
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 185, pp. 1–14.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF TRAVELING WAVEFRONTS FOR
INTEGRODIFFERENCE EQUATIONS WITH BILATERAL

EXPONENTIAL KERNEL

HUAQIN PENG, ZHIMING GUO, ZIZI WANG

Abstract. In this article, we study the existence of traveling wavefronts for

integrodifference equation with a bilateral exponential kernel, namely, the

Laplacian kernel. The existence of traveling wavefronts is proved by com-
bining the monotone iteration technique with the upper and lower solution

method. The minimal spreading speed c∗ is given, which can be figured out

exactly when all parameters are given explicitly.

1. Introduction

In 1937, a model for the spatial spread of an advantageous gene in a population
living in a homogeneous one dimensional habitat was proposed by Fisher [6]. In
this model, the time evolution of the fraction u(x, t) of the advantageous gene in
the population at the point x and at the time t is governed by a partial differential
equation of the form

∂u

∂t
=
∂2u

∂x2
+ f(u), (1.1)

where f ∈ C1[0, 1] and f(0) = f(1) = 0. In the same year, Kolmogorov, Petrovskii
and Piskunov [8] studied the same system, where f ∈ C2[0, 1] and f(0) = f(1) = 0.

In previous few decades, there have been extensive investigations on traveling
wave solutions and asymptotic behaviors in terms of spreading speeds for various
evolution systems. Traveling waves were studied for nonlinear reaction-diffusion
equations modeling physical and biological phenomena [16, 17, 25], for lattice dif-
ferential equation [1, 4, 28, 30] and for time-delayed reaction-diffusion equations
[22, 23, 24, 29].

Since the observation is often discontinuous, many discrete-time models are de-
rived from different fields, such as difference equations [9] and integrodifference
equations [26, 27]. As for the references mentioned above, much attention has been
paid to the discrete-time model

un+1(x) = Q[un](x), (1.2)

where x ∈ H ⊆ R, H is a habitat and Q is a continuous mapping with respect to a
proper topology. When we consider an organism with synchronous nonoverlapping
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generations, un(x) can be viewed as the population density of the species at the
point x ∈ H in population dynamics. System (1.2) implies that the evolution of
the current individuals only depends on the individuals at the previous unit time
or generation.

When the life cycle of an organism consists of distinct growth and dispersal
stages, and if these stages are synchronized within a population, the discrete-time
models may be more accurate representations than continuous-time equation. Many
plants, insect and migrating bird species in temperate climates fall into this cate-
gory. Assume that there are two distinct stages that define the life cycle of these
organisms, a sedentary stage and a dispersal stage. All growth occurs during the
sedentary stage and all movement occurs during the dispersal stage.

To formulate an integrodifference equation, when the population is continuously
distributed, we denote the density of the population at time or generation n at
location x as un(x). The sedentary stage is described by some non-negative function
f(u), e.g. the Beverton-Holt Stock-recruitment curve [2] or the Ricker curve [21],
and the dispersal stage by a dispersal kernel, k(x, y), where the product k(x, y)dy
is the probability that an individual who will move from the interval (y, y + dy]
to the point x [19]. The population density in the next generation is obtained by
tallying arrivals at location x from all possible locations y, or mathematically as
the integral operator

un+1(x) =
∫

Ω

k(x, y)f(un(y))dy, (1.3)

where Ω is the habitat of the organism. If the environment is isotropic, one may
hope that the kernels k(x, y) is symmetric in x and y, k(x, y) = k(y, x). Dispersal
tends to depend only on distance between source and destination, so the kernel may
depend on absolute location or on relation distance. Let k(x − y) be the spatial
dispersal probability function of the species jumping from y to x, then we obtain
the following model

un+1(x) =
∫

Ω

k(x− y)f(un(y))dy. (1.4)

In the past three decades, the traveling wave solutions of (1.4) have been widely
studied, we refer to Hsu and Zhao [7], Kot [10], Liang and Zhao [11], Neubert and
Caswell [18], Weinberger [26, 27]. In these papers, the monotonicity of the function
f plays a very important role. Recently, Lin and Li [15] and Lin et al [14] considered
the existence of traveling wave solutions of a competitive system by a cross iteration
scheme. In population dynamics, one typical integrodifference equation describing
the age-structure and the birth function is (locally) monotone, then the traveling
wave solutions and asymptotic spreading were studied by Lin and Li [13] and Pan
and Lin [20].

In 1992, Kot [10] studied the discrete-time traveling waves, when the integrodif-
ference equation with the kernel being the bilateral exponential distribution

k(x, y) =
1
2
α exp(−α|x− y|),

for a scalar equation with compensatory growth and two kinds of special recruitment
cures. His research observed only simple traveling waves. However, in different
biological systems there are kinds of recruitment cures, we cannot get the traveling
waves following [10]. Motivated by the studies in [3] and in [12], in this paper, we
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investigate the existence of traveling wavefronts to the following integrodifference
equation

un+1(x) =
α

2

∫
Ω

exp(−α|x− y|)f(un(y))dy. (1.5)

For convenience, we only study the case that the environment Ω is R. Thus equation
(1.5) become

un+1(x) =
α

2

∫
R

exp(−α|x− y|)f(un(y))dy. (1.6)

The rest of this paper is organized as follows. In section 2, we obtain the existence
of traveling wavefronts by using upper and lower solution method. In section 3, some
numerical simulations are given to illustrate our main results. A brief conclusion
will also be given in this section.

2. Existence of traveling wavefronts

In this section, we shall establish the existence of traveling wavefronts of (1.6)
by combining the monotone iteration technique with the upper and lower solutions
method. Let

C(R,R) = {u|u : R→ R is uniformly continuous and bounded}.

Then C(R,R) is a Banach space equipped with supremum norm | · |. If a, b ∈ R
with a < b, then we denote

C[a,b] = {u ∈ C(R,R) : a ≤ u(x) ≤ b for all x ∈ R}.

Throughout the remainder of this paper, we assume that

(H1) f(0) = 0, f(1) = 1, and f(u) > u for any u ∈ (0, 1).
(H2) f is a C2 function and 0 < f ′(u) ≤ f ′(0) for u ∈ [0, 1).

By (H2), there exists a constant L > 0 such that |f ′′(u)| < f ′(0)L for any u ∈ [0, 1].

Definition 2.1. A traveling wave solution of (1.6) is a special solution with the
form un(x) = φ(x + cn), with c > 0 is the wave speed that the wave profile
φ ∈ C(R,R) spreads in R. In particular, if φ(ξ) is monotone in ξ ∈ R, then it is
called a traveling wavefront.

By Definition 2.1, the traveling wavefront φ(ξ) of (1.6) must satisfy the integral
equation

φ(ξ + c) =
α

2

∫
R

exp(−α|x− y|)f(φ(y + cn))dy

=
α

2

∫
R

exp(−α|x− y|)f(φ(ξ − x+ y))dy

=
α

2

∫
R

exp(−α|X|)f(φ(ξ −X))dX,

(2.1)

where ξ = x+ cn, X = x− y.
Because of the background of traveling wavefronts [10, 18], we also require that

φ satisfies the asymptotic boundary value conditions,

lim
ξ→−∞

φ(ξ) = 0, lim
ξ→∞

φ(ξ) = 1. (2.2)
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Thus, our intention is to prove the existence of a monotone solution of (2.1) with
boundary value conditions (2.2). For this purpose, we rewrite (2.1) as

φ(ξ) =
α

2

∫
R

exp(−α|x|)f(φ(ξ − x− c))dx, ξ ∈ R. (2.3)

The linearization of (2.3) in the neighborhood of φ = 0 is

φ(ξ) =
α

2

∫
R

exp(−α|x|)f ′(0)φ(ξ − x− c)dx

=
f ′(0)α

2

∫
R

exp(−α|x|)φ(ξ − x− c)dx.
(2.4)

One may attempt to find a solution of the form

φ(ξ) = eλξ, (2.5)

where λ is a positive number. Then

eλξ =
f ′(0)α

2

∫
R
e−α|x|eλ(ξ−x−c)dx.

Thus,

1 =
f ′(0)α

2

∫
R
e−α|x|e−λ(x+c)dx.

We define

∆(λ, c) =
f ′(0)α

2

∫
R
e−α|x|e−λ(x+c)dx (2.6)

for any λ ∈ (0, α), c ∈ (0,∞). Then ∆(λ, c) is well defined and the following result
holds.

Lemma 2.2. There exists a constant c∗ > 0 such that ∆(λ, c) = 1 has exactly two
positive roots if c > c∗ while ∆(λ, c) = 1 has no real root if c < c∗. Moreover, if
c > c∗ holds and λ1(c) is the smaller root, λ2(c) is the other root, then for any
η ∈ (1, λ2(c)

λ1(c) ), ∆(ηλ1(c), c) < 1 holds.

Proof. For any λ ∈ (0, α),

∆(λ, c) =
f ′(0)α

2

∫ +∞

−∞
e−α|x|e−λ(x+c)dx

=
f ′(0)α

2

∫ 0

−∞
eαxe−λ(x+c)dx+

f ′(0)α
2

∫ +∞

0

e−αxe−λ(x+c)dx

=
f ′(0)α
2eλc

∫ 0

−∞
e(α−λ)xdx+

f ′(0)α
2eλc

∫ +∞

0

e−(α+λ)xdx

=
f ′(0)α
2eλc

1
α− λ

+
f ′(0)α
2eλc

1
α+ λ

=
f ′(0)α2

eλc(α− λ)(α+ λ)
.
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We see that ∆(λ, c) is continuous in c > 0, λ ∈ (0, α). For fixed c > 0, direct
calculations show that

∂

∂λ
∆(λ, c) =

−cf ′(0)α2e−λc(α2 − λ2) + 2f ′(0)λα2e−λc

(α2 − λ2)2

=
f ′(0)α2[2λ− c(α2 − λ2)]

eλc(α2 − λ2)2
,

∂2

∂λ2
∆(λ, c) =

f ′(0)α2e−λc[(c(α2 − λ2)− 2λ)2 + 4λ2 + 2(α2 − λ2)]
(α2 − λ2)3

> 0.

It is easy to see that ∆(λ, c) is convex in λ ∈ (0, α) for fixed c > 0. Let ∂
∂λ∆(λ, c) =

0. Then λ(c) = 1
c (
√

1 + α2c2 − 1) attains the mimimun of ∆(λ, c) for fixed c > 0.
Also

∆(λ(c), c) = min
λ∈(0,α)

∆(λ, c) =
f ′(0)

2
exp[1−

√
1 + α2c2](

√
1 + α2c2 + 1).

d

dc
∆(λ(c), c) = −cα

2f ′(0)
2

exp[1−
√

1 + α2c2] < 0.

It means that ∆(λ(c), c) is strictly decreasing in c. Since

lim
c→0+

∆(λ(c), c) = f ′(0) > 1, lim
c→+∞

∆(λ(c), c) = 0,

the continuity of ∆(λ(c), c) in c implies that there exists unique c∗ such that
∆(λ(c∗), c∗) = 1. For any c < c∗, ∆(λ(c), c) > 1 for all λ ∈ (0, α), therefore,
∆(λ, c) = 1 has no real root. For c > c∗, ∆(λ(c), c) < 1. Since

lim
λ→0+

∆(λ, c) = f ′(0) > 1, lim
λ→α−0

∆(λ, c) = +∞,

and ∆(λ, c) is strictly deceasing in λ ∈ (0, λ(c)) and strictly increasing in λ ∈
(λ(c), α), then ∆(λ, c) = 1 has exactly two positive roots λ1(c) and λ2(c) with
λ1(c) ∈ (0, λ(c)), λ2(c) ∈ (λ(c), α) and ∆(λ, c) < 1 for any λ ∈ (λ1(c), λ2(c)). This
completes the proof. �

Remark 2.3. From the proof of Lemma 2.2, we know that c∗ can be formulated
explicitly as follows.

c∗ =

√
(z∗)2 + 2z∗

α
,

where z∗ is the unique positive solution to the equation

1
2
f ′(0)(z + 2) = ez.

Definition 2.4. A continuous function φ(ξ) ∈ C[0,1] is called an upper solution of
(2.3), if it satisfies

φ(ξ) ≥ α

2

∫
R

exp(−α|x|)f(φ(ξ − x− c))dx, ξ ∈ R.

Similarly, a continuous function φ(ξ) ∈ C[0,1] is called a lower solution of (2.3), if
it satisfies

φ(ξ) ≤ α

2

∫
R

exp(−α|x|)f(φ(ξ − x− c))dx, ξ ∈ R.
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For fixed c > c∗, let q > 1, η ∈ (1, λ1(c)
λ2(c) ) be given constants. We define continuous

functions φ(t) and φ(t) as follows.

φ(t) = min{1, eλ1(c)t + qeηλ1(c)t},

φ(t) = max{0, eλ1(c)t − qeηλ1(c)t}.

It is easy to see that both φ(t) and φ(t) are continuous functions with 0 < φ(t) ≤ 1
and 0 ≤ φ(t) < 1 for any t ∈ (−∞,+∞). Clearly, there exists a constant t∗ < 0
such that φ(t) is strictly increasing for t < t∗ and φ(t) = 1 for t ≥ t∗. Also there
exists a constant t∗ < 0 such that φ(t) > 0 for t < t∗ and φ(t) = 0 for t ≥ t∗.

Proposition 2.5. The function φ(t) is an upper solution of (2.3).

Proof. By the definition of φ, 0 < φ(y) ≤ 1 for all y ∈ R. If φ(t) = 1 for some t, by
(H1) and (H2), we have

α

2

∫
R

exp(−α|x|)f(φ(t− x− c))dx ≤ α

2

∫
R

exp(−α|x|)dx = 1 = φ(t).

Thus the result holds.
If for some t, φ(t) = eλ1(c)t + qeηλ1(c)t, then by (H2) we have

α

2

∫
R
e(−α|x|)f(φ(t− x− c))dx

=
α

2

∫
R
e(−α|x|)f ′(θφ(t− x− c))φ(t− x− c)dx

≤ f ′(0)α
2

∫
R
e(−α|x|)φ(t− x− c)dx

≤ f ′(0)α
2

∫
R
e(−α|x|)(eλ1(c)(t−c−x) + qeηλ1(c)(t−c−x))dx

= eλ1(c)t∆(λ1(c), c) + qeηλ1(c)t∆(ηλ1(c), c)

≤ eλ1(c)t + qeηλ1(c)t = φ(t).

This completes the proof. �

Proposition 2.6. The function φ(t) is a lower solution of (2.3) for 1 < η <

min{λ2(c)
λ1(c) , 2} and q > L∆(ηλ1(c),c)

2(1−∆(ηλ1(c),c)) + 1, where L satisfies |f ′′(u)| ≤ f ′(0)L for
u ∈ [0, 1].

Proof. If φ(t) = 0 for some t, then the result holds because f(φ(t)) ≥ 0 for all
t ∈ R.

If φ(t) = eλ1(c)t−qeηλ1(c)t for some t, then, by Taylor expansion with Lagrangian
remainder, we have by (H1)

α

2

∫
R
e(−α|x|)f(φ(t− x− c))dx

=
α

2

∫
R
e(−α|x|)

[
f ′(0)φ(t− x− c) +

1
2
f ′′(θφ(t− x− c))φ(t− x− c)2

]
dx,

with 0 < θ < 1. Then,
α

2

∫
R
e(−α|x|)f(φ(t− x− c))dx
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≥ αf ′(0)
2

∫
R
e(−α|x|)φ(t− x− c)dx− αf ′(0)L

4

∫
R
e(−α|x|)φ(t− x− c)2dx

≥ αf ′(0)
2

∫
R
e(−α|x|)[eλ1(c)(t−x−c) − qeηλ1(c)(ξ−x−c)]dx

− αf ′(0)L
4

∫
R
e(−α|x|)φ(t− x− c)ηdx

≥ eλ1(c)t∆(λ1(c), c)− qeηλ1(c)t∆(ηλ1(c), c)− αf ′(0)L
4

∫
R
e(−α|x|)eηλ1(c)(t−x−c)dx

= eλ1(c)t − qeηλ1(c)t∆(ηλ1(c), c)− L

2
eηλ1(c)t∆(ηλ1(c), c)

≥ eλ1(c)t − qeηλ1(c)t = φ(t).

This completes the proof. �

Lemma 2.7. Let g(t) = e−α|t|. Then g is uniformly continuous on R

Proof. Since lim|t|→∞ g(t) = 0, for any ε > 0, there exists K > 0, such that
g(t) < ε

2 for |t| > K. The uniform continuity of g on [−K − 1,K + 1] means that
there exists δ1 > 0, such that for any t1, t2 ∈ [−K − 1,K + 1], |g(t1) − g(t2)| < ε.
Let δ = min{1, δ1}. Then for any t1, t2 ∈ R, |t1−t2| < δ, we have |g(t1)−g(t2)| < ε.
Then g is uniformly continuous on R. �

Theorem 2.8. Assume that c > c∗ holds. Then (2.3) with (2.2) has a monotone
solution φ(t) such that limt→−∞ φ(t)e−λ1(c)t = 1.

Proof. We now prove the result by standard iteration techniques [5, 24]. According
to Definition 2.4 and Proposition 2.5, we define continuous functions φ1(t) and φ

1
(t)

as follows.

φ1(t) =
α

2

∫
R
e(−α|x|)f(φ(t− x− c))dx, t ∈ R,

φ
1
(t) =

α

2

∫
R
e(−α|x|)f(φ(t− x− c))dx, t ∈ R.

Then φ1(t), φ
1
(t) are well defined and

1 ≥ φ(t) ≥ φ1(t) ≥ φ
1
(t) ≥ φ(t) ≥ 0, t ∈ R.

Let

φn+1(t) =
α

2

∫
R
e(−α|x|)f(φn(t− x− c))dx, t ∈ R,

φ
n+1

(t) =
α

2

∫
R
e(−α|x|)f(φ

n
(t− x− c))dx, t ∈ R,

for n = 1, 2, . . . . By mathematical induction and (H2), we have

1 ≥ φn(t) ≥ φn+1(t) ≥ φ
n+1

(t) ≥ φ
n
(t) ≥ 0, t ∈ R.

We rewrite φn(t) and φ
n
(t) as follows.

φn(t) =
α

2

∫
R
e(−α|t−y|)f(φn−1(y − c))dy,

φ
n
(t) =

α

2

∫
R
e(−α|t−y|)f(φ

n−1
(y − c))dy.
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The monotonicity of f and φ means that φn(t) is increasing in t ∈ R for each
n = 1, 2, . . . . For any given finite interval [−M,M ], we now prove the uniform
convergence of sequence φn on [−M,M ].

For any ε > 0, since α
2

∫
R e
−α|x|dx = 1, there exists K1 > 0, such that

α

2

∫
|x|>K1

e−α|x|dx <
1
4
ε.

By Lemma 2.7, there exists δ > 0, such that for any t1, t2, |t1 − t2| < δ, we have
|g(t1)− g(t2)| < ε

2α(M+K1) .
For any t1, t2 ∈ [−M,M ], |t1 − t2| < δ, we have

|φn(t1)− φn(t2)|

= |α
2

∫
R
e−α|t1−y|f(φn(y − c))dy − α

2

∫
R
e−α|t2−y|f(φn(y − c))dy|

≤ α

2

∫
R
|(e−α|t1−y| − e−α|t2−y|)|f(φn(y − c))dy

≤ α

2

∫
|y|>M+K1

|(e−α|t1−y| − e−α|t2−y|)|f(φn(y − c))dy

+
α

2

∫ M+K1

−M−K1

|(e−α|t1−y| − e−α|t2−y|)|f(φn(y − c))dy

≤ α
∫
|x|>K1

e−α|x|dx+
α

2

∫ M+K1

−M−K1

ε

2α(M +K1)
dx

= ε, for n = 1, 2, . . . .

This implies that φn(t) are equicontinuous for n = 1, 2, . . . and t ∈ [−M,M ].
It is easy to know that φn(t) converges to a nondecreasing continuous function

uniformly on any compact subsets of R. Let limn→∞ φn(t) = φ(t). We claim that
φ(t) satisfies

φ(t) =
α

2

∫
R
e(−α|x|)f(φ(t− x− c))dx.

Actually, for a given t and any ε > 0, there exists K1 > 0 such that
α

2

∫
|x|>K1

e(−α|x|)dx <
ε

4
.

By uniform convergence of {φn} on [t− c−K1, t− c+K1], there exists N > 0 such
that for any n > N and x ∈ [−K1,K1],

|f(φn(t− x− c))− f(φ(t− x− c))| < ε

2
.

Then∣∣α
2

∫
R
e(−α|x|)f(φn(t− x− c))dx− α

2

∫
R
e(−α|x|)f(φ(t− x− c))dx

∣∣
≤ α

2

∫
R
e(−α|x|)|f(φn(t− x− c))− f(φ(t− x− c))|dx

≤ α
∫
|x|>K1

e(−α|x|)dx+
α

2

∫ K1

−K1

e(−α|x|)|f(φn(t− x− c))− f(φ(t− x− c))|dx

≤ ε

2
+
ε

2
= ε for n > N.
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Thus φ(t) is a monotone solution to (2.3).
To complete the proof of Theorem 2.8, we have to show that φ(t) satisfies (2.2).

The iteration scheme shows that φ(t) ≥ φ(t) ≥ φ(t), t ∈ R. By the monotonicity of
φ(t), we obtain

lim
t→−∞

φ(t) ∈ [0, inf
t∈R

φ(t)],

By the properties of φ(t), we obtain limt→−∞ φ(t) = 0. The monotonicity and the
boundedness of φ imply the existence of limt→∞ φ(t). We claim that this limit is a
constant solution of φ(t) = α

2

∫
R e

(−α|x|)f(φ(t− x− c))dx.
Actually, let limt→∞ φ(t) = φ∗. Then by the continuity of f , for any ε > 0, there

exists δ > 0 such that |f(u)− f(φ∗)| < ε
2 for |u− φ∗| < δ. Since limt→∞ φ(t) = φ∗,

there exists T > 0, such that |φ(t)− φ∗| < δ for t > T . Similar to the argument as
above, there exists K1 > 0, satisfies

α

2

∫
x>K1

e(−α|x|)dx <
ε

4
.

Then by the monotonicity of φ and f , for any t > T +K1 + c,∣∣α
2

∫
R
e(−α|x|)f(φ(t− x− c))dx− α

2

∫
R
e(−α|x|)f(φ∗)dx

∣∣
≤ α

2

∫ ∞
K1

e(−α|x|)|f(φ(t− x− c))− f(φ∗)|dx

+
α

2

∫ K1

−∞
e(−α|x|)|f(φ(t− x− c))− f(φ∗)|dx

≤ α
∫ ∞
K1

e(−α|x|)dx+
α

2

∫ ∞
K1

e(−α|x|)|f(φ(t−K1 − c))− f(φ∗)|dx ≤ ε.

Thus we see that
φ∗ =

α

2

∫
R
e(−α|x|)f(φ∗)dx = f(φ∗).

Clearly, φ∗ = 1.
From the definition of φ(t) and φ(t), we have

φ(t)e−λ1(c)t =

{
1 + qeλ1(c)t(η−1) t < t∗ < 0,
e−λ1(c)t t ≥ t∗,

φ(t)e−λ1(c)t =

{
1− qeλ1(c)t(η−1) t < t∗ < 0,
0 t ≥ t∗.

Therefore,

lim
t→−∞

φ(t)e−λ1(c)t = 1 + lim
t→−∞

qeλ1(c)t(η−1) = 1,

lim
t→−∞

φ(t)e−λ1(c)t = 1− lim
t→−∞

qeλ1(c)t(η−1) = 1.

Consequently,
lim

t→−∞
φ(t)e−λ1(c)t = 1.

The proof of Theorem 2.8 is complete. �

Corollary 2.9. Let φ(t) be as obtained in Theorem 2.8. Then φ ∈ C1(R,R) and
limt→−∞ φ′(t)e−λ1(c)t = λ1(c).
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Proof. Recall that φ(t) is a continuous monotone solution to (2.3), it satisfies

φ(t) =
α

2

∫
R
e−α|x|f(φ(t− x− c))dx.

We rewrite φ(t) as

φ(t) =
α

2

∫
R
e−α|t−y|f(φ(y − c))dy

=
α

2

∫ ∞
t

e−α(y−t)f(φ(y − c))dy +
α

2

∫ t

−∞
e−α(t−y)f(φ(y − c))dy

=
αeαt

2

∫ ∞
t

e−αyf(φ(y − c))dy +
αe−αt

2

∫ t

−∞
eαyf(φ(y − c))dy

= eαth1(t) + e−αth2(t),

where h1(t) = α
2

∫∞
t
e−αyf(φ(y − c))dy, h2(t) = α

2

∫ t
−∞ eαyf(φ(y − c))dy. By the

continuity of φ and f , both h1 and h2 are differentiable, and

h′1(t) = −α
2
e−αtf(φ(t− c)), h′2(t) =

α

2
eαtf(φ(t− c)).

Hence φ is differentiable, and

φ′(t) = αeαth1(t)− αe−αth2(t).

Clearly, φ ∈ C1(R,R). Also

lim
t→−∞

φ′(t)e−λ1(c)t

= lim
t→−∞

αh1(t)
e(λ1(c)−α)t

− lim
t→−∞

αh2(t)
e(λ1(c)+α)t

= − α2

2(λ1(c)− α)
lim

t→−∞

f(φ(t− c))
eλ1(c)t

− α2

2(λ1(c) + α)
lim

t→−∞

f(φ(t− c))
eλ1(c)t

=
λ1(c)α2

eλ1(c)c(α2 − λ2
1(c))

lim
t→−∞

f(φ(t− c))
φ(t− c)

φ(t− c)
eλ1(c)(t−c) .

Since

lim
t→−∞

φ(t) = 0, lim
u→0

f(u)
u

= f ′(0),

and by Theorem 2.8,

lim
t→−∞

φ(t)
eλ1(c)t

= 1,

we obtain

lim
t→−∞

φ′(t)e−λ1(c)t =
λ1(c)α2f ′(0)

eλ1(c)c(α2 − λ2
1(c))

= λ1(c).

This completes the proof. �

When we take the same parameters but with different wave speeds, the traveling
wavefronts have different wave profiles. The numerical simulation can be observed
Figure 4.
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α=10.0 
c=0.0993 
λ=1.25

x

N
(x

)

Figure 1. Traveling wave for a compensatory integrodiffence
equation at a small speed. α = 10.0, λ = 1.25, K = 2, c = 0.0993.

 c=0.0193 

Figure 2. No traveling wavefronts exist at a small wave speed.
α = 10.0, λ = 1.25, K = 2, c = 0.0193.

3. Numerical simulations

In this section, we present some numerical simulations on traveling waves of the
recursion (1.6) with Laplace kernel

k(x, y) =
1
2
α exp(−α|x− y|),

and the Beverton Holt growth recruitment function

f(u) =
λu

1 + (λ−1)u
K

.
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α=12.0 
c=0.15 
λ=1.89

x

N
(x

)

Figure 3. Traveling wavefronts with parameters α = 12.0, λ =
1.89, K = 2, c = 0.15.

 c=0.0993 

 c=0.15 
 c=0.20 

x

N
(x

)

Figure 4. Different profile of wavefronts with parameters α =
10.0, λ = 1.25, K = 2 and c1 = 0.15, c2 = 0.0993, c3 = 0.20.

It is clear that the Beverton Holt growth recruitment function satisfies all our
assumptions. In this case, the model under consideration is

un+1(x) =
α

2

∫
Ω

exp(−α|x− y|) λun(x)

1 + (λ−1)un(x)
K

dy. (3.1)

Let yn(x) = un(x)/K. Then we have

yn+1(x) =
α

2

∫
Ω

exp(−α|x− y|) λyn(x)
1 + (λ− 1)yn(x)

dy. (3.2)
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Firstly, we take the same parameters but with different wave speeds. When
the wave speed larger than certain number, the traveling wavefronts exists and the
numerical simulation can be observed in Figure 1. If the wave speed small than
this number, there is no traveling wavefronts and the numerical simulation can be
observed Figure 2.

When we take different parameters, there exists different wave speed, the nu-
merical simulation can be observed Figure 3.

In what follows, we give a brief conclusion. In this paper, we are concerned with
an integro-difference equation with bilateral exponential kernel. Under certain con-
ditions on growth function, we establish the existence of traveling wavefronts by
using upper and lower solution method and monotone iteration techniques. Gen-
erally speaking, Laplacian kernel or Gaussian kernel can be used as the dispersal
kernel. If Gaussian kernel is used, one can easily obtain the minimal spreading
speed c∗. But for Laplacian kernel, there is no similar results can be found in the
literature. In present paper, we use the Laplacian kernel as the dispersal kernel and
get the exact expression for minimal spreading speed c∗. By Remark 2.3, we know
that c∗ can be numerically computed provided all parameters are given explicitly.
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