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COMBINED EFFECTS OF CHANGING-SIGN POTENTIAL AND
CRITICAL NONLINEARITIES IN KIRCHHOFF TYPE
PROBLEMS

GAO-SHENG LIU, LIU-TAO GUO, CHUN-YU LEI

ABSTRACT. In this article, we study the existence and multiplicity of positive
solutions for a class of Kirchhoff type problems involving changing-sign poten-
tial and critical growth terms. Using the concentration compactness principle
and Nehari manifold, we obtain the existence and multiplicity of nonzero non-
negative solutions.

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

In this article, we consider the multiplicity of non-negative solutions of the Kirch-
hoff type equation

— (a + b/ |Vu\2dac) Au = |u*u + plz|*2u+ M (z)|u|??u  in Q,
Q
u=0, on Jf),

(1.1)

where Q is a smooth bounded domain in R3, a,b > 0,0 < a < 1,1 < ¢ < 2,
A > 0 is a positive real number, and 0 < p < ap; (p1 is the first eigenvalue
of —Au = p|x|*~2u, under Dirichlet boundary condition). The weight functions
f € C() is changing-sign potential, satisfying f+ = max{f,0} # 0.

In recent years, the existence and multiplicity of solutions to the nonlocal Kirch-
hoff type problem

—(a + b/ |Vu|2dm) Au=g(z,u) in Q,
Q
u=0, on 9df2

(1.2)

has been the focus of a great deal of research and some results can be found. For
instance, in I} 2, [13], 16 17, 2T, 28]. In particular, when g(z,u) is involved in critical
nonlinearities terms, readers can be referred to [10, 12, [I5] 25, 29] for details. The
authors in [7, 8, [T} [18] have investigated Kirchhoff type equation with concave and
convex nonlinear. In addition, there are some results for g(z, u) being changing-sign
potential, see for example [19], 22 BI]. Especially, Chen et al. [7] considered the
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following nonlocal Kirchhoff type problem

—(a + b/ |Vu|2dx)Au = f(x)uP"2u+ \g(x)|u|?%u  in Q,
Q
u=0, on J9,

(1.3)

the authors assumed that 1 < ¢ < 2 < p < 6, the sign-changing weight functions
f,g € C(Q) and f* = max{f,0} # 0 and g* = max{g,0} # 0 hold. Then there
exists a positive constant Ag(a) > 0 such that for each a > 0 and A € (0, Ag(a)),
problem has at least two positive solutions. In equation , assume 1 <
qg<2,p=6, f(x) =1 and add a term of pu|x|* 2u, then an interesting question
is put forward if the existence and multiplicity of solutions can be established for
Kirchhoff type problems with critical and changing-sign terms.
Throughout this paper, we use the following notation:

e The space H{ () is equipped with the norm [jul| = ([, |[Vul*dz)'/?, the
norm in LP(€2) is represented by |ul, = ([, |u|pdx)%;
e Let S be the best Sobolev constant, namely

2 |Vul2d
S:=  inf fR'—M (1.4)
weD 2 RN} ( [, Jufodz)"

The energy functional I(u): H}(Q) — R corresponding to is defined by

a b o
Inw) = Sl + 2l - / ol 2fufde — 5 [ fultda =2 / Flufda.

Generally speaking, a function u is called a weak solution of (1.1)) if u € Hg(£2) and
for all o € H}(Q) it holds

(a4 blJul?) / (Vu-Vy)dz = M/ || > 2upda +/ |lu| *updx + )\/ flu|"?updz.
Q Q Q Q
Our main result is as follows:

Theorem 1.1. Assume that 1 < ¢ < 2, 0 < a < 1, and f € L*>°(Q) changes
sign, then there exists A\ > 0 such that for every X € (0, \«), problem (L.1) has at
least two nonzero non-negative solutions, and one of the solutions is a ground state
solution.

Remark 1.2. It is well known that the difficulty lies in the lack of compactness of
the embedding: H} < L®(2), then we overcome the difficulty by the concentration
compactness principle. The nonlocal Kirchhoff problem becomes difficult when
b > 0 for estimating the critical value level, however, by adding a particular term
plx|*~2u, we could get over the trouble.

In section 2 we present some preliminary results, while in section 3 we present

the proof of Theorem

2. PRELIMINARY RESULTS

Since I is not bounded below on H{(€2), we will work on the Nehari manifold

= {u € Hy(Q\{0} : (I} (u), u) = 0},
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which implies that N holds all nonzero solutions of (1.1)). In addition, u € N, if
and only if

ollulf + bl = [ fulbds o [ fai*2uPds <A [ flulrds =o.
Q Q Q
Let
wlu) = allull? + ol = [ Julde — p [ [ol*2fuPde— A [ fluptdz,
Q Q Q
and then we obtain
(' (u),u) = 2al|ul|® + 4b||ul|* — 6/ lu|Sdx — 2,u/ |22 |u|?dx — q/\/ flu|¥de.
Q Q Q
We split NV, into three parts:
NY ={u € Nx: (¥'(u),u) > 0},
NR = {ue Nyt (¥ (u),u) =0},
Ny ={ueNy: @' (u),u) <0}
Lemma 2.1. Suppose A € (0,Ty) with
4—q. . 2b
—b
6—gq [6 - q]
Then (i) NiE# 0, and (ii) N? = 0.
Proof. (i) For a given u € H}(Q)\{0},u # 0, as 0 < u < apy, one has

n(t) =t *allul® + b2 [ul]* — ut“‘/ da — /\tq‘6/ Flultdz
Q Q

2(6—q) , 4—g

2 _ _6—-g __2 )
T = { 310D (| floo) TS

|uf®
|x‘27o¢

St (a — 9 [l 4 b2 ]t — AteO / flultda
H1 Q

24— L) Jul? + bl €O [ Julvd
H1 Q
We define two functions ®, ®; € C(RT,R) by

B(1) = ¢4 (a— L) Jul + b ) = X /Q fultdz,

By (t) = bt~2[ul* — MIO|f]oc / Jultda.
Q
Thus
B (1) = — 20t~ [ull* — Mg — 6)177|floe / 9.
Let ®}(t) = 0, it is simple to show that

A6 = )l flos Jo |U\qd$} e
2b][ull*

Easy computations show that ®/(¢) > 0 for all 0 < ¢ < tiax and ®}(¢) < 0 for all

t > tmax. Therefore, ®;(t) achieves its maximum at tyay; that is,

max:|:

4(6—q)

d—q,r 2b 432 [~

4—q

6=¢ 60" (\fl [, \u|qu)ﬁ '

(I)l (tmax) =
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Then it follows from (|1.4)) that

mama—/Wm%x

Q

> D(tmax) —/ |u|®dx
Q

Z (I)l(tmax) _/ |u|6dx
Q

A—q 2 .2 Ju] 5
> [ =] — / S
—4a (Afl fy lulrde) T o
d—q 2 2 e Juf 55
L el R L BRI CI TS o) T e — [ JulSda
u
4—q . 2b 2 [|u)|? = 6
=37 i-q|0) 3(4q))\ o —( ) _1}
{Foatlg=g) I (sl = (o ulf
4— 2b
> (ol IO T (A ) eSS 1l > 0

when 0 < A < T3, where we can choose

_fA—qp 20 42 — 5o 2 g2 5
1= {G b= ) I () ST T

Consequently, there exist constants ¢* such that 0 < t7 = t1(u) < tpax <t~ =
t=(u), tTu € Ny and t~u € Ny .

(ii) Now we show that NP = ) for all A € (0,7}). By contradiction, assume there
exists ug # 0 such that ug € NQ, one obtains

ool + ol = e [ L9t [ ol +3 [ flaofrde, )

4a||uo||2+2b||u0||4*4,u/ |||| dx 4+ A6 —q /f|u0|qd$. (2.2)

It follows from and ( . ) that

)\/ f|u0|qd;v—
Q

>

2 |0| 2 4
(alluol* - /||2a bl

4 2 4
_ 2, 2.3
_q@ ) o ? + 5= bl (23
2
> —0b 4
bl

=}
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On the one hand, since the strict inequality [Juol|? > S|uo|g holds for ug € NY\{0},
we use a parameter © by

4(6—q)
0 = |07 ol = /\uol dz
(fQ flug )qdz) e @
2(6 Q)

\fl“ Q\QI”“ 7 IuOI

:/ |u0|6dac7/ |uo|®dx = 0.
Q Q

On the other hand, by (2.3)), one deduces that

4(6—q)
[[ug ||+

= —/ uo|®da
(A Jo fud)adz) ™ Jo

(G q)

_ _ _2
(-—):|Q|3(647qq)S 2(46qu) %|f|éo_q

_q)>\43q 473‘1 HUOH
o0

(6fqb||u0”4) =

2—q 2 / |ug|? b4 —a), 4
_ ) M0

6_q(a||u0|| H | ‘2_(1 €L 6—q ||U0||

—-q) 2 q 4
9] 3(4 ) —q q 4 a
- st 545 127 (2 0) ™ ol
2 |uol b(4 —q) 4
2 alfuo P - /‘Pa = ol

—q)

_ 2 q\+2;
<KW“®S ST ET () T ol

2 — b(4—q
q(fﬁmwwfi——ﬁww
T 6—¢q 1 6—¢q

.
< lhuoll* 213

26—
< ||t

2 6-a.:2 bWd-9

<0,

which contradicts (2.4), where the least inequality holds when A < T;. The proof
is complete. O

Lemma 2.2. I, is coercive and bounded below on Ny.

Proof. Assume u € Ny, then by (1.4) we obtain

a b 1 IUI
D) = Gl + gl = § [ oo —f/IPM—f/fM%w

a b p |uf?
> ¢ 2 9 4 M RV q
= 3 llull® + 75 llull 3/Q| E= Sdx A !/fIUI dz|

apy — o b 4 1 829 g—q/2
> — — =M= —2)|fleo|$2 T ST a.
> Pl + ) = A @m||e o

Since 1 < g < 2,0 < p < apy, it follows that Iy is coercive and bounded below on
Ny. The proof is complete. O
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According to Lemma we have Ny = N UN for all A € (0,71). Moreover,
we know that Ny J and N, are nonempty, and by Lemma . we may define

ay = inf ©I\(u), of = inf ©L(uw), af = inf I)(u).
BE D), ol = mE @), o5 = L)

Lemma 2.3. a) < aj\r < 0.

Proof. Assume u € Ny, then we have

2—q 4—q
6 2 4
ulde < ——al|ul|* + ——=0b||ul|*. 2.5
[ ultde < S=Saul + g= bl (25)
It follows from (2.5)) that
a i |u|2 1 A
I(u) = Slul* + *H =5 T L |UI6dI—* fIUI"dx
L1 H 2 L1 4 / 6
=(z—-)a——)|ul]"+ (= —~=)bllu u| dz
G- )=l (4 )bl + u
a 1 H 2 1 4
<(z—=)la——)||u|"+(=—-)b
(3 q)( m)H I ( q) [l

1 1,/2

_ 4 —
+(;‘gxg‘gﬂmp+‘4£MWW)
q 24 1 4
= 4 _—— —_—— — .
$5 (o= Lyalul + 5 (5 = Dbl <0

By the definitions of and ozA , we obtain that a) < oz;f < 0. This completes the
proof. ([l

Lemma 2.4. For each u € Ny, there exist € > 0 and a continuously differentiable
function f = f(w) > 0,w € H}(Q), |[w| < & satisfying

f0)=1, fw)(u+w)eNy, Ywe HLQ), |w]|<e.
Proof. For u € Ny, define F': R x H}(Q) — R by
. 2
F(t,w) = t%qa/ |V(u+w)|2dx+t4’qb / |V(u+w)|2dx)
Q

|T+2wa| dx — 1%~ q/ |u+w|6dac—)\/f\u+w|qu

As u € Ny, it is easy to get that F(1,0) = 0 and
Fy(1,0) = (2 = g)al|ul)* + (4 — @)blu]* — / P adiﬂ —(6—q) / |u|®da.

Since u # 0, by Lemma we deduce that Ft(l, 0) # 0. Then, applying the im-
plicit function theorem at the point (0, 1), we obtain that ¢ > 0 and a continuously
differentiable function f : B(0,e) C H(2) — R satisfying that

f0)=1, fw)>0, flw)(u+w)eNy, Ywe HLQ) with |w| <e.
The proof is complete. O

—$2—a

Lemma 2.5. For each u € Ny, there exist € > 0 and a continuously differentiable
function f = f(v) > 0,v € HYQ), |[v|| < e satisfying that

f0)=1, f)(u+tv)eNy, YveHQ), ||lv] <e.
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Proof. Similar to the process in Lemma for u € Ny, define F : Rx H}(Q) — R
by

~ 2
F(t,v):ﬁ*qa/ \V(u+v)|2dx+t4ﬂb(/ |V(u+v)|2dx)
Q Q

2
[u —ijl da:—tﬁ_q/ |u+v|6dx—)\/ flu+ v]4dx.
o || Q Q

As u € N, , we obtain F(l,O) = 0 and Ft(l,O) < 0. Thus, we can apply the
implicit function theorem at the point (0,1) to get the result. This completes the
proof. O

— 42—a

Lemma 2.6. If {u,} C N is a minimizing sequence of Iy, for any ¢ € H}(Q),
then

_ 5Ol + llell (L (), ) < O lllunll + llell

. . (2.6)

Proof. By Lemma[2.2] we obtain I is coercive on Ny. Then, applying the Ekeland
variational principle [9], there exists a minimizing sequence {u,} C N, of I such

that
1 1
IA(un)<a>\+;, IA(U)—IA(un)>—E||v—un||, Yo € Nj. (2.7)

Note that Ix(|un|) = Ix(un), then we obtain that u, > 0. Lemma [2.2] suggests that
{u,} is bounded in HJ(2). Thus there exist a subsequence (still denoted by {u,})
and u, in H}(Q) such that

Up — Uy weakly in H&(Q),
Up — Uy strongly in LP(Q) (1 < p < 6),
Un () — ue(z) a.e. in Q.

Pick t > 0 sufficiently small, p € H}(Q), and let u = u,, w = tp € H(Q) in
Lemma [2.4] then one obtains f,(t) = fu(te) and f,,(0) = 1, fn(t)(us + te) € Na.
Note that

aHunH2+bHunH47/u dx — /|x|°‘ 2uld /fuqu—() (2.8)
From (2.7, one has

00 = 11l + O] > L8+ 0) —
> In(un) — N[ fn () (un + tp)],

(2.9)

and
B~ B0+ )
2 4 2
L8O o 4 L ”buunu‘*wf O [+ tlale s
(é /Q( +t¢)6dx+)\ /fu +tp)ldx
20y 220y n||2+||un+w|| ) (= 1+ t]1?)

2
+1</ (up, + ty) dx—/ugdw —l—f/f((un—i—t(p)q—u%)dx
6\ Jqo Q q.Ja
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5 [ el (n + 10 = )i,
Q

then, by (2.8]) and (2.9)), dividing by ¢ and letting ¢ — 0, we obtain

2O lunll + [l
n

> —fr(O)allun|® + £, (0)bllun|* + £,(0) /Q updz + Af;,(0) /Q fuide

+uf0) [ el ide - (@t bl ) [ (Vi - Viehdo
Q Q
—&—/ui(pdﬂ&—l—)\/fu%_lgadm—i—u/ || > 2w, pdx
Q Q Q
= £ a4 Wt~ [ e = A [ Fupde —p [ fol* 2 de)
Q Q Q
—(a+b||un||2)/(vun-w)da:+/ W pd
Q Q
o [ puttedo 4 [ fal Punpds
Q Q
:—(a+b||un|\2)/(Vun'ch)der/uigader)\/ fud=todz
Q Q Q

+u/ |2|* 2, pda.
Q
Thus, it follows that

!
MO el ¢ ) [ Tt~ [ s
Q Q

f)\/ fu?flcpdxfu/ 2% 2, pdx (2.10)
Q Q

= (I3 (un), ©)
for any p € H}(Q). As (2.10]) also holds for —¢, one sees that ([2.6)) holds. Moreover,

Lemma implies that there exists a constant C' > 0, such that |f;(0)] < C for
all n € N. So, passing to the limit as n — oo in (2.6, we have
(a+b lim ||un||2)/(Vu* -V)dz

n—oo Q

— / ulpdr — )\/ fud=todr — u/ || 2w, pdz = 0
Q Q Q
for all ¢ € H}(Q). The proof is complete. O

(2.11)

We define
abS®  b3S%  (b?S* + 4aS)?/?
+ + :
4 24 24
Lemma 2.7. Suppose 1 < ¢ <2,0< <2, and let {u,} C N, be a minimizing
sequence of I with o, <A — DAT4 where

_(4—q), 6= _as2\ T 20\ 57
D = (P10 75 ™0) T (T,

A=
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then there exists u € HE(Q) such that u, — u in L5(Q).
Proof. Let {u,} C Hi(2) be a (PS). sequence for I, namely

I(u,) — ¢, Ii(up) — 0, asn— 4oo. (2.12)
We see that {u,} is bounded in H}(Q). Indeed, by and (L.4)), one has

L+ c+o(f|lunl)) > In(un) — 3<I;(un)7un>

A 6

1 [ 5 b . 11 /
> = - n Ta n Y Gl e’} nqd
> o= Ll Flluall* = A = §)Iflee [ ot
1 [ ) 11 _ 64
> —(a— ) Junll? = A= = 2)|flaoS~ QT [Jun]|7.
= m)ll [ (q U €275 [Jun|

Since 0 < p < apy,1 < ¢ < 2, it implies that {u,} is bounded in H}(Q). So there
exist a subsequence (still denoted by {u,}) and u € HE(Q) such that
U, — u, weakly in Hg(Q),
U, — u, strongly in LP(Q2) (1 < p < 6),
un(x) — u(z), a.e. in .
Note that In(|un|) = Ix(uy), then we obtain that uw, > 0. According to the

concentration compactness principle (see [20]), there exists a subsequence, say {u., },
such that

(Va3 = dn > |Vul3 + > 0i6,,
jeJ
lunl§ — dv = [ul§ + Y vjda,,
jeJ
where J is an at most countable index set, d,; is the Dirac mass at z;, and let
z; € Q in the support of n,v. we have

v >0, 1y > S’ (2.13)

For any € > 0 sufficiently small, let ¢, ;j(z) be a smooth cut-off function centered
at x; such that 0 < v ;(x) <1,

. € .
Yej(@) =1 in Bz, 5), ¥ (z) =0 in Bz e),
4
Ve s(@)] < =
By (1.4), we obtain

| / Flun|®e jdz| < |flso / Jun|9da
Q B(wj75)
6—q

= |f|°°(/3(zj,g) |un|q'§dx>q/6(/B(zj’E) ldx) N

< flooS ™92 |un|9e 3",

Notice that {u,} is bounded in H}(Q), and u,, — u weakly in L%((2), it implies
that

e—0n—oo

lim lim /f\un\qwg,jdxzo.
Q
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Similarly, we obtain

lim lim ,u/ |22 |u, [*2e jdz = 0.
Q

e—0n—oo

Since {t. ju,} is bounded in H(f2), taking the test function v, ju, in I} (u,) —
0, one deduces that

0= lim lim (7} (un), Pe jtin)

e—0n—oo

~ lim lim {(a+b||un||2)/Q(Vun-V(wa,jun))dx

—0n—oo

- M/Q |2 ul e jdx

—/uf’lwajdx—/\/fu%wajdx}
Q Q

> lim Tim {(a—|—b||un||2)/(|Vun|21/)57j+unVunV77/}57j)dx
n—oo Q

£—

f,u/ |z|a72u,211/157jd1'—/ugz/}ajdx—/\/ fu?l¢g7jdx}
Q Q Q

> lir% lim {(a+b||un||2)/(|Vun|21/157j+unVunV¢s7j)dx
n—oo Q

£—

— /Q ui¢57jdx}

> (a+bnj)n; — v;.
Thus v; > (a + bnj)n;. By (2.13) we obtain
1/?/3 >aS + szuj/g, or n;=v;=0. (2.14)
Set X = 1/; /3 it follows from (2.14) that
X? > aS +bS°X,

then
> bS? + Vb25* + 4aS
- 2 bl
therefore

bS3 + V0256 + 4453
+ . + 4a K
Next we show that n; > VaS3 is impossible. So the set J is empty. Assume

the contrary, there exists some jo € J such that n;, > vaS3. By (2.12)), (1.4) and
Young inequality, we obtain

T]jZSXZ

c= lim Iy(uy)

b 1
= Jim (Gl + el = 5 [ fal* e = 5 [ oo

A 1
=2 [ Aunftds = 5 (allual? + U = g [ ol P
qJa 4 Q

—/Q|un|6dx—)\/ﬂf|un|qu)}
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. 1 1 1 1
= i {(G = Pl 05 - Pl

- (1 - 1)/ |, O — A(1 - 1)/ f|un|qu

{(7_* <||U||2+ZMJ - — = / |u|6dx+21/j)

jeJ

+(z-7) (||u||2+zuj) - f—i) JREERS:

1 1

1
Yo, + (7 = §)vio + zallull®

1 1 1
> (G- o+ (17
1

1 6—g
_ —_ I *‘Z/2 q
A(q 4)|f|oo|Q| STVl
a b K3 ]. K3 2
> = K2 = 2 7=
> SR+ K - o 4(aK+bK 53) =1
where
_ (4_q) G—EQ —q/2 ﬁ 2q 2;10
D= ( 1190 e )T
aK b_, K K2
K - = A K(aerKf?) —0.
Indeed,
oK by K
2 ' 4 653
a bK K2
=K+ g5
- K[g b bS3+ \/b256‘ +4a5% 20255 + 4a5° + 2b5° VD250 + 4a53}
ol Ty 24,53
a b2S3+ b\/bQS6 + 4aS3 b2S3 + 2+ bV/b2S6 + 44,53
- K[E 12 ]
[8(1 + 0283 + b\/b?S6 + 4aSB}
24
 12abS3 4 26%55 + (26253 + 8a) Vb2 SC + 4aS?
B 48
_ abS® B8 (1PS% 4 4a)VIPST 4 4aSP
T4 24 24 o
and
KZ
bS3 + /1256 + 4453 1 2256 + 4453 + 2bS3\/b256 + 4aS3
=a+b
2 I
b2S3 + by/b2S6 + 40,53 253(b253 + 2a + b\/bQS6 + 4aS3)
=a+
2 483
 2a+b2S3 + bV/b255 + 4aS3 — b2S® — 20 — by/b2SC 1 4aS®

2

11
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Therefore, we obtain A — D\T <c<A- D)\ﬁ7 which is a contradiction. It
suggests that J is empty, which means that [, [u,|®dz — [, |u|®dz as n — ooc.
This completes the proof. O

It is known that the function

_ (35)1/4 3
Ug(x)—m, xGR,5>O
satisfies
~AU. = U? in R%.
Set
U.(z
Co= (@), yeley = EE

We select a cut-off function ¢ € C§°(€2) such that ¢(x) = 1 for |z| < Ry, and
o(x) = 0 for |z| > 2Ry, 0 < @(z) < 1. Let uc(z) = o(z)ye(), ve(x) = “=2) then

T Juels
|ve|8 = 1. Therefore we obtain the following results (see details in [29])

lve|? < S+ Ce'/?,
|ve]|® < 83 + Ce'/?,
lve|*? < 86 + Cet/?, (2.15)
H,UE||18 S 59 +C€1/27
o | < %2 + Cel/2.

and
O(c9/4) g/ lue|7dz < O(=7/4),
@ (2.16)
/ 2|2 |uc|?dz = O("/?).
Q

Lemma 2.8. Assume 1 < qg<2, and0 < a<1. Then

sup Iy (tus) < A — DA77,
>0

Proof. We claim that there exist ¢, > 0 and positive constants ty,t; which are
independent of €, A, such that sup,>q Ix(tu.) = Ix(t-u:) and

0<tyg<t.<t, <oo. (2.17)
As limy, oo In(tue) = —o0, there exists ¢ > 0, such that
dI\(t
I (teue) = sup In(teue), and M| . =0.
£>0 dt t=t.

Then

taa\|u5||2+t§b||ug|\4—utE/ |x|°‘_2ugd1:—t§/ugdaj—)\tg_l/ fuldz =0, (2.18)
Q Q Q

and

alluc||® + 3t2b||luc||* — u/ |l2|*2uldr — 5t§/ uSdr — (g — 1)tg_2/ fuldz < 0.
Q Q Q
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Therefore,
2
u
2= el + (4= bl ~ 2 . [ s
Q

< (6 — q)t?/ uSdz.
Q

On the one hand, we can get easily from (2.19) that ¢. is bounded below, so, there
exists a positive constant ¢ty > 0 (independent of &, \), such that 0 < tp <¢.. On
the other hand, it follows from (2.18]) that

W$”+wgw_#/6m+j—/jwm+ [ Jal2uzd,
Q E Q

thus, t. is bounded above for all £ > 0 sufficiently small. Then (2.17)) holds. Set
t6
hiteu) = el + Jedluc] - % [ utda.
2 Q
We claim that there exists a positive constant ¢; (independent of €, A), such that

h(teus) < A+ cret/?, (2.20)

(2.19)

Indeed, set

6
Since lim; o g(t) = —00,¢(0) = 0, and lim,_,+ g(t) > 0, it follows that sup,~ g(t)
attained at T, > 0, namely,

a b 16
olt) = 5l + Jefucl = 5 [ utda,
Q

(Ol = o fuel + 0T ] - 72 [ udo =0,
Q

Then
1?/u%z—dwm2—wﬂwm4:m
Q

therefore

bllucll* + /02 | + dalluc |2 [ ubda 1/2
T. = .
: < 2 [udx )
Notice that g(t) is increasing in [0, 7;], then by (2.15), one has
h(teu.) < g(T)

a b 76
= ST2||ucl” + *Tf|\ua||4 -—= / uldzx

a
= T2 (5l + 212 )

12°¢
=717 (9HU5||2 N b [luc® + b|‘us||4\/b2||u€||8 + dalluc |2 [, ugd:p>
’ 24 [, uldx
B
GfQ ubdr 12 fQ uldz 6fQ uSdx

Pl VPl 2l + daljucl|? [ ubde
24( [, ubdx)? 24( [, uSdx)?

+
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_ ablluc|® | (0?[|ue|® + 4alluc||? [, uldz)*/?
4 [yuldr  24( [, ubdx)? 24( [, uSdx)?

ab(S% + c4e'/?) b3 (S + cel/?)
= A(SP72 1 pe3%) | DA(SOE 1 ey )

[b2(56+05€1/2) +4a(53/2+c 81/2)(53/2 + ¢y 83/2)]3/2
24(S553/2 + ¢ye3/2)?

abS® b3S (b2S6 4 4aS3)3/?
! + 24 24,53
= A+ crel/?.

+ 0761/2

Consequently, there exists ¢; > 0 (independent of €, \) such that (2.20]) holds.
Since 0 < « < 1, from [5], there exists a positive constant cg (independent of
g, A) such that

/ 2| 2ulde = cge®/?. (2.21)
Q

Therefore, from (2.16)), (2.20) and (2.21)), it holds

I _ pit? a—2, 2 td q
/\(teue) = h(tsue) - ml u€d$ - )‘* qudLL‘
Y| floo
<At epel/? §t2 /2 4y ;‘I / wida (2.22)
Q

= A+ cre? — cge®/? 4 Aeyoe??

q
where ¢g = §tdcs, 10 = Tl‘Tfl‘"’. Notice that 0 < a < 1. Let
4 C e
- 2(1—«
= A%2q, )\<)\0=(79)( 7
cr+cio+ D

Then
cre'/? — cge®? + c1oAett = 1A T + cpANTT — coAToa
=\ (07 4+ c10 — coA ™ M)
< —D\7,
From it follows that

/Lt? a—2, 2 tg q
I\(teue) = h(teue) — > |x|“uide — A= | fuldx
Q 4 .Jo
< A - DT,

This completes the proof. [

3. PROOF OF MAIN RESULTS

There exists a constant § > 0 such that A — DA7T=7 > 0 for A < . we set
A« = min{Ty, d}, thus Lemmas hold for all 0 < A < A,. We shall
prove Theorem in two steps.
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Stepl By Lemma there exists a bounded minimizing sequence {u,} C Ny of
I. Perhaps for a subsequence, still denoted by {u,}, there exists uy € H}(Q2) such
that

Up — uy, weakly in Hg(Q),
up — uy, strongly in L°(Q), 1 < s < 6,
up(z) — upr(x), a.e. in Q,

as n — co. Now we shall prove that wy is a nonzero non-negative ground state

solution of problem (|1
At first, we prove that u) is a non-negative solution of . Indeed, by -
in Lemma [2.6) n for all p € H}(Q), we obtain

(a+b lim ||un||2)/(Vu,\~V<p)dx
n—oo Q

—/U§s0d$—/\/ fui‘lwdx—u/ 2|2~ *uypdx = 0.
Q Q Q

Setting lim,, oo ||tn|| = I, one has
(a+ bl?) / (Vuy - V)dz — / ulpdr
Q Q
- )\/ ful™ pdr — ,u/ |z|> ™ “uypdz = 0.
Q Q
Taking the test function ¢ = uy in (3.1)), we have

a+ b ||url]? = [ uSdr — X | fulde —p | |z]> " “u3dz = 0. 3.2
A A A
Q Q Q
The fact u,, € N, implies
a+bllun|)lunll®? = [ wSdz—X [ fuldx — x> dr =
n n ILL n
Q Q Q
Since ay <0< A — D)\ﬁ7 by Lemma we obtain
a+ b))% — [ uSdx — X\ | fulde —p | |z]*"*uide = 0. 3.3
A A A
o) Q Q

It follows from (3.2) and (3.3)) that [Jux| = [, which suggests that u, — wuy in
H}(Q) and uy is a solution of (1.1]), namely,

(@ blunl®) | (Vur - Vo = [ s
S

(3.1)

(3.4)
- )\/ ful N pdr — u/ 2>~ “uypde = 0.
Q Q

for all o € H}(Q). Recall that uy > 0. In addition, note that uy € Ny (uy is a
nontrivial solution of . and ay <0 (by Lemma. then one obtains

- -z /f|UA|qde

o b
:*MIF**/WM lurPdr + S lluall® = Ta(ua)

Y
| =

(a—u)WAW Iwwﬁ—ax>0
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which implies that uy # 0. By Lemma [2.7] we obtain
Q) = lim I)\(un) = I)\(u,\). (35)

Next, we shall show that uy € Ny and I, (uy) = o . We claim that uy € Ny. On
the contrary, suppose that uy € N, , by Lemma there exist positive numbers
tT < tmax <t~ =1 such that tTu € N, t7u € Ny and

)y < I,\(t+U)\> < I)\(t_U)\) = I,\(’LL)\) = vy,

which is a contradiction. Thus, uy € N . From the definition of a;\", we obtain
af < I(uy). It follows from Lemma and (3.5) that

I(uy) = af = ay <0.
From the above discussion, we obtain that u) is a nonzero non-negative ground
state solution of problem (1.1).
Step 2. We shall verify that problem (1.1I)) has a second solution vy with vy € Ny .
As I, is also coercive on N, , then we apply the Ekeland’s variational principle
to the minimization problem ay = inf _ N I, (v) to obtain a minimizing sequence
{vn} C N of I, with the following properties:
(i) I)x(vn) < Oé; + %;
(i) In(u) = Ix(vy) — 2||u — vy || for all u € N .
Since {v,,} is bounded in H{ (2), passing to a subsequence if necessary, there exists
vy € HE(Q) such that
vp — vy, weakly in HJ}(9),
vp, — vy, strongly in L°(£2), 1 < s <6,
vp(x) = va(x), ae. in Q,
as n — co. Now we shall prove that vy is a non-negative solution of (1.1)). Similar
to the proof of Theorem we obtain v, — vy in H}(Q) and v is a non-negative

solution of (|1.1)).

Now, we prove that vy # 0 in Q. From v,, € N, we have

a(2 — g)llval® < (6 — g) /Q ode + (2 - Q) /Q 2] 202dz — b4 — g)|Jua]*

<6-a) [ obdet @ gu [ fol"eide
Q Q
< (6—q)S 3[lvn]®+ (2 - q%nvnui

so that
(a—£)2—q)5?
Jonll > (——2
(6—q)
Note that v,, — vy in H}(Q), (3.6) implies that vy # 0.
Next, we prove that vy € N, . It suffices to prove that Ny is closed. Indeed, by
Lemmas [2.7] and for {v,} C Ny, we obtain

: 67, _ 6
lim vndw—/z))\dac.
Q Q

n—oo

1/4
) . Yo, € NY. (3.6)
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From the definition of N, it holds

@~ Qallvnl + (4 — @bflvall* — (6 — q) / Wdr — (2 g / 2|22 dx < 0.
Q Q
Then
2~ Qalloal® + (4— Qblloal* — (6 - q) / oz — (2 - Q) / j2|*~202de < 0,

which implies that vy € NY UN; . If Ny is not closed, then one obtains vy € NY.

By

Lemma it follows that vy = 0, which contradicts vy # 0. Therefore,

vy € Ny . Since NyF NNy =0, uy and vy are different.
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