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EXISTENCE OF WEAK SOLUTIONS FOR THREE-POINT
BOUNDARY-VALUE PROBLEMS OF KIRCHHOFF-TYPE

GHASEM A. AFROUZI, SHAPOUR HEIDARKHANI, SHAHIN MORADI

Abstract. We show the existence of at least one weak solution for a three-

point boundary-value problem of Kirchhoff-type. Our technical approach is

based on variational methods. In addition, an example to illustrate our results
is given.

1. Introduction

The purpose of this paper is to establish the existence of at least one weak
solution for the three-point boundary-value problem of Kirchhoff-type

−K
(∫ b

a

|u′(t)|2dt
)
u′′(t) = f(t, u(t)) + h(u(t)), t ∈ (a, b),

u(a) = 0, u(b) = αu(η)
(1.1)

where K : [0,+∞[→ R is a continuous function such that there exist positive
numbers m and M with m ≤ K(x) ≤ M for all x ≥ 0, a, b ∈ R with a < b,
f : [a, b] × R → R is an L1-Carathéodory function, h : R → R is a Lipschitz
continuous function with the Lipschitz constant L > 0, i.e.,

|h(ξ1)− h(ξ2)| ≤ L|ξ1 − ξ2|
for every ξ1, ξ2 ∈ R and h(0) = 0, α ∈ R and η ∈ (a, b).

Multi-point boundary-value problems of ordinary differential equations play an
important role in applied mathematics, physics and the vibration of cables with
nonuniform weights [34], and as a consequence, have attracted a great deal of
interest over the years. The study of these problems for linear second-order ordinary
differential equations was initiated by Ii’in and Moiseev [22]. Motivated by the
study of Ii’in and Moiseev [22], Gupta [14] studied certain three-point boundary-
value problems for nonlinear ordinary differential equations.

In the past few years, there has been much attention focused on questions of
solutions of three-point boundary-value problems for nonlinear ordinary differential
equations. For background and recent results, we refer the reader to [3, 11, 12, 14,
23, 24, 25, 40, 41] and the references therein for details. For example, Xu in [41]
by employing the fixed point index method, obtained some multiplicity results
for positive solutions of some singular semi-positone three-point boundary-value
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problem. Sun in [40] by using a fixed point theorem of cone expansion-compression
type due to Krasnosel’skii, established various results on the existence of single
and multiple positive solutions for the nonlinear singular third-order three-point
boundary-value problem

u′′(t)− λa(t)F (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(η) = u′′(1) = 0

with λ > 1, η ∈ [ 1
2 , 1) where a(t) is a non-negative continuous function defined on

(0, 1) and F : [0, 1] × [0,∞) → [0,∞) is continuous. Du et al. in [11] based upon
Leray-Schauder degree theory, ensured the existence of at least three solutions for
the problem

u′′(t) + f(t, u(t), u′(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = ξu(η)

where ξ > 0, 0 < η < 1 such that ξη < 1 and f : [0, 1] × R2 → R is continuous.
Lin [23] by using variational method and three-critical-point theorem, studied the
existence of at least three solutions for a three-point boundary-value problem

u′′(t) + λf(t, u) = 0, t ∈ [0, 1],

u(0) = 0, u(1) = αu(η).

Kirchhoff’s model takes into account the changes in length of the string produced
by transverse vibrations. Similar nonlocal problems also model several physical and
biological systems where u describes a process that depends on the average of itself,
for example, the population density. Problems of Kirchhoff-type have been widely
investigated. We refer the reader to the papers [2, 7, 15, 17, 19, 35, 39] and the
references therein. For example in [17] based on a three critical point theorem, the
existence of an interval of positive real parameters λ for which the boundary-value
problem of Kirchhoff-type

−K
(∫ b

a

|u′(x)|2dx
)
u′′ = λf(x, u), t ∈ [a, b],

u(a) = u(b) = 0

where K : [0,+∞[→ R is a continuous function, f : [a, b]×R→ R is a Carathéodory
function and λ > 0, was discussed. Also, in [19] by using variational meth-
ods and critical point theory, multiplicity results of nontrivial solutions for one-
dimensional fourth-order Kirchhoff-type equations was studied. In recent years,
the existence and multiplicity of stationary higher order problems of Kirchhoff type
(in n-dimensional domains, n ≥ 1) has been studied, via variational methods like
the symmetric mountain pass theorem in [10] and via a three critical point theorem
in [6]. Furthermore, in [4, 5] some evolutionary higher order Kirchhoff problems
were studied, largely concentrate on the qualitative properties of the solutions. In
[28] Molica Bisci and Rădulescu, applying mountain pass results studied the exis-
tence of solutions to nonlocal equations involving the p-Laplacian. More precisely,
they proved the existence of at least one nontrivial weak solution, and under ad-
ditional assumptions, the existence of infinitely many weak solutions. In [26], they
also by using an abstract linking theorem for smooth functionals established a mul-
tiplicity result on the existence of weak solutions for a nonlocal Neumann problem
driven by a nonhomogeneous elliptic differential operator.
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Inspired by the above results, in the present paper, we study the existence of
at least one weak solution for (1.1). Precisely, in Theorem 3.1 we establish the
existence of at least one weak solution for (1.1) requiring an algebraic condition on
f . Example 3.2 illustrates Theorem 3.1. Also in Theorem 3.3 a parametric version
of this result is successively discussed in which, for small values of the parameter
and requiring an additional asymptotical behaviour of the potential at zero, the
existence of at least one weak solution is established. We also list some consequences
the main results. As a consequence of Theorem 3.3, we obtain Theorem 3.11 for
the autonomous case. Finally, we present Example 3.12 in which the hypotheses of
Theorem 3.11 are fulfilled.

We refer to the recent monograph by Molica Bisci, Rădulescu and Servadei [29]
for related problems concerning the variational analysis of solutions of some classes
of nonlocal problems. For a thorough discussion of this subject we refer the reader
to [9].

2. Preliminary results

We shall prove the existence of at least one weak solution to the problem (1.1)
applying the following version of Ricceri’s variational principle [38, Theorem 2.1]
that we now recall as follows (For a refinement see also [8]):

Theorem 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicon-
tinuous, strongly continuous and coercive in X and Ψ is sequentially weakly upper
semicontinuous in X. Let Iλ be the functional defined as Iλ := Φ−λΨ, λ ∈ R, and
for every r > infX Φ, let ϕ be the function defined as

ϕ(r) := inf
u∈Φ−1(−∞,r)

supv∈Φ−1(−∞,r) Ψ(v)−Ψ(u)
r − Φ(u)

.

Then, for every r > infX Φ and every λ ∈ (0, 1
ϕ(r) ), the restriction of the functional

Iλ to Φ−1(−∞, r) admits a global minimum, which is a critical point (precisely a
local minimum) of Iλ in X.

The above result is related to the celebrated three critical points theorem of Pucci
and Serrin [36, 37]. We refer the interested reader to the papers [1, 13, 16, 18, 21,
27, 30, 31, 32, 33] in which Theorem 2.1 has been successfully employed to the
existence of at least one nontrivial solution for boundary-value problems.

Here and in the sequel, we take

X = W 1,2
1 (a, b) := {u ∈W 1,2(a, b) : u(a) = 0, u(b) = αu(η)}.

The space X, equipped with the norm

‖u‖ :=
(∫ b

a

|u′(t)|2dt
)1/2

.

Let f : [a, b]× R→ R be an L1-Carathéodory function, that means:
(a) t 7→ f(t, x) is measurable for every x ∈ R,
(b) x 7→ f(t, x) is continuous for a.e. t ∈ [a, b],
(c) for every ρ > 0 there exists a function lρ ∈ L1([a, b]) such that

sup
|x|≤ρ

|f(t, x)| ≤ lρ(t)



4 G. A. AFROUZI, S. HEIDARKHANI, S. MORADI EJDE-2016/234

for a.e. t ∈ [a, b].
Corresponding to the functions f , K and h, we introduce the functions F :

[a, b]× R→ R, K̃ : [0,+∞[→ R and H : R→ R, defined as follows

F (t, x) :=
∫ x

0

f(t, ξ)dξ for every (t, x) ∈ [a, b]× R,

K̃(x) :=
∫ x

0

K(ξ)dξ for every x ≥ 0,

H(x) :=
∫ x

0

h(ξ)dξ for every x ∈ R.

We say that a function u ∈ X is a weak solution of (1.1) if

K
(∫ b

a

|u′(t)|2dt
)∫ b

a

u′(t)v′(t)dt−
∫ b

a

h(u(t))v(t)dt−
∫ b

a

f(t, u(t))v(t)dt = 0

holds for all v ∈ X.
We assume throughout and without further mention, that the following condition

holds:
(H1) m > L(1+|α|)2(b−a)2

4 .

Theorem 2.2 ([23, Theorem 3.2]). The set X is a separable and reflexive real
Banach space.

The following lemma is needed in the proof of our main result.

Lemma 2.3 ([20, Lemma 2.3]). For all u ∈ X, we have

max
t∈[a,b]

|u(t)| ≤ (1 + |α|)
√
b− a

2
‖u‖. (2.1)

3. Main results

Our main result reads as follows.

Theorem 3.1. Assume that

sup
γ>0

γ2∫ b
a

sup|x|≤γ F (t, x)dt
>

2(1 + |α|)2(b− a)
4m− L(1 + |α|)2(b− a)2

. (3.1)

Then, problem (1.1) admits at least one weak solution in X.

Proof. Our goal is to apply Theorem 2.1 to (1.1). We define the functionals Φ,Ψ
for every u ∈ X, as follows

Φ(u) =
1
2
K̃(‖u‖2)−

∫ b

a

H(u(t))dt, (3.2)

Ψ(u) =
∫ b

a

F (t, u(t))dt, (3.3)

and we put I(u) = Φ(u)−Ψ(u) for every u ∈ X. Let us show that the functionals
Φ and Ψ satisfy the required conditions in Theorem 2.1. It is well known that Ψ is
a differentiable functional whose differential at the point u ∈ X is

Ψ′(u)(v) =
∫ b

a

f(t, u(t))v(t)dt
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for every v ∈ X, as well as is sequentially weakly upper semicontinuous. Moreover,
since m ≤ K(s) ≤M for all s ∈ [0,+∞[, from (3.2) we have

(4m− L(1 + |α|)2(b− a)2)
8

‖u‖2 ≤ Φ(u) ≤ (4M + L(1 + |α|)2(b− a)2)
8

‖u‖2 (3.4)

for all u ∈ X and bearing (H1) in mind, it follows that lim‖u‖→+∞ Φ(u) = +∞,
namely Φ is coercive. Moreover, Φ is continuously differentiable whose differential
at the point u ∈ X is

Φ′(u)(v) = K
(∫ b

a

|u′(t)|2dt
)∫ b

a

u′(t)v′(t)dt−
∫ b

a

h(u(t))v(t)dt

for every v ∈ X. Furthermore, Φ is sequentially weakly lower semicontinuous.
Therefore, we see that the regularity assumptions on Φ and Ψ, as requested in
Theorem 2.1, are verified. Note that the critical points of the functional I are the
solutions of the problem (1.1). We now look on the existence of a critical point of
the functional I in X. The condition (3.1) ensures that there exists γ̄ > 0 such that

γ̄2∫ b
a

sup|x|≤γ̄ F (t, x)dt
>

2(1 + |α|)2(b− a)
4m− L(1 + |α|)2(b− a)2

. (3.5)

Choose

r =
4m− L(1 + |α|)2(b− a)2

2(1 + |α|)2(b− a)
γ̄2.

Bearing in mind relation (2.1), we see that

Φ−1(−∞, r) = {u ∈ X; Φ(u) < r} ⊆
{
u ∈ X; ‖u‖ ≤

√
2r(1 + |α|)2(b− a)

4m− L(1 + |α|)2(b− a)2

}
⊆ {u ∈ X; |u| ≤ γ̄},

and it follows that

Ψ(u) ≤ sup
u∈Φ−1(−∞,r)

∫ b

a

F (t, u(t))dt ≤
∫ b

a

sup
|x|≤γ̄

F (t, x)dt

for every u ∈ X such that Φ(u) < r. Then

sup
Φ(u)<r

Ψ(u) ≤
∫ b

a

sup
|x|≤γ̄

F (t, x)dt.

By simple calculations and from the definition of ϕ(r), since 0 ∈ Φ−1(−∞, r) and
Φ(0) = Ψ(0) = 0, one has

ϕ(r) = inf
u∈Φ−1(−∞,r)

(supv∈Φ−1(−∞,r) Ψ(v))−Ψ(u)
r − Φ(u)

≤
supv∈Φ−1(−∞,r) Ψ(v)

r

≤ 2(1 + |α|)2(b− a)
4m− L(1 + |α|)2(b− a)2

∫ b
a

sup|x|≤γ̄ F (t, x)dt
γ̄2

.

At this point, we observe that

ϕ(r) ≤ 2(1 + |α|)2(b− a)
4m− L(1 + |α|)2(b− a)2

∫ b
a

sup|x|≤γ̄ F (t, x)dt
γ̄2

. (3.6)
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Consequently, from (3.5) and (3.6) one has ϕ(r) < 1. Hence, since 1 ∈ (0, 1
ϕ(r) ),

applying Theorem 2.1 the functional I admits at least one critical point (local
minima) ũ ∈ Φ−1(−∞, r). The proof is complete. �

Now we present an example in which the hypotheses of Theorem 3.1 are satisfied.

Example 3.2. Consider the problem

−K
(∫ 1

0

|u′(t)|2dt
)
u′′(t) = f(u) + h(u), t ∈ (0, 1),

u(0) = 0, u(1) =
1
4
u(

1
2

)
(3.7)

where K(x) = 3
2 + arctan(x))

π for all x ∈ R,

f(x) =
1

103
(2x+ ex)

and h(x) = sin(x) for every x ∈ R. By the expression of f we have

F (x) =
1

103
(x2 + ex − 1)

for every x ∈ R. By simple calculations, we obtain m = 1. Since

sup
γ>0

γ2

sup|x|≤γ F (x)
>

50
39
,

we observe that all assumptions of Theorem 3.1 are fulfilled. Hence, Theorem 3.1
implies that problem (3.7), admits at least one weak solution in W 1,2

1 (0, 1).

We note that Theorem 3.1 can be exploited showing the existence of at least one
solution for the following parametric version of (1.1),

−K
(∫ b

a

|u′(t)|2dt
)
u′′(t) = λf(t, u(t)) + h(u(t)), t ∈ (a, b),

u(a) = 0, u(b) = αu(η)
(3.8)

where λ is a positive parameter. More precisely, we have the following existence
result.

Theorem 3.3. For every λ small enough, more precisely,

λ ∈
(

0,
4m− L(1 + |α|)2(b− a)2

2(1 + |α|)2(b− a)
sup
γ>0

γ2∫ b
a

sup|x|≤γ F (t, x)dt

)
,

problem (3.8) admits at least one weak solution uλ ∈ X.

Proof. Fix λ as in the conclusion. Take Φ and Ψ as given in the proof of Theorem
3.1, and put Iλ(u) = Φ(u)− λΨ(u) for every u ∈ X. Let us pick

0 < λ <
4m− L(1 + |α|)2(b− a)2

2(1 + |α|)2(b− a)
sup
γ>0

γ2∫ b
a

sup|x|≤γ F (t, x)dt
.

Hence, there exists γ̄ > 0 such that

λ
2(1 + |α|)2(b− a)

4m− L(1 + |α|)2(b− a)2
<

γ̄2∫ b
a

sup|x|≤γ̄ F (t, x)dt
.
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Choose

r =
4m− L(1 + |α|)2(b− a)2

2(1 + |α|)2(b− a)
γ̄2.

With the same notation as in the proof of Theorem 3.1, one has

ϕ(r) ≤
supv∈Φ−1(−∞,r) Ψ(v)

r

≤ 2(1 + |α|)2(b− a)
4m− L(1 + |α|)2(b− a)2

∫ b
a

sup|x|≤γ̄ F (t, x)dt
γ̄2

<
1
λ
.

Hence, since λ ∈ (0, 1
ϕ(r) ), Theorem 2.1 ensures that the functional Iλ admits at

least one critical point (local minima) uλ ∈ Φ−1(−∞, r) and since the critical
points of the functional Iλ are the solutions of the problem (3.8) we have the
conclusion. �

Remark 3.4. In Theorem 3.3 we looked for the critical points of the functional Iλ
naturally associated with the problem (3.8). We note that, in general, Iλ can be
unbounded from the following in X. Indeed, for example, when f(t, ξ) = 1+|ξ|γ−2ξ
for (t, ξ) ∈ [a, b]× R with γ > 2, for any fixed u ∈ X\{0} and ι ∈ R, we obtain

Iλ(ιu) = Φ(ιu)− λ
∫ b

a

F (t, ιu(t))dt

≤ ι2 (4M + L(1 + |α|)2(b− a)2)
8

‖u‖2 − λι‖u‖L1 − λι
γ

γ
‖u‖γLγ

→ −∞

as ι → +∞. Hence, we can not use direct minimization to find critical points of
the functional Iλ.

Remark 3.5. For a fixed γ̄ > 0 let

γ̄2∫ b
a

sup|x|≤γ̄ F (t, x)dt
>

2(1 + |α|)2(b− a)
4m− L(1 + |α|)2(b− a)2

.

Then the result of Theorem 3.3 holds with ‖uλ‖∞ ≤ γ̄ where uλ is the ensured
weak solution in X.

Remark 3.6. If in Theorem 3.1 the function f(t, ξ) ≥ 0 for every t ∈ [a, b] and
ξ ∈ R, then the condition (3.1) assumes the simpler form

sup
γ>0

γ2∫ b
a
F (t, γ)dt

>
2(1 + |α|)2(b− a)

4m− L(1 + |α|)2(b− a)2
. (3.9)

Moreover, if the assumption

lim sup
γ→+∞

γ2∫ b
a
F (t, γ)dt

>
2(1 + |α|)2(b− a)

4m− L(1 + |α|)2(b− a)2
,

is satisfied, then condition (3.9) automatically holds.

Remark 3.7. If in Theorem 3.3, f(t, 0) 6= 0 for all t ∈ [a, b], then the ensured weak
solution is obviously non-trivial. On the other hand, the non-triviality of the weak
solution can be achieved also in the case f(t, 0) = 0 for a.e. t ∈ [a, b] requiring the



8 G. A. AFROUZI, S. HEIDARKHANI, S. MORADI EJDE-2016/234

extra condition at zero, that is there are a non-empty open set D ⊆ [a, b] and a set
B ⊂ D of positive Lebesgue measure such that

lim sup
ξ→0+

ess inft∈B F (t, ξ)
|ξ|2

= +∞, (3.10)

lim inf
ξ→0+

ess inft∈D F (t, ξ)
|ξ|2

> −∞. (3.11)

Indeed, let 0 < λ̄ < λ∗ where

λ∗ =
4m− L(1 + |α|)2(b− a)2

2(1 + |α|)2(b− a)
sup
γ>0

γ2∫ b
a

sup|x|≤γ F (t, x)dt
.

Then, there exists γ̄ > 0 such that

λ̄
2(1 + |α|)2(b− a)

4m− L(1 + |α|)2(b− a)2
<

γ̄2∫ b
a

sup|x|≤γ̄ F (t, x)dt
.

Let Φ and Ψ be as given in (3.2) and (3.3), respectively. Due to Theorem 2.1,
for every λ ∈ (0, λ̄) there exists a critical point of Iλ = Φ − λΨ such that uλ ∈
Φ−1(−∞, rλ) where rλ = 4m−L(1+|α|)2(b−a)2

2(1+|α|)2(b−a) γ̄2. In particular, uλ is a global mini-
mum of the restriction of Iλ to Φ−1(−∞, rλ). We will prove that the function uλ
cannot be trivial. Let us show that

lim sup
‖u‖→0+

Ψ(u)
Φ(u)

= +∞. (3.12)

Owing to the assumptions (3.10) and (3.11), we can consider a sequence {ξn} ⊂ R+

converging to zero and two constants σ, κ (with σ > 0) such that

lim
n→+∞

ess inft∈B F (t, ξn)
|ξn|2

= +∞,

ess inft∈D F (t, ξ) ≥ κ|ξ|2

for every ξ ∈ [0, σ]. We consider a set G ⊂ B of positive measure and a function
v ∈ X such that

(1) v(t) ∈ [0, 1] for every t ∈ [a, b],
(2) v(t) = 1 for every t ∈ G,
(3) v(t) = 0 for every x ∈ [a, b] \D.

Hence, for a fixed M > 0 we consider a real positive number η with

M <
ηmeas(G) + κ

∫
D\G |v(t)|2dt

4M+L(1+|α|)2(b−a)2

8 ‖v‖2
.

Then, there is n0 ∈ N such that ξn < σ and

ess inft∈B F (t, ξn) ≥ η|ξn|2

for every n > n0. Now, for every n > n0, by considering the properties of the
function v (that is 0 ≤ ξnv(t) < σ for n large enough), by (3.4), one has

Ψ(ξnv)
Φ(ξnv)

=

∫
G F (t, ξn)dt+

∫
D\G F (t, ξnv(t))dt

Φ(ξnv)

>
ηmeas(G) + κ

∫
D\G |v(t)|2dt

4M+L(1+|α|)2(b−a)2

8 ‖v‖2
> M.
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Since M can be arbitrarily large, we obtain

lim
n→∞

Ψ(ξnv)
Φ(ξnv)

= +∞,

from which (3.12) clearly follows. So, there exists a sequence {wn} ⊂ X strongly
converging to zero such that, for n large enough, wn ∈ Φ−1(−∞, r) and

Iλ(wn) = Φ(wn)− λΨ(wn) < 0.

Since uλ is a global minimum of the restriction of Iλ to Φ−1(−∞, r), we obtain

Iλ(uλ) < 0, (3.13)

so that uλ is not trivial.

Remark 3.8. By using (3.13), without difficulty we observe that the map

(0, λ∗) 3 λ 7→ Iλ(uλ) (3.14)

is negative. Also, one has
lim
λ→0+

‖uλ‖ = 0.

Indeed, taking into account the fact that Φ is coercive and for every λ ∈ (0, λ∗)
the solution uλ ∈ Φ−1(−∞, r), one has that there exists a positive constant L such
that ‖uλ‖ ≤ L for every λ ∈ (0, λ∗). After that, it is easy to see that there exists a
positive constant N such that∣∣∣ ∫ b

a

f(t, uλ(t))uλ(t)dt
∣∣∣ ≤ N‖uλ‖ ≤ NL (3.15)

for every λ ∈ (0, λ∗). Since uλ is a critical point of Iλ, we have I ′λ(uλ)(v) = 0 for
every v ∈ X and every λ ∈ (0, λ∗). In particular I ′λ(uλ)(uλ) = 0, that is,

Φ′(uλ)(uλ) = λ

∫ b

a

f(t, uλ(t))uλ(t)dt (3.16)

for every λ ∈ (0, λ∗). Then, since

0 ≤ (m− L(1 + |α|)2(b− a)2

4
)‖uλ‖2 ≤ Φ′(uλ)(uλ),

by considering (3.16), it follows that

0 ≤ (m− L(1 + |α|)2(b− a)2

4
)‖uλ‖2 ≤ λ

∫ b

a

f(t, uλ(t))uλ(t)dt (3.17)

for any λ ∈ (0, λ∗). Letting λ→ 0+, by (3.17) together with (3.15) we obtain

lim
λ→0+

‖uλ‖ = 0.

Then, we have obviously the desired conclusion. At last, we have to show that the
map

λ 7→ Iλ(uλ)

is strictly decreasing in (0, λ∗). For our goal we see that for any u ∈ X, one has

Iλ(u) = λ
(Φ(u)

λ
−Ψ(u)

)
. (3.18)
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Now, let us fix 0 < λ1 < λ2 < λ∗ and let uλi be the global minimum of the
functional Iλi restricted to Φ(−∞, r) for i = 1, 2. Also, set

mλi =
(Φ(uλi)

λi
−Ψ(uλi)

)
= inf
v∈Φ−1(−∞,r)

(Φ(v)
λi
−Ψ(v)

)
for every i = 1, 2. Clearly, (3.14) together with (3.18) and the positivity of λ imply
that

mλi < 0 for i = 1, 2. (3.19)
Moreover

mλ2 ≤ mλ1 , (3.20)
because 0 < λ1 < λ2. Then, by (3.18)-(3.20) and again by the fact that 0 < λ1 < λ2,
we obtain that

Iλ2(uλ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Iλ1(uλ1),

so that the map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈ (0, λ∗). The arbitrariness
of λ < λ∗ shows that λ 7→ Iλ(uλ) is strictly decreasing in (0, λ∗).

Remark 3.9. If f is non-negative then the solution ensured in Theorem 3.3 is
non-negative. Indeed, let u∗ be a non-trivial weak solution of the problem (3.8),
then u∗ is non-negative. Arguing by a contradiction, assume that the set A = {t ∈
[a, b];u∗(t) < 0} is non-empty and of positive measure. Put v̄(t) = min{u∗(t), 0}.
Using this fact that u∗ also is a solution of (3.8), so for every v̄ ∈ X we have

K
(∫ b

a

|u′∗(t)|2dt
)∫ b

a

u′∗(t)v̄
′(t)dt−

∫ b

a

h(u∗(t))v̄(t)dt− λ
∫ b

a

f(t, u∗(t))v̄(t)dt = 0

and by choosing v̄ = u∗ and since f is non-negative, we have

0 ≤
(
m− L(1 + |α|)2(b− a)2

4

)
‖u∗‖2A

≤ K
(∫
A
|u′∗(t)|2dt

)∫
A
|u′∗(t)|2dt−

∫
A
h(u∗(t))u∗(t)dt

= λ

∫
A
f(t, u∗(t))u∗(t)dt ≤ 0

since m > L(1+|α|)2(b−a)2

4 , we have ‖u∗‖2A ≤ 0 which contradicts fact that u∗ is a
non-trivial solution. Hence, u∗ is positive.

Remark 3.10. We observe that Theorem 3.3 is a bifurcation result in the sense
that the pair (0, 0) belongs to the closure of the set

{(uλ, λ) ∈ X × (0,+∞) : uλ is a non-trivial weak solution of (3.8)}

in X × R. Indeed, by Theorem 3.3 we have that

‖uλ‖ → 0 as λ→ 0.

Hence, there exist two sequences {uj} in X and {λj} in R+ (here uj = uλj ) such
that λj → 0+ and ‖uj‖ → 0, as j → +∞. Moreover, we emphasis that due to the
fact that the map

(0, λ∗) 3 λ 7→ Iλ(uλ)
is strictly decreasing, for every λ1, λ2 ∈ (0, λ∗), with λ1 6= λ2, the solutions uλ1 and
uλ2 ensured by Theorem 3.3 are different.
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When f does not depend on t, we obtain the following consequence of Theorem
3.3.

Theorem 3.11. Let f : R→ R be a non-negative continuous function. Put F (x) =∫ x
0
f(ξ)dξ for all x ∈ R. Assume that

lim
ξ→0+

F (ξ)
ξ2

= +∞.

Then, for each

λ ∈ Λ =
(

0,
4m− L(1 + |α|)2(b− a)2

2(1 + |α|)2(b− a)2
sup
γ>0

γ2

F (γ)

)
,

the problem

−K
(∫ b

a

|u′(t)|2dt
)
u′′(t) = λf(u(t)) + h(u(t)), t ∈ [a, b],

u(a) = 0, u(b) = αu(η)

admits at least one positive weak solution uλ ∈ X such that

lim
λ→0+

‖uλ‖ = 0

and the real function

λ→ 1
2
K̃(‖uλ‖2)−

∫ b

a

H(uλ(t))dt−
∫ b

a

F (uλ(t))dt

is negative and strictly decreasing in Λ.

We conclude this paper by giving an example that illustrates Theorem 3.11.

Example 3.12. We consider the problem

−K
(∫ 1

0

|u′(t)|2dt
)
u′′(t) = f(u) + h(u), t ∈ (0, 1),

u(0) = 0, u(1) =
1
3
u(

1
2

)
(3.21)

where

K(x) =

{
1 + x− [x], [x] is even,
1 + |x− [x+ 1]|, [x] is odd,

where [x] is the integer part of x,

f(x) = 2x+ ex +
2x

1 + x2

and h(x) = 1− cos(x) for every x ∈ R. By the expression of f we have

F (x) = x2 + ex + ln(1 + x2)− 1 .

Direct calculations give m = 1 and supγ>0
γ2

F (γ) = 1. Then all conditions in The-
orem 3.11 are satisfied. Hence, for each λ ∈

(
0, 5

8

)
, problem (3.21) admits at least

one positive weak solution in uλ ∈ W 1,2
1 (0, 1) such that limλ→0+ ‖uλ‖ = 0 and the

real function

λ→ 1
2
K̃(‖uλ‖2)−

∫ 1

0

(uλ(t)−sin(uλ(t))) dt−
∫ 1

0

(u2
λ(t)+euλ(t)+ln(1+u2

λ(t))−1) dt

is negative and strictly decreasing in (0, 5/8).



12 G. A. AFROUZI, S. HEIDARKHANI, S. MORADI EJDE-2016/234

References

[1] G. A. Afrouzi, A. Hadjian, G. Molica Bisci; Some remarks for one-dimensional mean curva-
ture problems through a local minimization principle, Adv. Nonlinear Anal. 2 (2013), 427-441.

[2] C. Alves, G. Figueiredo; Multi-bump solutions for a Kirchhoff-type problem, Adv. Nonlinear

Anal. 5 (2016), no. 1, 1-26.
[3] D. Anderson; Multiple positive solutions for a three-point boundary value problem, Math.

Comput. Modelling 27 (1998), 49-57.

[4] G. Autuori, F. Colasuonno, P. Pucci; Blow up at infinity of solutions of polyharmonic Kirch-
hoff systems, Complex Var. Elliptic Eqs. 57 (2012), 379-395.

[5] G. Autuori, F. Colasuonno, P. Pucci; Lifespan estimates for solutions of polyharmonic Kirch-
hoff systems, Math. Mod. Meth. Appl. Sci. 22 (2012) 1150009 (36 pages).

[6] G. Autuori, F. Colasuonno, P. Pucci; On the existence of stationary solutions for higher-order

p-Kirchhoff problems, Commun. Contemp. Math. 16 (2014) 1450002 (43 pages).
[7] B. Barrios, I. Peral, S. Vita; Some remarks about the summability of nonlocal nonlinear

problems, Adv. Nonlinear Anal. 4 (2015), no. 2, 91-107.

[8] G. Bonanno, G. Molica Bisci; Infinitely many solutions for a boundary value problem with
discontinuous nonlinearities, Bound. Value Probl. 2009 (2009) 1-20.

[9] B. Bougherara, J. Giacomoni; Existence of mild solutions for a singular parabolic equation

and stabilization, Adv. Nonlinear Anal. 4 (2015), no. 2, 123-134.
[10] F. Colasuonno, P. Pucci; Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff

equations, Nonlinear Anal. TMA 74 (2011) 5962-5974.

[11] Z. Du, C. Xue, W. Ge; Multiple solutions for three-point boundary value problem with non-
linear terms depending on the first order derivative, Arch. Math. 84 (2005) 341-349.

[12] X. He, W. Ge; Triple solutions for second order three-point boundary value problems, J.
Math. Anal. Appl. 268 (2002) 256-265.

[13] M. Galewski, G. Molica Bisci; Existence results for one-dimensional fractional equations,

Math. Meth. Appl. Sci. 39 (2016) 1480-1492.
[14] C. P. Gupta; Solvability of a three-point nonlinear boundary value problem for a second order

ordinary differential equation, J. Math. Anal. Appl. 168 (1992) 540-551.

[15] X. He, W. Zou; Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear
Anal. TMA 70 (2009) 1407-1414.

[16] S. Heidarkhani, G. A. Afrouzi, M. Ferrara, G. Caristi, S. Moradi; Existence results for im-

pulsive damped vibration systems, Bull. Malays. Math. Sci. Soc., DOI: 10.1007/s40840-016-
0400-9.

[17] S. Heidarkhani, G. A. Afrouzi, D. O’Regan; Existence of three solutions for a Kirchhoff-type

boundary-value problem, Electronic J. Differ. Equ. Vol. 2011 (2011) No. 91, pp. 1-11.
[18] S. Heidarkhani, M. Ferrara, G. A. Afrouzi, G. Caristi, S. Moradi; Existence of solutions for

Dirichlet quasilinear systems including a nonlinear function of the derivative, Electron. J.

Diff. Equ., Vol. 2016 (2016) No. 56, pp. 1-12.
[19] S. Heidarkhani, M. Ferrara, S. Khademloo; Nontrivial solutions for one-dimensional fourth-

order Kirchhoff-type equations, Mediterr. J. Math. 13 (2016) 217-236.
[20] S. Heidarkhani, A. Salari; Existence of three solutions for Kirchhoff-type three-point boundary

value problems, preprint.
[21] S. Heidarkhani, Y. Zhou, G. Caristi, G. A. Afrouzi, S. Moradi; Existence results for fractional

differential systems through a local minimization principle, Comput. Math. Appl. (2016)

http://dx.doi.org/10.1016/j.camwa.2016.04.012.

[22] V. A. II’in, E. I. Moiseev; Nonlocal boundary value problem of the first kind for a Sturm-
Liouville operator in its differential and finite difference aspects, Differ. Equ. 23 (1987)

803-810.
[23] X. Lin; Existence of three solutions for a three-point boundary value problem via a three-

critical-point theorem, Carpathian J. Math. 31 (2015), 213-220.

[24] D. X. Ma; Existence and iteration of positive solution for a three-point boundary value prob-

lem with a p-Laplacian operator Arch. Math. 25 (2007) 329-337.
[25] R. Ma, H. Wang; Positive solutions of nonlinear three-point boundary-value problems, J.

Math. Anal. Appl. 279 (2003) 216-227.
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[30] G. Molica Bisci, D. Repovš; Existence and localization of solutions for nonlocal fractional
equations, Asymptot. Anal. 90 (2014), no. 3-4, 367-378.
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