∈ L1(B).

Hence, the Lebesgue Dominated Convergence Theorem implies∫
V +(x)f(vn)f ′(vn)ϕ→

∫
V +(x)f(v)f ′(v)ϕ,∫

V −(x)f(vn)f ′(vn)ϕ→
∫
V −(x)f(v)f ′(v)ϕ,∫

K(x)|f(vn)|22∗−2f(vn)f ′(vn)ϕ→
∫
K(x)|f(v)|22∗−2f(v)f ′(v)ϕ,∫

h(x)f ′(vn)ϕ→
∫
h(x)f ′(v)ϕ.

For |vn| ≤ 1, by (2.1) and Lemma 2.1(2,3), we have

|g(x, f(vn))f ′(vn)ϕ| ≤ ε|f(vn)||ϕ|+ Cε|f(vn)|p−1|ϕ| ≤ (ε+ Cε)|ϕ|.

For |vn| > 1, by (2.1) and Lemma 2.1(2,3,7,9) we conclude that

|g(x, f(vn))f ′(vn)ϕ| ≤ ε|vn||ϕ|+ Cε|f(vn)|p−1|f ′(vn)||ϕ|
≤ ε|w2||ϕ|+ Cε|f(vn)|p−2|ϕ|

≤ ε|w2||ϕ|+ Cε|vn|
p
2−1|ϕ|

≤ ε|w2||ϕ|+ Cε|w2∗−1|2
∗−1|ϕ|.

Combining the above facts and using the Lebesgue Dominated Convergence Theo-
rem implies ∫

g(x, f(vn))f ′(vn)ϕ→
∫
g(x, f(v))f ′(v)ϕ.

Hence, v is a critical point of I. From the condition (A7), v is nontrivial. �
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Proof of Theorem 1.1. Lemmas 3.2 and 3.3 imply that the functional I satisfies the
mountain pass geometry, thus the (PS)c sequence exists, where

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = v0}.

Assume that (vn) ⊂ E is a (PS)c sequence, (vn) is bounded by Lemma 3.3. Going
if necessary to a subsequence, vn ⇀ v in E. We obviously get that v is a nontrivial
critical point of the functional I by Lemma 3.5. �

4. Proof of Theorem 1.2

In this section we assume that (A1), (A8), (A4’)–(A6’), (A9), (A10) are satisfied.
We study the existence of nontrivial critical points for the functional I0 ∈ C1(E,R)
given by

I0(v) :=
1
2

∫
|∇v|2 +

1
2

∫
V (x)f2(v)− 1

22∗

∫
|f(v)|22∗ −

∫
G(f(v)).

We also denote the corresponding limiting functional by

I1(v) :=
1
2

∫
|∇v|2 +

1
2

∫
V +(∞)f2(v)− 1

22∗

∫
|f(v)|22∗ −

∫
G(f(v)).

We set g(u) = 0 if u ≤ 0. Some propositions and lemmas are needed and their
proofs are similar as in [15], we just state them in brief and omit their proofs as
follows.

Proposition 4.1. Assume (A8), (A4’), (A5’) hold. Let (vn) ⊂ E be a (PS)c
sequence with 0 < c < 1

2N S
N
2 , and vn ⇀ 0 in E. Then there exist a sequence

(yn) ⊂ RN and r, η > 0 such that |yn| → +∞ and

lim sup
n→∞

∫
Br(yn)

v2
n ≥ η > 0.

Given ε > 0, we study the function wε : RN → R defined by

wε(x) = C(N)
ε

N−2
2

(ε2 + |x|2)
N−2

2

,

where C(N) = [N(N − 2)]
N−2

4 . Recall that by ([18, 1, 13]), {wε}ε>0 is a family of
functions on which the infimum, that defines the best constant S, for the Sobolev
imbedding D1,2(RN ) ⊂ L2∗(RN ), is attained. Moreover, one has

wε ∈ L2∗(RN ), ∇wε ∈ L2(RN ),
∫
|∇wε|2 =

∫
|wε|2

∗
= S

N
2 .

We also consider φ ∈ C∞0 (RN , [0, 1]), φ ≡ 1 in B1(0), φ ≡ 0 in RN\B2(0) and define

uε = φwε, vε =
uε

(
∫
u2∗
ε )1/2∗

.

Lemma 4.2. There exist positive constants k1, k2 and ε0 such that∫
RN\B1(0)

|∇uε|2 = O(εN−2) as ε→ 0+,

k1 <

∫
u2∗

ε < k2, ∀0 < ε < ε0,
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|x|≤1

|x|N−2w2∗

ε = O(εN−2) as ε→ 0+,∫
|∇vε|2 ≤ S +O(εN−2) as ε→ 0+.

Lemma 4.3. As ε→ 0, we have

‖vε‖22 =


O(ε), if N = 3,
O(ε2| log ε|), if N = 4,
O(ε2), if N ≥ 5,

‖vε‖
2∗− 1

2
2∗− 1

2
= O(ε

N−2
4 ).

Proposition 4.4. If conditions (A4’), (A5’), (A8), (A9) hold. Then there exists
v ∈ E\{0} such that

max
t≥0

I0(tv) <
1

2N
S

N
2 .

Lemma 4.5. If {vn} ⊂ E is a bounded (PS)c sequence for the functional I0, then
up to a subsequence, vn ⇀ v 6≡ 0 with I ′0(v) = 0.

Proof. Since {vn} is bounded, going if necessary to a subsequence, vn ⇀ v in E. It
is obvious that I ′0(v) = 0. If v 6≡ 0, the proof is complete.

If v = 0, we claim that {vn} is also a (PS)c sequence for I1. Indeed, we have

I1(vn)− I0(vn) =
1
2

∫
[V +(∞)− V +(x)]f2(vn) +

1
2

∫
V −(x)f2(vn)→ 0,

using (A8), Lemma 2.1(3) and v2
n ⇀ 0 in LN/(N−2). Similarly we derive

sup
‖u‖≤1

|〈I ′1(vn)− I ′0(vn), u〉| = sup
‖u‖≤1

∣∣ ∫ (V +(∞)− V +(x))f(vn)f ′(vn)u
∣∣

+ sup
‖u‖≤1

∣∣ ∫ V −(x)f(vn)f ′(vn)u
∣∣→ 0.

In view of Proposition 4.4, we observe that 0 < β0 ≤ c < 1
2N S

N
2 , where the constant

β0 will be stated in the proof of Theorem 1.2. Furthermore, by Proposition 4.1,
there exists a sequence (yn) ⊂ RN and r, η > 0 such that |yn| → +∞ and

lim sup
n→∞

∫
Br(yn)

v2
n ≥ η > 0, ∀n ∈ N.

Defining un(x) = vn(x + yn), we know {un(x)} is also a (PS)c sequence for I1.
Thus, going to a subsequence if necessary, there exists u ∈ E such that un ⇀ u in
E and I ′1(u) = 0 with u 6≡ 0. We obtain that by Fatou’s Lemma

c = lim sup
n→∞

[I1(un)− 1
2
I ′1(un)un] ≥ I1(u)− 1

2
I ′1(u)u = I1(u).

Our next task is to verify that maxt≥0 I1(tu) = I1(u) ≤ c. For that, we define
the function η(t) := I1(tu) for t ≥ 0. Since u is a critical point of I1, it follows that
u > 0 (see the proof in [15]). Then we obtain

η′(t) = t

∫
|∇u|2 +

∫
V +(∞)f(tu)f ′(tu)u



10 L.-L. WANG, Z.-Q. HAN EJDE-2016/166

−
∫
|f(tu)|22∗−2f(tu)f ′(tu)u−

∫
g(f(tu))f ′(tu)u

= t
{∫

|∇u|2 −
∫ [ |f(t|u|)|22∗−2f(t|u|)f ′(t|u|)

t|u|

+
g(f(t|u|))f ′(t|u|)

t|u|
− V +(∞)f(t|u|)f ′(t|u|)

t|u|

]
u2
}
.

Note that, fixed x ∈ RN , the function ϑ : (0,+∞)→ R defined by

ϑ(s) =
f22∗−1(s)f ′(s)

s
+
g(f(s))f ′(s)

s
− V +(∞)f(s)f ′(s)

s

=
f22∗−1(s)f ′(s)

s
+
g(f(s))
f3(s)

· f
3(s)f ′(s)

s
+ V +(∞)(−f(s)f ′(s)

s
)

is increasing by Lemma 2.1(11,12,13) and (A10). Now we observe that η′(1) = 0,
since u is a critical point of I1. Moreover, we have that η′(t) > 0 for 0 < t < 1 and
η′(t) < 0 for t > 1. Therefore, I1(u) = η(1) = maxt≥0 η(t) = maxt≥0 I1(tu) and
then

c ≤ max
t≥0

I0(tu) ≤ max
t≥0

I1(tu) = I1(u) ≤ c.

This implies that there exists a way r0 ∈ Γ such that c = maxt∈[0,1] I0(r0(t)) > 0,
and hence, I0 possesses a critical point v on level c. It follows from c ≥ β0 > 0 =
I0(0) that v is a nonzero critical point of I0. �

Proof of Theorem 1.2. The proof is similar as the one of Theorem 1.1. Only we
modify the proof of Lemma 3.2 that

I0(v) ≥ α

2
ρ2 − ε

2
τ2
2 ρ

2 − 22∗/2

22∗
S−2∗/2ρ2∗ − Cερp/2,

for every ‖v‖ = ρ. Choosing for all ε ∈ (0, α
τ2
2

) and ρ sufficiently small, we derive
that there exists a constant β0 such that inf‖v‖=ρ I0(v) ≥ β0 > 0. Combining this
fact with Lemma 3.3, the functional I0 has a mountain pass geometry. So the (PS)c
sequence (vn) exists, where

c := inf
r∈Γ

max
t∈[0,1]

I0(r(t)), Γ := {r ∈ C([0, 1], E) : r(0) = 0, I0(r(1)) < 0}.

It follows from Lemma 3.4 that (vn) is a bounded (PS)c sequence for the functional
I0. Lemma 4.5 ensures that I ′0(v) = 0 and v 6≡ 0. �
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