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Q-INTEGRAL EQUATIONS OF FRACTIONAL ORDERS

MOHAMED JLELI, MOHAMMAD MURSALEEN, BESSEM SAMET

Abstract. The aim of this paper is to study the existence of solutions for a

class of q-integral equations of fractional orders. The techniques in this work

are based on the measure of non-compactness argument and a generalized
version of Darbo’s theorem. An example is presented to illustrate the obtained

result.

1. Introduction

In this paper, we are concerned with the following functional equation

x(t) = F
(
t, x(a(t)),

f(t, x(b(t)))
Γq(α)

∫ t

0

(t− qs)(α−1)u(s, x(s)) dqs
)
, t ∈ I, (1.1)

where α > 1, q ∈ (0, 1), I = [0, 1], f, u : [0, 1] × R → R, a, b : I → I and
F : I × R× R→ R. Equation (1.1) can be written as

x(t) = F
(
t, x(a(t)), f(t, x(b(t)))Iαq u(·, x(·))(t)

)
, t ∈ I,

where Iαq is the q-fractional integral of order α defined by (see [1])

Iαq h(t) =
1

Γq(α)

∫ t

0

(t− qs)(α−1)h(s) dqs, t ∈ [0, 1].

Using a measure of non-compactness argument combined with a generalized
version of Darbo’s theorem, we provide sufficient conditions for the existence of at
least one solution to (1.1). We present also some examples to illustrate our obtained
result.

The measure of non-compactness argument was used by several authors to study
the existence of solutions for various classes of integral equations. As examples, we
refer the reader to Aghajani et al [2, 4, 5], Banaś et al [10, 14, 15], Banaś and Goebel
[11], Banaś and Rzepka [16], Banaś and Martinon [12], Caballero et al [20, 21, 22],
Darwish [25], Çakan and Ozdemir [23], Dhage and Bellale [28], Mursaleen and
Mohiuddine [39], Mursaleen and Alotaibi [37], and the references therein. For
other applications of the measure of non-compactness concept, we refer to [13, 38].
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In [24], via a measure of non-compactness concept, Darwish obtained an existence
result for the singular integral equation

y(t) = f(t) +
y(t)
Γ(α)

∫ t

0

u(s, y(s))
(t− s)1−α

ds, t ∈ [0, 1], α > 0.

The above equation can be written in the form

y(t) = f(t) + y(t)Iαu(·, y(·))(t), t ∈ [0, 1],

where Iα is the Riemann-Liouville fractional integral of order α defined by (see
[41])

Iαh(t) =
1

Γ(α)

∫ t

0

h(s)
(t− s)1−α

ds, t ∈ [0, 1].

Following the above work, there has been a great interest in the study of functional
equations involving fractional integrals. In this direction, we refer the reader to
[3, 19, 26, 27, 17, 18, 29] and the references therein.

The concept of q-calculus (quantum calculus) was introduced by Jackson (see
[33, 34]). This subject is rich in history and has several applications (see [30, 35]).
Fractional q-difference concept was initiated by Agarwal and by Al-Salam (see [1,
7]). Because of the considerable progress in the study of fractional differential
equations, a great interest appeared from many authors in studying fractional q-
difference equations (see for examples [6, 7, 31, 32, 36] and the references therein).

The paper is organized as follows. In Section 2, we fix some notations that will
be used through this paper, we recall some basic tools on q-calculus and we collect
some basic definitions and facts on the measure of non-compactness concept. In
Section 3, we state and prove our main result. Next, we present an illustrative
example.

2. Preliminaries

At first, we recall some concepts on fractional q-calculus and present additional
properties that will be used later. For more details, we refer to [1, 8, 40].

Let q be a positive real number such that q 6= 1. For x ∈ R, the q-real number
[x]q is defined by

[x]q =
1− qx

1− q
.

The q-shifted factorial of real number x is defined by

(x, q)0 = 1, (x, q)k =
k−1∏
i=0

(1− xqi), k = 1, 2, . . . ,∞.

For (x, y) ∈ R2, the q-analog of (x− y)k is defined by

(x− y)(0) = 1, (x− y)(k) =
k−1∏
i=0

(x− qiy), k = 1, 2, . . .

For β ∈ R, (x, y) ∈ R2 and x ≥ 0,

(x− y)(β) = xβ
∞∏
i=0

x− yqi

x− yqβ+i
.

Note that if y = 0, then x(β) = xβ .
The following inequality (see [31]) will be used later.
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Lemma 2.1. If β > 0 and 0 ≤ a ≤ b ≤ t, then

(t− b)(β) ≤ (t− a)(β).

The q-gamma function is given by

Γq(x) =
(1− q)(x−1)

(1− q)x−1
, x 6∈ {0,−1,−2, . . . }.

We have the following property

Γq(x+ 1) = [x]qΓq(x).

Let f : [0, b] → R (b > 0) be a given function. The q-integral of the function f is
given by

Iqf(t) =
∫ t

0

f(s) dqs = t(1− q)
∞∑
n=0

f(tqn)qn, t ∈ [0, b].

If c ∈ [0, b], we have ∫ b

c

f(s) dqs =
∫ b

0

f(s) dqs−
∫ c

0

f(s) dqs.

Lemma 2.2. If f : [0, 1]→ R is a continuous function, then∣∣ ∫ t

0

f(s) dqs
∣∣ ≤ ∫ t

0

|f(s)| dqs, t ∈ [0, 1].

Note that in general, if 0 ≤ t1 ≤ t2 ≤ 1 and f : [0, 1] → R is a continuous
function, the inequality ∣∣ ∫ t2

t1

f(s) dqs
∣∣ ≤ ∫ t2

t1

|f(s)| dqs

is not satisfied. We remark that in many papers dealing with q-difference boundary
value problems, the use of such inequality yields wrong results. As a counter-
example, we refer the reader to [8, Page.12].

Let f : [0, 1] → R be a given function. The fractional q-integral of order α ≥ 0
of the function f is given by I0

q f(t) = f(t) and

Iαq f(t) =
1

Γq(α)

∫ t

0

(t− qs)(α−1)f(s) dqs, t ∈ [0, 1], α > 0.

Note that for α = 1, we have

I1
q f(t) = Iqf(t), t ∈ [0, 1].

If f ≡ 1, then

Iαq 1(t) =
1

Γq(α+ 1)
tα, t ∈ [0, 1].

Now, we recall the notion of measure of non-compactness, which is the main tool
used in this paper.

Let E be a Banach space over R with respect to a certain norm ‖ · ‖. We denote
by BE the set of all nonempty and bounded subsets of E.

A mapping σ : BE → [0,∞) is a measure of non-compactness in E (see [13]) if
the following conditions are satisfied:

(i) for all M ∈ BE, we have

σ(M) = 0 implies M is precompact;
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(ii) for every pair (M1,M2) ∈ BE ×BE, we have

M1 ⊆M2 =⇒ σ(M1) ≤ σ(M2);

(iii) for every M ∈ BE,

σ(M) = σ(M) = σ(coM),

where coM denotes the closed convex hull of M ;
(iv) for every pair (M1,M2) ∈ BE ×BE and λ ∈ (0, 1), we have

σ(λM1 + (1− λ)M2) ≤ λσ(M1) + (1− λ)σ(M2);

(v) if {Mn} is a sequence of closed and decreasing (w.r.t ⊆) sets in BE such
that σ(Mn)→ 0 as n→∞, then M∞ := ∩∞n=1Mn is nonempty.

Let Λ be the set of functions η : [0,∞)→ [0,∞) such that
(1) η is a non-decreasing function;
(2) η is an upper semi-continuous function;
(3) η(s) < s, for all s > 0.

For our purpose, we need the following generalized version of Darbo’s theorem
(see [2]).

Lemma 2.3. Let D be a nonempty, bounded, closed and convex subset of a Banach
space E. Let T : D → D be a continuous mapping such that

σ(TM) ≤ η(σ(M)), M ⊆ D,

where η ∈ Λ and σ is a measure of non-compactness in E. Then T has at least one
fixed point.

Lemma 2.4. Let η1, η2 ∈ Λ and τ ∈ (0, 1). Then the function γ : [0,∞)→ [0,∞)
defined by

γ(t) = max{η1(t), η2(t), τ t}, t ≥ 0

belongs to the set Λ.

Proof. Let (t, s) ∈ R2 be such that 0 ≤ t ≤ s. Since η1, η2 are non-decreasing and
τ ∈ (0, 1), we have

ηi(t) ≤ ηi(s) ≤ γ(s), i = 1, 2 ,

τ t ≤ τs ≤ γ(s),

which yield γ(t) ≤ γ(s). Therefore, γ is a non-decreasing function. Now, for all
s > 0, we have ηi(s) < s (for i = 1, 2) and τ s < s. Since γ(s) ∈ {η1(s), η2(s), τ s},
we obtain

γ(s) < s, s > 0.

On the other hand, it is well-known that the maximum of finitely many upper
semi-continuous functions is upper semi-continuous. As consequence, the function
γ belongs to the set Λ. �

In what follows let E = C(I; R) be the set of real and continuous functions in
the compact set I. It is well-known that E is a Banach space with respect to the
norm

‖x‖ = max{|x(t)| : t ∈ I}, x ∈ E.
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Now, let M ∈ BE be fixed. For (x, ρ) ∈ M × (0,∞), we denote by ω(x, ρ) the
modulus of continuity of x; that is,

ω(x, ρ) = sup{|x(t1)− x(t2)| : (t1, t2) ∈ I × I, |t1 − t2| ≤ ρ}.
Further on let us define

ω(M,ρ) = sup{ω(x, ρ) : x ∈M}.
Define the mapping σ : BE → [0,∞) by

σ(M) = lim
ρ→0+

ω(M,ρ), M ∈ BE.

Then σ is a measure of non-compactness in E (see [11]).

3. Main result

Define the operator T on E = C(I; R) by

(Tx)(t) = F
(
t, x(a(t)),

f(t, x(b(t)))
Γq(α)

∫ t

0

(t−qs)(α−1)u(s, x(s)) dqs
)
, (x, t) ∈ E× I.

We consider the assumption
(A1) The functions f, u : [0, 1]× R→ R, a, b : I → I and F : [0, 1]× R× R→ R

are continuous.

Proposition 3.1. Under assumption (A1), the operator T maps E into itself.

Proof. From assumption (A1), we have just to show that the operator H defined
on E by

(Hx)(t) =
∫ t

0

(t− qs)(α−1)u(s, x(s)) dqs, (x, t) ∈ E× I (3.1)

maps E into itself. To do this, let us fix x ∈ E. For all t ∈ I, we have

(Hx)(t) =
∫ t

0

(t− qs)(α−1)u(s, x(s)) dqs

= t(1− q)
∞∑
n=0

qn(t− qn+1t)(α−1)u(tqn, x(tqn))

= tα(1− q)
∞∑
n=0

qn(1− qn+1)(α−1)u(tqn, x(tqn)).

On the other hand, since 0 < qn+1 < 1, using Lemma 2.1, we have

(1− qn+1)(α−1) ≤ (1− 0)(α−1) = 1.

Then by the continuity of u and using the Weierstrass convergence theorem, we
obtain the desired result. �

We consider also the following assumptions.
(A2) There exist a constant CF > 0 and a non-decreasing function ϕF : [0,∞)→

[0,∞) such that

|F (t, x, y)−F (t, z, w)| ≤ ϕF (|x−z|)+CF |y−w|, (t, x, y, z, w) ∈ I×R×R×R×R.
(A3) There exists a constant Cf > 0 such that

|f(t, x)− f(t, y)| ≤ Cf |x− y|, (t, x, y) ∈ I × R× R.
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(A4) There exists a non-decreasing and continuous function ϕu : [0,∞)→ [0,∞)
such that

|u(t, x)− u(t, y)| ≤ ϕu(|x− y|), (t, x, y) ∈ I × R× R, ϕu(t) < t, t > 0,

u(t, 0) = 0, t ∈ I.
(A5) There exists r0 > 0 such that

ϕF (r0) + F ∗ +
CF (Cfr0 + f∗)ϕu(r0)

Γq(α+ 1)
≤ r0,

where

F ∗ = max{|F (t, 0, 0)| : t ∈ I} and f∗ = max{|f(t, 0)| : t ∈ I}.
Let the closed ball of center 0 and radius r0 be denote by

B(0, r0) = {x ∈ E : ‖x‖ ≤ r0}.

Proposition 3.2. Under assumptions (A1)–(A5), the operator T maps B(0, r0)
into itself.

Proof. Let x ∈ B(0, r0). Using the considered assumptions, for all t ∈ I, we have

|(Tx)(t)|

≤
∣∣∣F(t, x(a(t)),

f(t, x(b(t)))
Γq(α)

∫ t

0

(t− qs)(α−1)u(s, x(s)) dqs
)
− F (t, 0, 0)

∣∣∣
+ |F (t, 0, 0)|

≤ ϕF (|x(a(t))|) + CF
|f(t, x(b(t)))|

Γq(α)

∫ t

0

(t− qs)(α−1)|u(s, x(s))| dqs+ F ∗

≤ ϕF (‖x‖) + CF
|f(t, x(b(t)))− f(t, 0)|+ |f(t, 0)|

Γq(α)

×
∫ t

0

(t− qs)(α−1)|u(s, x(s))| dqs+ F ∗

≤ ϕF (‖x‖) + CF
(Cf |x(b(t))|+ f∗)ϕu(‖x‖)

Γq(α)

∫ t

0

(t− qs)(α−1) dqs+ F ∗

≤ ϕF (‖x‖) + CF
(Cf‖x‖+ f∗)ϕu(‖x‖)

Γq(α+ 1)
tα + F ∗

≤ ϕF (r0) + CF
(Cfr0 + f∗)ϕu(r0)

Γq(α+ 1)
+ F ∗.

Therefore,

‖Tx‖ ≤ ϕF (r0) + CF
(Cfr0 + f∗)ϕu(r0)

Γq(α+ 1)
+ F ∗, x ∈ B(0, r0).

Using the above inequality and assumption (A5), we obtain the desired result. �

Proposition 3.3. Under assumptions (A1)–(A5), the operator T maps continu-
ously B(0, r0) into itself.

Proof. Define the operators γ1, γ2 and γ3 on E by

(γ1x)(t) = t, (x, t) ∈ E× I,
(γ2x)(t) = x(a(t)), (x, t) ∈ E× I,
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(γ3x)(t) = f(t, x(b(t))), (x, t) ∈ E× I.
Obviously, γ1 : E→ E is continuous. Moreover, for all x, y ∈ E, we have

|(γ2x)(t)− (γ2y)(t)| = |x(a(t))− y(a(t))| ≤ ‖x− y‖, t ∈ I,
which implies that

‖γ2x− γ2y‖ ≤ ‖x− y‖, (x, y) ∈ E× E.
Therefore, γ2 is uniformly continuous on E. Similarly, for all x, y ∈ E, for all t ∈ I,
we have

|(γ3x)(t)− (γ3y)(t)| = |f(t, x(b(t)))− f(t, y(b(t)))|
≤ Cf |x(b(t))− y(b(t))‖ ≤ Cf‖x− y‖,

which implies
‖γ3x− γ3y‖ ≤ Cf‖x− y‖, (x, y) ∈ E× E.

Then γ3 is also uniformly continuous on E. So, in order to prove that T is continuous
on B(0, r0), we only need to show that the operator H defined by (3.1) is continuous
on B(0, r0). To do this, let us consider ε > 0 and (x, y) ∈ B(0, r0)× B(0, r0) such
that ‖x− y‖ ≤ ε. For all t ∈ I, we have

(Hx)(t)− (Hy)(t) =
∫ t

0

(t− qs)(α−1)u(s, x(s)) dqs−
∫ t

0

(t− qs)(α−1)u(s, y(s)) dqs

=
∫ t

0

(t− qs)(α−1) (u(s, x(s))− u(s, y(s))) dqs.

Set

ur0(ε) = sup{|u(t, x)− u(t, y)| : t ∈ I, (x, y) ∈ [−r0, r0]× [−r0, r0], |x− y| ≤ ε},
we obtain

(Hx)(t)− (Hy)(t) ≤ tα

[α]q
ur0(ε) ≤ ur0(ε)

[α]q
,

for all t ∈ I. Therefore,

‖Hx−Hy‖ ≤ ur0(ε)
[α]q

.

Passing to the limit as ε→ 0+ and using the uniform continuity of u on the compact
set I × [−r0, r0], we obtain

lim
ε→0+

ur0(ε)
[α]q

= 0,

which completes the proof. �

To prove our main result, the following additional assumptions are needed.
(A6) The function ϕF : [0,∞) → [0,∞) is continuous and it satisfies ϕF (s) < s

for s > 0.
(A7) The function a : I → I satisfies

|a(t)− a(s)| ≤ ϕa(|t− s|), (t, s) ∈ I × I,
where ϕa : [0,∞)→ [0,∞) is non-decreasing and limt→0+ ϕa(t) = 0.

(A8) The function b : I → I satisfies

|b(t)− b(s)| ≤ ϕb(|t− s|), (t, s) ∈ I × I,
where ϕb : [0,∞)→ [0,∞) is non-decreasing and limt→0+ ϕb(t) = 0.
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(A9) We suppose that

0 < ϕu(r0) <
Γq(α+ 1)
CFCf

and
CF

Γq(α)
(Cfr0 + f∗) < 1.

Our main result is the following.

Theorem 3.4. Under assumptions (A1)–(A9), Equation (1.1) has at least one
solution x∗ ∈ C(I; R) satisfying ‖x∗‖ ≤ r0.

Proof. From Proposition 3.3, we know that T : B(0, r0)→ B(0, r0) is a continuous
operator. Now, let M be a nonempty subset of B(0, r0). Let ρ > 0, x ∈ M and
(t1, t2) ∈ I × I be such that |t1 − t2| ≤ ρ. Without restriction of the generality, we
may assume that t1 ≥ t2. We have

|(Tx)(t1)− (Tx)(t2)|

=
∣∣∣F(t1, x(a(t1)),

f(t1, x(b(t1)))
Γq(α)

∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs
)

− F
(
t2, x(a(t2)),

f(t2, x(b(t2)))
Γq(α)

∫ t2

0

(t2 − qs)(α−1)u(s, x(s)) dqs
)∣∣∣

≤
∣∣∣F(t1, x(a(t1)),

f(t1, x(b(t1)))
Γq(α)

∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs
)

− F
(
t2, x(a(t1)),

f(t1, x(b(t1)))
Γq(α)

∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs
)∣∣∣

+
∣∣∣F(t2, x(a(t1)),

f(t1, x(b(t1)))
Γq(α)

∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs
)

− F
(
t2, x(a(t2)),

f(t2, x(b(t2)))
Γq(α)

∫ t2

0

(t2 − qs)(α−1)u(s, x(s)) dqs
)∣∣∣

= (I) + (II).

(3.2)

• Estimate for (I). We have∣∣∣f(t1, x(b(t1)))
Γq(α)

∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs
∣∣∣

≤ |f(t1, x(b(t1)))|
Γq(α)

∫ t1

0

(t1 − qs)(α−1)|u(s, x(s))| dqs

≤ |f(t1, x(b(t1)))− f(t1, 0)|+ |f(t1, 0)|
Γq(α)

∫ t1

0

(t1 − qs)(α−1)ϕu(|x(s)|) dqs

≤ (Cf |x(b(t1))|+ f∗)ϕu(‖x‖)
Γq(α+ 1)

tα1

≤ (Cf‖x‖+ f∗)ϕu(‖x‖)
Γq(α+ 1)

≤ (Cfr0 + f∗)ϕu(r0)
Γq(α+ 1)

= D.

Set

C(F, δ) = sup
{
|F (t, x, y)− F (s, x, y)| : (t, s) ∈ I × I, |t− s| ≤ ρ,
x ∈ [−r0, r0], y ∈ [−D,D]

}
,
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we obtain
(I) ≤ C(F, δ). (3.3)

• Estimate for (II). We have

(II) ≤ ϕF (|x(a(t1))− x(a(t2))|)

+
CF

Γq(α)

∣∣∣f(t1, x(b(t1)))
∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs

− f(t2, x(b(t2)))
∫ t2

0

(t2 − qs)(α−1)u(s, x(s)) dqs
∣∣∣.

On the other hand,
|x(a(t1))− x(a(t2))| ≤ ω(x ◦ a, ρ),

which yields
ϕF (|x(a(t1))− x(a(t2))|) ≤ ϕF (ω(x ◦ a, ρ)).

Now, we have ∣∣∣f(t1, x(b(t1)))
∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs

− f(t2, x(b(t2)))
∫ t2

0

(t2 − qs)(α−1)u(s, x(s)) dqs
∣∣∣

≤
∣∣∣f(t1, x(b(t1)))

∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs

− f(t2, x(b(t2)))
∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs
∣∣∣

+
∣∣∣f(t2, x(b(t2)))

∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs

− f(t2, x(b(t2)))
∫ t2

0

(t2 − qs)(α−1)u(s, x(s)) dqs
∣∣∣

≤ |f(t1, x(b(t1)))− f(t2, x(b(t2)))|ϕu(‖x‖)
[α]q

+ |f(t2, x(b(t2)))|
∣∣∣ ∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs

−
∫ t2

0

(t2 − qs)(α−1)u(s, x(s)) dqs
∣∣∣

= (III) + (IV ).

Let us define

ωf (r0, ρ) = sup{|f(t, x)− f(s, x)| : (t, s) ∈ I × I, |t− s| ≤ ρ, x ∈ [−r0, r0]}.
Then

(III) ≤ ϕu(‖x‖)
[α]q

|f(t1, x(b(t1)))− f(t1, x(b(t2)))|

+
ϕu(‖x‖)

[α]q
|f(t1, x(b(t2)))− f(t2, x(b(t2)))|

≤ [Cf |x(b(t1))− x(b(t2))|+ ωf (r0, ρ)]ϕu(r0)
[α]q
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≤ [Cfω(x ◦ b, ρ) + ωf (r0, ρ)]ϕu(r0)
[α]q

.

Now, let us estimate (IV ). At first, we have

|f(t2, x(b(t2)))| ≤ |f(t2, x(b(t2)))− f(t2, 0)|+ |f(t2, 0)|
≤ Cf |x(b(t2))|+ f∗ ≤ Cfr0 + f∗.

Next, we have∣∣∣ ∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs−
∫ t2

0

(t2 − qs)(α−1)u(s, x(s)) dqs
∣∣∣

= (1− q)
∞∑
n=0

qn(1− qn+1)(α−1) |tα1u(qnt1, x(qnt1))− tα2u(qnt2, x(qnt2))| .

We can write

|tα1u(qnt1, x(qnt1))− tα2u(qnt2, x(qnt2))|
≤ tα1 |u(qnt1, x(qnt1))− u(qnt1, x(qnt2))|

+ |tα1u(qnt1, x(qnt2))− tα2u(qnt2, x(qnt2))|
≤ ϕu(|x(qnt1)− x(qnt2)|) +Aρ

≤ ϕu(ω(x, ρ)) +Aρ,

where

Aρ = sup
{
|N (τ, s, x)−N (τ ′, s′, x)| : (τ, s, τ ′, s′) ∈ I4, |τ − τ ′| ≤ ρ,
|s− s′| ≤ ρ, x ∈ [−r0, r0]

}
and

N (τ, s, x) = ταu(s, x), (τ, s, x) ∈ I × I × R.
Then, we obtain∣∣∣ ∫ t1

0

(t1 − qs)(α−1)u(s, x(s)) dqs−
∫ t2

0

(t2 − qs)(α−1)u(s, x(s)) dqs
∣∣∣

≤ ϕu(ω(x, ρ)) +Aρ.

As consequence, we have

(IV ) ≤ (Cfr0 + f∗)(ϕu(ω(x, ρ)) +Aρ).

Using the above inequalities, we obtain

(II) ≤ ϕF (ω(x ◦ a, ρ)) +
CF

Γq(α)

( [Cfω(x ◦ b, ρ) + ωf (r0, ρ)]ϕu(r0)
[α]q

+ (Cfr0 + f∗)(ϕu(ω(x, ρ)) +Aρ)
)
.

Now, observe that from assumption (A7), we have

ω(x ◦ a, ρ) = sup{|x(a(t))− x(a(s))| : (t, s) ∈ I × I, |t− s| ≤ ρ}
≤ sup{|x(µ)− x(ν)| : (µ, ν) ∈ I × I, |µ− ν| ≤ ϕa(ρ)}
= ω(x, ϕa(ρ)).

Similarly, from assumption (A8), we have

ω(x ◦ b, ρ) ≤ ω(x, ϕb(ρ)).
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Then

(II) ≤ ϕF (ω(x, ϕa(ρ))) +
CF

Γq(α)

( [Cfω(x, ϕb(ρ)) + ωf (r0, ρ)]ϕu(r0)
[α]q

+ (Cfr0 + f∗)(ϕu(ω(x, ρ)) +Aρ)
)
.

(3.4)

Next, using (3.2), (3.3) and (3.4), we obtain

ω(Tx, ρ) ≤ C(F, δ) + ϕF (ω(x, ϕa(ρ))) +
CF

Γq(α)

( [Cfω(x, ϕb(ρ)) + ωf (r0, ρ)]ϕu(r0)
[α]q

+ (Cfr0 + f∗)(ϕu(ω(x, ρ)) +Aρ)
)
,

which yields

ω(TM, ρ) ≤ C(F, δ) + ϕF (ω(M,ϕa(ρ)))

+
CF

Γq(α)

( [Cfω(M,ϕb(ρ)) + ωf (r0, ρ)]ϕu(r0)
[α]q

+ (Cfr0 + f∗)(ϕu(ω(M,ρ)) +Aρ)
)
.

Recall that from assumptions (A7)–(A8), we have

lim
ρ→0+

ϕa(t) = lim
ρ→0+

ϕb(t) = 0.

Then passing to the limit as ρ→ 0+ in the above inequality, we obtain

σ(TM) ≤ ϕF (σ(M)) +
CF

Γq(α)

(Cfσ(M)ϕu(r0)
[α]q

+ (Cfr0 + f∗)ϕu(σ(M))
)
.

Therefore,
σ(TM) ≤ η(σ(M)),

where
η(t) = max{ϕF (t), Lϕu(t), Nt}, t ≥ 0,

with

L =
CF

Γq(α)
(Cfr0 + f∗), N =

CFCf
Γq(α+ 1)

ϕu(r0).

From assumption (A9) and Lemma 2.4, the function η belongs also to the set Λ.
Finally, applying Lemma 2.3, we obtain the existence of at least one fixed point of
the operator T in B(0, r0), which is a solution to (1.1). �

We end the paper with the following illustrative example. Consider the integral
equation

x(t) =
t

32
+
x(t)

4
+ [α]q

( t
2

+
x(t)

4
) ∫ t

0

(t− qs)(α−1) x(s)
(2 + s2)

dqs, (3.5)

for t ∈ I = [0, 1], where α > 1 and q ∈ (0, 1). Observe that (3.5) can be written in
the form (1.1), where

a(t) = t, t ∈ I, b(t) = t, t ∈ I,

F (t, x, y) =
t

32
+
x

4
+ Γq(α+ 1)y, (t, x, y) ∈ I × R× R,

f(t, x) =
t

2
+
x

4
, (t, x) ∈ I × R,
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u(t, x) =
x

(2 + t2)
, (t, x) ∈ I × R.

Now, let us check that the required assumptions by Theorem 3.4 are satisfied.
• Assumption (A1). It is trivial.
• Assumption (A2). For all (t, x, y, z, w) ∈ I × R× R× R× R, we have

|F (t, x, y)− F (t, z, w)| =
∣∣∣x
4

+ Γq(α+ 1)y − z

4
− Γq(α+ 1)w

∣∣∣
≤ |x− z|

4
+ Γq(α+ 1)|y − w|.

Then assumption (A2) is satisfied with

ϕF (t) =
t

4
, t ≥ 0,

CF = Γq(α+ 1).

• Assumption (A3). For all (t, x, y) ∈ I × R× R, we have

|f(t, x)− f(t, y)| = |x− y|
4

.

Then assumption (A3) is satisfied with Cf = 1
4 .

• Assumption (A4). For all (t, x, y) ∈ I × R× R, we have

|u(t, x)− u(t, y)| = |x− y|
2 + t2

≤ |x− y|
2

.

Take ϕu(t) = t
2 , t ≥ 0, assumption (A4) holds.

• Assumption (A5). At first, in our case, we have F ∗ = 1
32 and f∗ = 1

2 . Now, the
inequality

ϕF (r0) + F ∗ +
CF (Cfr0 + f∗)ϕu(r0)

Γq(α+ 1)
≤ r0

is equivalent to

r20 − 4r0 +
1
4
≤ 0.

The above inequality is satisfied for any r0 ∈ [ 4−
√

15
2 , 4+

√
15

2 ].
• Assumptions (A6)–(A8) are trivial.
• Assumption (A9). The inequality

0 < ϕu(r0) <
Γq(α+ 1)
CFCf

is equivalent to 0 < r0 < 8. The inequality
CF

Γq(α)
(Cfr0 + f∗) < 1

is equivalent to

r0 <
4

[α]q
− 2.

A simple computation gives us that[4−√15
2

,
4 +
√

15
2

]
∩
(
0,

4
[α]q
− 2
)
6= ∅

for α = 3/2 and q = 1/2. Therefore, all the assumptions (A1)–(A9) are satisfied
for α = 3/2 and q = 1/2. By Theorem 3.4, we have the following result.
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Theorem 3.5. For (α, q) = (3/2, 1/2), Equation (3.5) has at least one solution
x∗ ∈ C(I; R).
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[13] J. Banaś, M. Mursaleen; Sequence Spaces and Measures of Noncompactness with Applications

to Differential and Integral Equations, Springer, New Dehli, 2014.
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