
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 254, pp. 1–18.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

MULTIPLE POSITIVE SOLUTIONS TO A FOURTH-ORDER
BOUNDARY-VALUE PROBLEM

ALBERTO CABADA, RADU PRECUP, LORENA SAAVEDRA, STEPAN A. TERSIAN

Abstract. We study the existence, localization and multiplicity of positive

solutions for a nonlinear fourth-order two-point boundary value problem. The
approach is based on critical point theorems in conical shells, Krasnosel’skĭı’s

compression-expansion theorem, and unilateral Harnack type inequalities.

1. Introduction

The fourth-order boundary-value problems appear in the elasticity theory de-
scribing stationary states of the deflection of an elastic beam. In the last decade a
lot of studies have been devoted to the existence of positive solutions for such prob-
lems, applying the Leray-Schauder continuation method, topological degree theory,
fixed point theorems in cones, critical point theory and lower and upper solution
methods (see, for example, [2, 3, 4, 6, 5, 10, 11, 12, 17, 18]).

In this article, we study the existence and multiplicity of positive solutions for
nonlinear fourth-order two-point boundary value problem with cantilever boundary
conditions. More exactly, we consider the fourth-order boundary value problem

u(4)(t)− f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(1.1)

where the function f : [0, 1]×R→ R is continuous, f(t,R+) ⊂ R+ for all t ∈ [0, 1],
and the solution is sought in C4[0, 1].

Our approach is based on critical point theorems for functionals in conical shells
(see [13, 14]) and Krasnosel’skĭı’s compression-expansion theorem. As one can see
along the paper, the arguments developed here can be applied to other boundary
value problems associated to fourth and sixth order differential equations. Because
the estimates are connected with specific boundary conditions, we concentrate only
on the model problem (1.1).

The paper is organized as follows. In Section 2 we state the critical point theo-
rems in conical shells and Krasnosel’skĭı’s compression-expansion theorem. We also
present the fixed point formulation and the variational formulation of the problem.
In Section 3, the main existence and multiplicity results Theorems 3.2, 3.3, 3.5 and
3.6 are stated and proved. Their proofs are based on the mentioned above theorems
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and on the inequalities proved in Lemma 3.1 and Lemma 3.4. Finally in Section 4,
an example is presented.

2. Preliminaries

2.1. Critical point theorems in conical shells. In this subsection we introduce
the results given in [13] which we are going to apply to the fourth order problem
(1.1).

For any real Hilbert space H with inner product (·, ·)H and norm | · |H , we
let H ′ be its dual space. Denoting by 〈·, ·〉 the duality between H and H ′, i.e.
〈u∗, u〉 = u∗(u) for u∗ ∈ H ′ and u ∈ H, according to the Riesz representation
theorem, we can consider the canonical isomorphism LH : H → H ′, given by

(u, v)H = 〈LH u, v〉 for all u, v ∈ H , (2.1)

and its inverse JH : H ′ → H for which

(JHu, v)H = 〈u, v〉 for u ∈ H ′ , v ∈ H . (2.2)

Using this isomorphism we may identify H with H ′, letting LHu ≡ u, JHu ≡ u,
and so LH = JH = IH ( identity map of H).

In what follows we consider two real Hilbert spaces, X with inner product and
norm (·, ·)X , | · |X , and Y with inner product and norm (·, ·)Y , | · |Y ; we assume
that X is continuously embedded into Y and that Y is identified with Y ′. Then,
from X ⊂ Y , one has Y ′ ⊂ X ′, and therefore

X ⊂ Y ≡ Y ′ ⊂ X ′. (2.3)

Note that for every u ∈ X, the notation JXu will be used to denote the element
JXLY u. Also, if u, v ∈ Y , then according to (2.1) and the identification LY u = u,

〈u, v〉 = (u, v)Y .

This is the reason for using the symbol 〈·, ·〉 instead of (·, ·)Y . In what follows, for
simplicity, the inner product and norm will be denoted by (·, ·) and | · | for X, and
by 〈·, ·〉 and ‖ · ‖ for Y . Also, we shall use the notations L and J instead of LX
and JX .

Let K be a cone in X, i.e. a convex closed nonempty set K, K 6= {0}, with
λu ∈ K for every u ∈ K and λ ≥ 0, and K ∩ (−K) = {0}. For any two positive
numbers R0 and R1, we denote by KR0R1 the conical shell

KR0R1 := {u ∈ K : ‖u‖ ≥ R0 and |u| ≤ R1}.
Such a set may be empty (even if R0 < R1) and may be disconnected. Let φ ∈
K \ {0} be a fixed element with |φ| = 1. If R0 < ‖φ‖R1, then µφ ∈ KR0R1 for
every µ ∈ [R0/‖φ‖, R1], and µφ is an interior point of KR0R1 , in the sense that
‖µφ‖ > R0 and |µφ| < R1, for µ ∈ (R0/‖φ‖, R1). In particular, any two elements
of KR0R1 of the form µφ, with µ ∈ [R0/‖φ‖, R1], belong to the same connected
component of KR0R1 .

In particular if Y = X, the spaces X and X ′ are identified, so L = J = IX .
Also, in this case, the conical shell KR0R1 is nonempty and simply connected for
every R0, R1 with 0 < R0 < R1.

Let E be a C1 functional defined on X. We say that E satisfies the modified
Palais-Smale-Schechter condition (MPSS) in KR0R1 , if any sequence (uk) of ele-
ments of KR0R1 for which the sequence (E(uk)) converges and one of the following
conditions holds:
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(i) E′(uk)→ 0;
(ii) ‖uk‖ = R0, (JE′(uk), Juk) ≥ 0 and JE′(uk)− (JE′(uk),Juk)

|Juk|2 Juk → 0;

(iii) |uk| = R1, (JE′(uk), uk) ≤ 0 and JE′(uk)− (JE′(uk),uk)
R2

1
uk → 0,

has a convergent subsequence.
We say that E satisfies the compression boundary condition in KR0R1 if

JE′(u)− λJu 6= 0 for u ∈ KR0R1 , ‖u‖ = R0, λ > 0; (2.4)

JE′(u) + λu 6= 0 for u ∈ KR0R1 , |u| = R1, λ > 0. (2.5)

We say that E has a mountain pass geometry in KR0R1 if there exist u0 and u1 in
the same connected component of KR0R1 , and r > 0 such that |u0| < r < |u1| and

max{E(u0), E(u1)} < inf{E(u) : u ∈ KR0R1 , |u| = r}.
In this case we consider the set

Γ = {γ ∈ C([0, 1];KR0R1) : γ(0) = u0, γ(1) = u1} (2.6)

and the number
c = inf

γ∈Γ
max
t∈[0,1]

E(γ(t)) . (2.7)

Finally, we say that E is bounded from below in KR0R1 if

m := inf
u∈KR0R1

E(u) > −∞. (2.8)

We assume that the following conditions are satisfied:

(I − JE′)(K) ⊂ K (I is the identity map on X); (2.9)

and there exists a constant ν0 > 0 such that

(JE′(u), Ju) ≤ ν0 for all u ∈ K with ‖u‖ = R0; (2.10)

(JE′(u), u) ≥ −ν0 for all u ∈ K with |u| = R1. (2.11)

The following theorems of localization of critical points in a conical shell appear as
slight particularizations of the main results from [13, 14].

Theorem 2.1. Assume that E is bounded from below in KR0R1 and that there is
a ρ > 0 with

E(u) ≥ m+ ρ (2.12)
(m given in (2.8)) for all u ∈ KR0R1 which simultaneously satisfy |u| = R1, ‖u‖ =
R0. In addition assume that E satisfies the (MPSS) condition and the compression
boundary condition in KR0R1 . Then there exists u ∈ KR0R1 such that

E′(u) = 0 and E(u) = m.

Theorem 2.2. Assume that E has the mountain pass geometry in KR0R1 and that
there is a ρ > 0 with

|E(u)− c| ≥ ρ (2.13)
(c given in (2.7)) for all u ∈ KR0R1 which simultaneously satisfy |u| = R1, ‖u‖ =
R0. In addition assume that E satisfies the (MPSS) condition and the compression
boundary condition in KR0R1 . Then there exists u ∈ KR0R1 such that

E′(u) = 0 and E(u) = c.

Remark 2.3. If the assumptions of both Theorems 2.1 and 2.2 are satisfied, since
m < c, then E has two distinct critical points in KR0R1 .
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2.2. Krasnosel’skĭı’s compression-expansion theorem. Problem (1.1) can
also be investigated by means of fixed point techniques. In this article, we are
mainly concerned with the variational approach based on critical point theory.
However, it deserves to comment about the applicability of fixed point methods
and the surplus of information given by the variational approach.

Thus we shall report on the applicability of Krasnosel’skĭı’s compression-ex-
pansion theorem (see [7, 9]), which guarantees the existence of a fixed point of
a compact operator in a conical shell of a Banach space.

Theorem 2.4 (Krasnosel’skĭı). Let (X, | · |) be a Banach space and K ⊂ X a cone.
Let R0, R1 be two numbers with 0 < R0 < R1, KR0R1 = {u ∈ K : R0 ≤ |u| ≤ R1},
and let N : KR0R1 → K be a compact operator. Let < be the strict ordering induced
in X by the cone K, i.e. u < v if and only if v − u ∈ K \ {0}. Assume that one of
the following conditions is satisfied:

(a) compression: (i) N(u) ≮ u for all u ∈ K with |u| = R0, and (ii) N(u) ≯ u
for all u ∈ K with |u| = R1;

(b) expansion: (i) N(u) ≯ u for all u ∈ K with |u| = R0, and (ii) N(u) ≮ u
for all u ∈ K with |u| = R1.

Then N has at least one fixed point in KR0R1 .

2.3. Fixed point formulation of the problem. For each v ∈ L2(0, 1), the prob-
lem

u(4)(t) = v(t), 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0
(2.14)

has in H4(0, 1) a unique solution u denoted by Sv, namely

(Sv)(t) =
∫ 1

0

G(t, s) v(s) ds , t ∈ [0, 1], (2.15)

where G(t, s) is the corresponding Green’s function. Obviously, Sv ∈ C4[0, 1] if
v ∈ C[0, 1]. One can easily obtain the expression of G(t, s) using the Mathematica
package developed in [1], namely

G(t, s) =

{
s2

6 (3 t− s) , 0 ≤ s ≤ t ≤ 1,
t2

6 (3 s− t) , 0 ≤ t < s ≤ 1 .
(2.16)

Then problem (1.1) is equivalent to the integral equation

u(t) =
∫ 1

0

G(t, s) f(s, u(s)) ds , u ∈ C[0, 1]. (2.17)

Obviously, (2.17) represents a fixed point equation associated to the compact op-
erator

N(u)(t) =
∫ 1

0

G(t, s) f(s, u(s)) ds, t ∈ [0, 1]. (2.18)

It is clear that N(u) = Sf(·, u(·)).

2.4. Variational formulation of the problem. Next we describe the variational
structure of problem (1.1) (see [16, 17]).

Let X be the Hilbert space

X := {u ∈ H2(0, 1) : u(0) = u′(0) = 0}
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with inner product and norm

(u, v) :=
∫ 1

0

u′′(t)v′′(t)dt,

|u| :=
(∫ 1

0

(u′′(t))2dt
)1/2

. (2.19)

To problem (1.1) we associate the functional E : X → R defined by

E(u) :=
1
2
|u|2 −

∫ 1

0

F (t, u(t))dt,

where

F (t, u) =
∫ u

0

f(t, s)ds .

The functional E is C1 and for any u, v ∈ X, and

〈E′(u), v〉 =
∫ 1

0

(u′′(t) v′′(t)− f(t, u(t)) v(t)) dt

= (u, v)− (f(·, u(·)), v)L2 .

Integrating by parts twice in (N(u), v) we obtain that (N(u), v) = (f(·, u(·)), v)L2 .
Then

〈E′(u), v〉 = (u−N(u), v).
Therefore, if X is identified with X ′, which corresponds to the choice Y = X in
(2.3), then

E′(u) = u−N(u).
If we chose Y = Y ′ = L2(0, 1), then since f(·, u(·)) ∈ L2(0, 1), based on (2.2),
(f(·, u(·)), v)L2 = 〈f(·, u(·)), v〉. Also (u, v) = 〈Lu, v〉. Hence

〈E′(u), v〉 = 〈Lu− f(·, u(·)), v〉,

and so
E′(u) = Lu− f(·, u(·)),

or equivalently
JE′(u) = u− Jf(·, u(·)). (2.20)

Notice that for each v ∈ L2(0, 1), one has

Jv = Sv, (2.21)

that is, u := Jv is the solution in H4(0, 1)) of problem (2.14). Indeed, based on
(2.2),

(Jv,w) = 〈v, w〉, w ∈ X. (2.22)

For w ∈ C∞c (0, 1), one has (u,w) = 〈u(4), w〉, where u(4) is in the distributional
sense. Hence 〈u(4), w〉 = 〈v, w〉 for every w ∈ C∞c (0, 1), which shows that u(4) = v.
Since v ∈ L2(0, 1), we have u ∈ H4(0, 1). It remains to check that u′′(1) = u′′′(1) =
0. For this, we come back to (2.22), which after two successive integration by parts
in the left hand side becomes

u′′(1)w′(1)− u′′′(1)w(1) + 〈u(4), w〉 = 〈v, w〉.

Consequently, u′′(1)w′(1) − u′′′(1)w(1) = 0. Since this holds for every w ∈ X, we
must have u′′(1) = u′′′(1) = 0, as desired.
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3. Main results

3.1. Localization in a shell defined by the energetic norm. First we shall
deal with the localization of positive solutions u of problem (1.1) in a shell defined
by a single norm, more exactly

R0 ≤ |u| ≤ R1,

where | · | is the energetic norm given by (2.19). Therefore, in this subsection
we choose Y = X and consequently we identify X to X ′. For this situation, the
following unilateral Harnack inequality is crucial.

Lemma 3.1. If u ∈ C4[0, 1] satisfies u(0) = u′(0) = u′′(1) = u′′′(1) = 0 and u(4)

is nonnegative and nondecreasing in [0, 1], then u is convex and

u(t) ≥M0(t)|u| for all t ∈ [0, 1], (3.1)

where M0(t) =
√

2(1− t)t3/6.

Proof. From u(4) ≥ 0 it follows that u′′ is convex. This together with u′′(1) =
(u′′)′(1) = 0 gives that u′′ is nonnegative and nonincreasing. Next, from u′′ ≥ 0
one has that u is convex, and since u(0) = u′(0) = 0, u must be nondecreasing and
nonnegative.

On the other hand, since u(4) ≥ 0 we have that u′′′ is nondecreasing and since
u′′′(1) = 0, u′′′ ≤ 0. Then u′ is concave; it is also nondecreasing due to u′′ ≥ 0, and
since u′(0) = 0, we have u′ ≥ 0. Now from u′′ ≥ 0, u′ ≥ 0 and u(0) = 0, we see
that u is nonnegative, nondecreasing and convex.

Finally note that from u(4) nondecreasing, we have that u′′′ is convex, and since
u′′′(1) = 0, the graph of u′′′ is under the line connecting the points (0, u′′′(0)) and
(1, 0), i.e.

u′′′(t) ≤ (1− t)u′′′(0), t ∈ [0, 1]. (3.2)
Because the function u′′ is nonincreasing and the function u′′′ is nondecreasing

we have:

u(t) =
∫ t

0

∫ s

0

u′′(τ)dτds ≥
∫ t

0

∫ s

0

u′′(s)dτds

=
∫ t

0

su′′(s)ds =
t2

2
u′′(t)−

∫ t

0

s2

2
u′′′(s)ds

≥ −
∫ t

0

s2

2
u′′′(s)ds ≥ −

∫ t

0

s2

2
u′′′(t)ds

= − t
3

6
u′′′(t).

This inequality combined with (3.2) gives

u(t) ≥ − (1− t)t3

6
u′′′(0). (3.3)

Next we deal with the energetic norm wishing to connect it to u′′′(0). One has

|u|2 =
∫ 1

0

u′′(t)2dt = u′′u′|10 −
∫ 1

0

u′′′(t)u′(t)dt

= −
∫ 1

0

u′′′(t)u′(t)dt ≤ −u′′′(0)u′(1).
(3.4)
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Also

u′(1) =
∫ 1

0

u′′(t)dt = −
∫ 1

0

∫ 1

t

u′′′(s) ds dt

≤ −
∫ 1

0

∫ 1

t

u′′′(t) ds dt = −
∫ 1

0

(1− t)u′′′(t)dt

≤ −
∫ 1

0

(1− t)u′′′(0)dt = −1
2
u′′′(0).

(3.5)

From (3.4) and (3.5) we deduce |u|2 ≤ u′′′(0)2/2, or

−u′′′(0) ≥
√

2|u|.
This inequality and (3.3) prove (3.1). �

Consider the cone

K := {u ∈ X : u convex and u(t) ≥M0(t)|u| on [0, 1]}.
Note that K 6= {0}, since according to Lemma 3.1, for any nonzero nonnegative
nondecreasing function v ∈ C[0, 1], the function u = Sv given by (2.15) belongs to
K and is different from zero. Also, since any convex function with u(0) = u′(0) = 0
is nondecreasing, all the elements of K are nondecreasing functions. Consequently,
if f is nondecreasing on [0, 1] × R+ in each of its variables, then the composite
function f(·, u(·)) is nonnegative and nondecreasing in [0, 1] for every u ∈ K and
so Lemma 3.1 can be applied to any solution u ∈ K of (1.1) guaranteeing the
invariance condition N(K) ⊂ K, and consequently, the condition (2.9).

Denote
M1(t) :=

2
3
t3/2, t ∈ [0, 1].

Our assumptions on f are as follows:
(H1) f is nondecreasing on [0, 1]× R+ in each of its variables;
(H2) there exist R0, R1 with 0 < R0 < R1 such that

(a)
∫ 1

0
M0(t)f(t,M0(t)R0)dt ≥ R0,

(b)
∫ 1

0
M1(t)f(t,M1(t)R1)dt ≤ R1.

(h3) there exist u0, u1 ∈ KR0R1 = {u ∈ K : R0 ≤ |u| ≤ R1} and r > 0 such that
|u0| < r < |u1| and

max{E(u0), E(u1)} < inf{E(u) : u ∈ K, |u| = r}.

Theorem 3.2. Assume that (H1), (H2) are satisfied. Let Γ, m and c be defined as
in (2.6), (2.7) and (2.8) respectively. Then the fourth-order problem (1.1) has at
least one positive solution um in KR0R1 such that

E(um) = m.

If in addition (H3) holds, then a second positive solution uc exists in KR0R1 with

E(uc) = c.

Proof. We apply Theorems 2.1 and 2.2. Recall that here we identify X to X ′ and
thus J = I, the identity map on X.

First note that the (MPSS) condition holds in KR0R1 due to the compactness
of the operator N = I −E′. Also the boundedness of (E′(u), u) on the boundaries
of KR0R1 , i.e. (2.10) and (2.11), is guaranteed since E′ maps bounded sets into
bounded sets.
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To check (2.9), let u be any element of K. Hence u is nonnegative and non-
decreasing on [0, 1]. Then, from (h1) we also have that f(t, u(t)) is nonnega-
tive and nondecreasing in [0, 1]. Now, Lemma 3.1 implies that N(u) ∈ K. But
N(u) = (I − E′)(u). Thus (2.9) holds.

Next, let us note that for any u ∈ KR0R1 , we have

u(t) =
∫ t

0

∫ s

0

u′′(τ)dτds ≤
∫ t

0

√
s(
∫ s

0

u′′(τ)2dτ)1/2ds

≤ |u|
∫ t

0

√
sds =

2
3
t3/2|u| = M1(t)|u|.

(3.6)

Then

E(u) =
1
2
|u|2 −

∫ 1

0

F (t, u(t))dt ≥ 1
2
R2

0 − F (1,
2
3
R1).

Hence E is bounded from below on KR0R1 .
Furthermore, we check the boundary conditions (2.4). Assume that E′(u)−λu =

0 for some u ∈ K with |u| = R0 and λ > 0. Then u solves the problem

u(4)(t)− f(t, u(t))− λu(t) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0

and

R2
0 = |u|2 =

∫ 1

0

[f(t, u(t)) + λu(t)]u(t)dt

≥
∫ 1

0

[f(t,M0(t)R0) + λM0(t)R0]M0(t)R0dt

> R0

∫ 1

0

f(t,M0(t)R0)M0(t) dt,

which contradicts assumption (H2) (a). Hence E′(u) − λu 6= 0 for all u ∈ K with
|u| = R0 and λ > 0.

Assume now that E′(u) + λu = 0 for some u ∈ K with |u| = R1 and λ > 0.
Then u solves the problem

(1 + λ)u(4)(t)− f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

Then

R2
1 = |u|2 =

1
1 + λ

∫ 1

0

f(t, u(t))u(t)dt.

Using (3.6) we deduce

R2
1 <

∫ 1

0

M1(t)R1f(t,M1(t)R1)dt,

which contradicts (H2) (b). Hence E′(u) + λu 6= 0 for all u ∈ K with |u| = R1 and
λ > 0.

The conclusions follow from Theorem 2.1 and Theorem 2.2. �
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Example 3.3. We give an example of a function f(t, u) = f(u) which satisfies the
conditions (H1) and (H2) of Theorem 3.2. Note that

0 ≤
√

2
6

(1− t)t3 < 0.03 if 0 ≤ t ≤ 1,∫ 1

0

(
√

2
6

(1− t)t3)2dt =
1

4536
,

and 4600× 3/100 = 138. Define

f(u) =


0, u ≤ 0,
4600u, 0 ≤ u ≤ 0.03,
138, u ≥ 0.03.

Taking R0 = 1 and R1 = 37, by∫ 1

0

138
2
3
t3/2dt =

184
5

= 36.8,

we obtain that the conditions (H1) and (H2) are satisfied.

For the autonomous case f(t, u) = f(u), where f is nonnegative and nondecreas-
ing on R+, we may replace the conditions of (H2) by a couple of simpler inequalities
as shows the next result.

Theorem 3.4. Assume that f : R+ → R+ is continuous nondecreasing and that
for some numbers a ∈ (0, 1), R0 and R1 with 0 < R0 < R1, one has

f(M0(a)R0)
M0(a)R0

≥ 1
(1− a)M0(a)2

,
f( 2

3R1)
R1

≤ 15
4
. (3.7)

Then (1.1) has at least one positive solution um in KR0R1 with E(um) = m. If
in addition (H3) holds, then a second positive solution uc exists in KR0R1 with
E(uc) = c.

Proof. Since M1(t) ≤ 2/3 for every t ∈ [0, 1], we have∫ 1

0

M1(t)f(M1(t)R1)dt ≤ f
(2

3
R1

) ∫ 1

0

2
3
t3/2dt =

4
15
f
(2

3
R1

)
.

Then the inequality
4
15
f
(2

3
R1

)
≤ R1,

or equivalently the second inequality in (3.7) is a sufficient condition for (H2)(b) to
hold. As concerns the first inequality in (3.7), let us remark that if E′(u)− λu = 0
for some u ∈ K with |u| = R0 and λ > 0, then

R2
0 = |u|2 =

∫ 1

0

[f(u(t)) + λu(t)]u(t)dt

≥
∫ 1

a

[f(u(t)) + λu(t)]u(t)dt.
(3.8)

The function u being nondecreasing, one has u(t) ≥ u(a) for all t ∈ [a, 1]. Also,
since u ∈ K, u(a) ≥M0(a)|u|. Then from (3.8),

R2
0 ≥ (1− a)[f(M0(a)R0) + λM0(a)R0]M0(a)R0

> (1− a)f(M0(a)R0)M0(a)R0.
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Hence
R0 > (1− a)M0(a)f(M0(a)R0),

i.e. the opposite of the first inequality in (3.7). �

Clearly the inequalities (3.7) express the oscillation of the function f(t)/t up and
down the values 1/(1− a)M0(a)2 and 45/8.

Remark 3.5 (Existence asymptotic conditions). The existence of two numbers R0,
R1 satisfying (3.7) is guaranteed by the asymptotic conditions

lim sup
τ→0

f(τ)
τ

>
311

32
and lim inf

τ→∞

f(τ)
τ

<
45
8
. (3.9)

Remark 3.6 (Multiplicity). Theorems 3.2 and 3.4 can be used to obtain multiple
positive solutions. Indeed, if their assumptions are fulfilled for two pairs (R0, R1),
(R0, R1), then we obtain four solutions, provided that the sets KR0R1 and KR0R1

are disjoint. This happens if 0 < R0 < R1 < R0 < R1. We can even obtain
sequences of positive solutions; for instance, in connection with Theorem 3.4, if

lim sup
τ→0

f(τ)
τ

>
311

32
and lim inf

τ→0

f(τ)
τ

<
45
8
, (3.10)

then there exists a sequence (uk) of positive solutions with uk → 0 as k →∞. Also,
if

lim sup
τ→∞

f(τ)
τ

>
311

32
and lim inf

τ→∞

f(τ)
τ

<
45
8
, (3.11)

then there exists a sequence (uk) of positive solutions with |uk| → ∞ as k →∞.
Note that 311/32 ' 5536 is the minimal value of 1/(1− a)M0(a)2 for a ∈ (0, 1),

which is reached at a = 2/3. A better estimation than (3.1) would allow the
replacement of this value by a smaller number.

For examples of functions satisfying asymptotic conditions of type (3.9), (3.10)
or (3.11), we refer to the recent paper [8].

Remark 3.7 (Fixed point approach). Under the assumptions of Theorem 3.2, the
existence of a solution in KR0R1 can also be obtained via Krasnosel’skĭı’s theorem.
Indeed, problem (1.1) is equivalent to the fixed point problem (2.17) in X for the
compact operator N : KR0R1 → K given by (2.18).

Let us check the condition (a)(i) from Theorem 2.4. Assume the contrary, i.e.
N(u) < u for some u ∈ K with |u| = R0. Then N(u) = u− v for some v ∈ K \ {0}.
This means that (u− v)(4) = f(t, u) in the sense of distributions. Now multiply by
u and integrate to obtain

|u|2 −
∫ 1

0

u′′(t)v′′(t)dt =
∫ 1

0

f(t, u(t))u(t)dt.

Since v, u− v ∈ K, one has v′′ ≥ 0 and u′′ − v′′ ≥ 0 in [0, 1]. Hence∫ 1

0

u′′(t)v′′(t)dt ≥
∫ 1

0

v′′(t)2dt = |v|2 > 0.

Then

R2
0 = |u|2 >

∫ 1

0

f(t, u(t))u(t)dt.

Next we use (3.1) to derive a contradiction to (H2) (a).
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The condition (a)(ii) from Theorem 2.4 can be proved similarly.
Notice that under assumptions (H2)(a) and (b), a solution exists in KR1R0 in

case that R1 < R0. However this is not guaranteed by the variational approach.
We may conclude that, compared to the fixed point approach, the variational

method gives an additional information about the solution, namely of being a min-
imum for the energy functional. Moreover, a second solution of mountain pass type
can be guaranteed by the variational approach.

The above approach was essentially based on the monotonicity assumption on f ,
which was required by the Harnack type inequality (3.1). Thus a natural question
is if such an inequality can be established for functions u satisfying the boundary
conditions and u(4) ≥ 0, without the assumption that u(4) is nondecreasing. In the
absence of the answer to this question, an alternative approach is possible in a shell
defined by two norms as shown in the next section.

3.2. Localization in a shell defined by two norms. In the previous section,
a unilateral Harnack inequality was established for functions u satisfying the two
point boundary conditions and with u(4) nonnegative and nondecreasing in [0, 1],
in terms of the energetic norm. If we renounce to the monotonicity of u(4), then
we have the following lemma in terms of the max norm ‖ · ‖∞, and finally in the
L2-norm ‖ · ‖. This allows us to find positive solutions of (1.1), first in a conical
shell defined by the norm ‖·‖∞ using Krasnosel’skĭı’s fixed point theorem, and next
in a conical shell defined by two norms, the energetic norm | · | of X and the norm
‖ · ‖ of Y = L2(0, 1), using variational methods.

Lemma 3.8. If u ∈ C4[0, 1] satisfies u(0) = u′(0) = u′′(1) = u′′′(1) = 0 and
u(4) ≥ 0 in [0, 1], then

u(t) ≥M(t)‖u‖∞ for all t ∈ [0, 1] , (3.12)

where M(t) := (3− t)t2/3.

Proof. We use the following estimations of Green’s function:

t2

6
(3− t)s2 ≤ G(t, s) ≤ s2

2
for all (t, s) ∈ [0, 1]× [0, 1] . (3.13)

To prove them, we first assume that 0 ≤ t < s ≤ 1. Then

t2

6
(3− t)s2 ≤ t2

6
{(3− t)s2 + (1− s)[s(1− t) + (s− t) + s]}

=
t2

6
(3s− t) = G(t, s)

≤ s2

6
(3− 0) =

s2

2
.

Similarly, for 0 ≤ s ≤ t ≤ 1, one has

t2

6
(3− t) s2 ≤ t2

6
(3− s) s2

≤ s2

6
{(3− s)t2 + (1− t)[t(1− s) + (t− s) + t]}

=
s2

6
(3t− s) = G(t, s)
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≤ s2

6
(3− 0) =

s2

2
.

Hence (3.13) is proved.
Let u ∈ C4[0, 1] satisfy u(0) = u′(0) = u′′(1) = u′′′(1) = 0 and u(4) ≥ 0 in [0, 1].

Then

u(t) =
∫ 1

0

G(t, s)u(4)(s) ds

≥
∫ 1

0

(3− t) t2 s2

6
u(4)(s) ds

=
(3− t) t2

3

∫ 1

0

s2

2
u(4)(s) ds

≥ (3− t) t2

3

∫ 1

0

{max
t∈[0,1]

G(t, s)}u(4)(s) ds

≥ (3− t) t2

3
max
t∈[0,1]

{
∫ 1

0

G(t, s)u(4)(s) ds}

=
(3− t) t2

3
‖u‖∞.

(3.14)

Hence (3.12) is proved. �

Notice that, since ‖u‖ ≤ ‖u‖∞, where ‖ ·‖ is the L2(0, 1)-norm, inequality (3.12)
also gives

u(t) ≥M(t)‖u‖ for all t ∈ [0, 1].
Using Lemma 3.8, the existence of a positive solution can be immediately ob-

tained via Krasnosel’skĭı’s compression-expansion theorem.

Theorem 3.9. Assume that there exist positive numbers α, β, α 6= β such that

α ≤ (Sfα)(1) and β ≥ (Sfβ)(1), (3.15)

where S is the solution operator defined by (2.15) and

fα(t) = min{f(t, u) : M(t)α ≤ u ≤ α},
fβ(t) = max{f(t, u) : M(t)β ≤ u ≤ β}.

Then problem (1.1) has at least one positive solution u such that

R0 ≤ ‖u‖∞ ≤ R1,

where R0 = min{α, β} and R1 = max{α, β}.

Proof. As shown in Section 2.3, problem (1.1) is equivalent to the fixed point prob-
lem N(u) = u in C[0, 1].

In the space C[0, 1] we consider the cone

K = {u ∈ C[0, 1] : u(0) = 0, u(t) ≥M(t)‖u‖∞ for all t ∈ [0, 1]}.
From Lemma 3.8 and the properties of f , it follows that N(K) ⊂ K. Also N is a
compact operator.

Now we show that the required boundary conditions from Krasnosel’skĭı’s the-
orem are satisfied. Assume by contradiction that N(u) < u for some u ∈ K with
‖u‖∞ = α. Then N(u) = u− v for some v ∈ K \ {0}. Hence

u(t)− v(t) = N(u)(t). (3.16)
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We have
M(t)α ≤ u(t) ≤ α for all t ∈ [0, 1].

Hence
f(t, u(t)) ≥ fα(t).

Since Green’s function is positive, the solution operator S preserves the ordering,
so that N(u)(t) ≥ (Sfα)(t). Returning to (3.16), we deduce that

u(t)− v(t) ≥ (Sfα)(t). (3.17)

Since v(t) ≥M(t)‖v‖∞ > 0, for t > 0, (3.17) yields

α = ‖u‖∞ ≥ u(1) > u(1)− v(1) ≥ (Sfα)(1),

a contradiction to our first assumption from (3.15).
Next assume that N(u) > u for some u ∈ K with ‖u‖∞ = β. Then N(u) = u+v

for some v ∈ K \ {0} and, since G(t, s) ≤ G(1, s) for all t, s ∈ [0, 1], we have

u(t) + v(t) = N(u)(t) ≤ (Sfβ)(t) ≤ (Sfβ)(1). (3.18)

Let t0 be such that u(t0) = ‖u‖∞ = β > 0. Since u(0) = 0, one has t0 > 0 and so
v(t0) ≥M(t0)‖v‖∞ > 0. Then, for t = t0, (3.18) gives

β < (Sfβ)(1),

which contradicts our second assumption from (3.15). Thus Theorem 2.4 applies.
We note that if α < β, then (3.15) represents the compression condition, while

if α > β, then (3.15) expresses the expansion condition. �

Next we are interested into two positive solutions for (1.1). We shall succeed this
by the variational approach based on Theorems 2.1 and 2.2 applied to the Hilbert
spaces X = {u ∈ H2(0, 1) : u(0) = u′(0) = 0} with norm | · | given by (2.19), and
Y = L2(0, 1) with the usual norm denoted by ‖ · ‖.

Let us consider the cone

K = {u ∈ X : u(t) ≥M(t)‖u‖for all t ∈ [0, 1]}
and a fixed element φ ∈ K \ {0} with |φ| = 1. Such an element can be Jv, where
v is any nonzero nonnegative continuous function on [0, 1], because of Lemma 3.8.
In addition, consider two numbers R0, R1 such that 0 < R0 < ‖φ‖R1, and let

KR0R1 = {u ∈ K : ‖u‖ ≥ R0, |u| ≤ R1}.
Denote

g(t) = min{f(t, u) : M(t)R0 ≤ u ≤ c∞R1},
g(t) = max{f(t, u) : M(t)R0 ≤ u ≤ c∞R1},

where c∞ > 0 is such that ‖v‖∞ ≤ c∞|v| for all v ∈ K. For example we may take
c∞ = 2/3, since for any v ∈ K, Hölder’s inequality gives

v(t) =
∫ t

0

∫ s

0

v′′(τ)dτds ≤ |v|
∫ t

0

√
s ≤ 2

3
|v|. (3.19)

Our assumptions are as follows:
(H1) There exist R0, R1 with 0 < R0 < ‖φ‖R1 such that

(a) R0 ≤ ‖Sg‖,
(b) R1 ≥ c∞‖g‖L1(0,1).
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(H2) The functional E has the mountain pass geometry in KR0R1 and there
exists ρ > 0 such that

E(u) ≥ c+ ρ (3.20)

for all u ∈ KR0R1 which simultaneously satisfy ‖u‖ = R0 and |u| = R1.

Theorem 3.10. Under assumptions (H1), (H2), problem (1.1) has at least two
positive solutions um, uc ∈ KR0R1 with E(um) = m and E(uc) = c, with m and c
defined by (2.8) and (2.7) respectively.

Proof. For u ∈ KR0R1 , one has

M(t)R0 ≤M(t)‖u‖ ≤ u(t) ≤ ‖u‖∞ ≤ c∞ |u| ≤ c∞R1.

It follows that

F (t, u(t)) ≤ ω := max{F (t, u) : 0 ≤ t ≤ 1, M(t)R0 ≤ u ≤ c∞R1},

whence, for all u ∈ KR0R1 , it is fulfilled that

E(u) =
1
2
|u|2 −

∫ 1

0

F (t, u(t))dt ≥ −ω,

and so m > −∞.
Next, from c > m we see that (3.20) guarantees both (2.12) and (2.13). It remains

to check the compression boundary condition given by (2.4), (2.5). Assume first
that (2.4) does not hold. Then JE′(u) − λJu = 0 for some u ∈ KR0R1 , ‖u‖ = R0

and λ > 0. Hence, in view of (2.20),

u = J(f(·, u(·)) + λu).

Since u ∈ C[0, 1], one has f(·, u(·)) + λu ∈ C[0, 1], and using (2.21) we have

u = S(f(·, u(·)) + λu).

For t > 0, one has f(t, u(t)) + λu(t) > f(t, u(t)) ≥ g(t). As a result S(f(·, u(·)) +
λu) > Sg on (0, 1]. Taking the L2-norm, we deduce

R0 = ‖u‖ > ‖Sg‖,

which contradicts (H1)(a).
Next assume that JE′(u) + λu = 0 for some u ∈ KR0R1 , |u| = R1 and λ > 0.

Then
(1 + λ)u(4) = f(t, u(t)),

whence, arguing as in the proof of Theorem 3.2, we deduce that

(1 + λ)R2
1 =

∫ 1

0

u(t)f(t, u(t))dt.

Consequently
R1 < c∞‖g‖L1(0,1),

which contradicts (H1)(b). �

Remark 3.11. In the autonomous case, if f = f(u), and f is nondecreasing on
R+, a sufficient condition for (H1)(a) to hold is

R0 ≤ f(M(a)R0)‖Sχ[a,1]‖,
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where a is some number from (0, 1) and χ[a,1] is the characteristic function of the
interval [a, 1]. Also in this case, (H1)(b) reduces to

R1 ≥ c∞f(c∞R1).

4. An example

We present an example inspired by that in [13], to which we can apply either
Theorem 3.4 (working in a shell defined only by the energetic norm), or Theorem
3.10 (in a shell defined by two norms). Consider problem (1.1), where the function
f(t, u) = f(u) is

f(u) =


pup , 0 ≤ u ≤ 1 ,
pu2 , 1 ≤ u ≤ b ,
p((u− b)p + b2) , u ≥ b,

(4.1)

with 0 < p ≤ 1/2 and a sufficiently large number b > 2 as chosen below.
Note that the function f is positive and nondecreasing in R+. Also note as a

typical behavior, that f is first sublinear near zero (here in [0, 1]), next superlinear
(on a sufficiently large finite interval [1, b]), and again sublinear towards infinity (on
[b,∞)).

4.1. Application of Theorem 3.4. For 1 ≤ u ≤ 2, we have

F (u) =
∫ u

0

f(s)ds =
p

p+ 1
+
p

3
(u3 − 1) ≤ p

p+ 1
+

7 p
3

=
p (10 + 7 p)

3 (p+ 1)
.

Choose r = 2. Then, for u ∈ K and |u| = 2, as for (3.19), |u|∞ ≤ 2|u|/3 < 2 and
so, recalling 0 < p ≤ 1/2,

E(u) =
|u|2

2
−
∫ 1

0

F (u(t)) dt ≥ 2− p (10 + 7 p)
3 (p+ 1)

≥ 1
2
.

We take for u0 any element of K \ {0} with |u0| = 1. Clearly |u0| < r = 2. Then

E(u0) =
|u0|2

2
−
∫ 1

0

F (u0(t)) dt =
1
2
−
∫ 1

0

F (u0(t)) dt <
1
2
.

Next we take u1 = bu0/‖u0‖∞. Then |u1| = b/‖u0‖∞ > 2 if we choose b > 2‖u0‖∞.
Also

E(u1) ≤ b2

2‖u0‖2∞
−
∫

(u1>1)

F (u1(t))dt.

Since ‖u1‖∞ = b > 2 and u1(0) = 0 the level set (u1 > 1) is a proper subset of
[0, 1]. Also u1(t) ≤ b for all t. Hence on the level set (u1 > 1) we have

F (u1) =
p

p+ 1
+
p

3
(u3

1 − 1) >
p

3
u3

1.

Then

E(u1) <
b2

2‖u0‖2∞
− pb3

3‖u0‖3∞

∫
(u1>1)

u0(t)3dt.

Taking into account that the level set (u1 > 1) enlarges as b increases, we can see
that the right side of the last inequality tends to −∞ as b→ +∞ (here we underline
the role of the superlinearity of f on the interval [1, b] guaranteeing the term b3 in
the last inequality). Thus we may choose b large enough to have

E(u1) <
1
2
.
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Hence the assumption (h3) of Theorem 3.4 is satisfied. Also, due to the sublinearity
of f towards zero and infinity, one has

lim
τ→0

f(τ)
τ

= +∞ , and lim
τ→+∞

f(τ)
τ

= 0 . (4.2)

Consequently, we may find R0 (small enough) and R1 (large enough), such that u0

and u1 belong to KR0R1 and the conditions (3.7) hold.
Therefore, according to Theorem 3.4, problem (1.1) with f given by (4.1), 0 <

p ≤ 1/2 and b sufficiently large has two positive solutions.

4.2. Application of Theorem 3.10. The mountain pass geometry of the energy
functional can be shown as above. It remains to guarantee the conditions (H1) and
(3.20) from (H2).

First note that since f is nondecreasing on R+, we can use Remark 3.11, in view
of which we may find R0, R1 such that u0, u1 ∈ KR0R1 and (H1) holds, for every
R1 ≥ R1. Recall that, this time, the conical shell KR0R1 is defined by the energetic
norm and the L2-norm.

Now we fix R0 and we look for an R1 ≥ R1 such that (3.20) holds. For the
variable parameter R1, we denote by ΓR1 , cR1 the corresponding elements Γ and c
in Theorem 3.10. It is clear that if R1 ≥ R1, then ΓR1

⊂ ΓR1 and consequently,
cR1
≥ cR1 . Hence to guarantee (3.20) it suffices to find R1 ≥ R1 such that for a

given number ρ > 0, E(u) ≥ cR1
+ ρ for all u ∈ KR0R1 satisfying simultaneously

‖u‖ = R0 and |u| = R1. We shall guarantee even more, namely that

E(u) ≥ cR1
+ ρ for all u ∈ K with |u| = R1. (4.3)

Let u ∈ K be such that |u| = R1. Then

E(u) =
1
2
R2

1 −
∫ 1

0

F (u(t))dt

=
1
2
R2

1 −
∫

(u≤b)
F (u(t))dt−

∫
(u≥b)

F (u(t))dt

≥ 1
2
R2

1 − p
( 1
p+ 1

+
b3

3

)
−
∫

(u≥b)

( p

p+ 1
+
p

3
(b3 − 1) +

p

p+ 1
(u− b)p+1 + pb2u− pb3

)
dt

≥ 1
2
R2

1 − C1|u|p+1
Lp+1(0,1) − C2|u|L1(0,1) − C3,

where C1, C2, C3 > 0 are constants depending only on p and b. Since X is contin-
uously embedded into Lq(0, 1) for every q ≥ 1, we deduce that

E(u) ≥ 1
2
R2

1 − C̃1R
p+1
1 − C̃2R1 − C3.

The expression in the right side of this inequality tends to ∞ as R1 → ∞. Hence
we can find R1 ≥ R1 such that (4.3) holds.

Therefore, according to Theorem 3.10, problem (1.1) with f , given by (4.1),
0 < p ≤ 1/2 and b sufficiently large has two positive solutions.
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