EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR P-LAPLACIAN STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

D. D. HAI

ABSTRACT. We prove the existence of positive solutions of the Sturm-Liouville boundary value problem

\[-(r(t)\phi'(u'))' = \lambda g(t)f(t,u), \quad t \in (0,1),\]
\[au(0) - b\phi^{-1}(r(0))u'(0) = 0, \quad cu(1) + d\phi^{-1}(r(1))u'(1) = 0,\]

where \(\phi(u') = |u'|^{p-2}u', \quad p > 1, \quad f : (0,1) \times (0,\infty) \to \mathbb{R}\) satisfies a \(p\)-sublinear condition and is allowed to be singular at \(u = 0\) with semipositone structure. Our results extend previously known results in the literature.

1. Introduction

We consider the boundary-value problem

\[-(r(t)\phi'(u'))' = \lambda g(t)f(t,u), \quad t \in (0,1),\]
\[au(0) - b\phi^{-1}(r(0))u'(0) = 0, \quad cu(1) + d\phi^{-1}(r(1))u'(1) = 0,\]

where \(\phi(u') = |u'|^{p-2}u', \quad p > 1, \quad a, b, c, d\) are nonnegative constants with \(ac + ad + bc > 0\), \(f : (0,1) \times (0,\infty) \to \mathbb{R}\) is allowed to be singular at \(u = 0\), and \(\lambda\) is a positive parameter.

When \(p = 2\) and \(f : [0,1] \times [0,\infty) \to \mathbb{R}\) is continuous, Yang and Zhou [13] prove the existence of a positive solution to (1.1) under the assumption

\[\lim_{u \to \infty} \sup_{t \in [0,1]} \frac{f(t,u)}{u} < \frac{\lambda_1}{\lambda} < \lim_{u \to 0^+} \inf_{t \in [0,1]} \frac{f(t,u)}{u},\]

where \(\lambda_1 > 0\) denotes the first eigenvalue of \(-\phi'(u')\)' = \(\lambda g(t)u\) in \((0,1)\) with Sturm-Liouville boundary conditions. Their result allows \(\lim_{u \to \infty} \sup_{t \in [0,1]} \frac{f(t,u)}{u} = -\infty\), which complements previous existence results in [1, 4, 7, 8, 9, 10, 12, 14].

In this article, we shall extend the result in [13] to the general case \(p > 1\) and also allow \(f\) to be singular at \(u = 0\). We also establish the existence of a positive solution to (1.1) for \(\lambda\) large allowing \(\lim_{u \to 0^+} \inf_{t \in (0,1)} f(t,u)/u^{p-1} = -\infty\) and \(\lim_{u \to \infty} \inf_{t \in (0,1)} f(t,u) = 0\), which does not seem to have been considered in the literature even when \(p = 2\). Note that the approach in [13] depends on the Green function and can not apply to the nonlinear case \(p > 1\) or the case when \(f\) is...
singular at \(u = 0 \). Our approach depends on a new sub- and super solutions type argument and comparison principle.

Let \(g \) satisfy condition (A2) below. Then the eigenvalue problem

\[
-(r(t)\phi(u'))' = \lambda g(t)\phi(u) \quad \text{in} \ (0, 1)
\]

has a positive first eigenvalue \(\lambda_1 \) with corresponding positive eigenfunctions (see e.g. [3, 11]).

We shall make the following assumptions:

(A1) \(r : [0, 1] \to (0, \infty) \) and \(f : (0, 1) \times (0, \infty) \to \mathbb{R} \) are continuous.

(A2) \(g \in L^1(0, 1) \) with \(g \geq 0, g \not\equiv 0 \) and there exists a constant \(\gamma \geq 0 \) such that

\[
\int_0^1 \frac{g(t)}{q(t)} \, dt < \infty,
\]

where \(q(t) = \min(b + at, d + c(1 - t)) \).

(A3) For each \(r > 0 \), there exists a constant \(K_r > 0 \) such that

\[
|f(t, u)| \leq K_r \frac{u}{u^\gamma}
\]

for \(t \in (0, 1), u \in (0, r] \), where \(\gamma \) is defined in (A2).

(A4) \(\lim_{u \to \infty} \sup_{\phi(u)} \frac{f(t, u)}{\phi(u)} < \frac{\lambda_1}{\lambda} < \lim_{u \to 0^+} \inf_{\phi(u)} \frac{f(t, u)}{\phi(u)} \), where the limits are uniform in \(t \in (0, 1) \).

(A5) \(\lim_{u \to \infty} \sup_{\phi(u)} \frac{f(t, u)}{\phi(u)} \leq \frac{\lambda_1}{\lambda} \) uniformly in \(t \in (0, 1) \).

(A6) There exist positive constants \(A, L \) such that

\[
f(t, u) \geq L \frac{u}{u^\gamma}
\]

for \(t \in (0, 1) \) and \(u \geq A \).

By a solution of (1.1), we mean a function \(u \in C^1[0, 1] \) with \(r(t)\phi(u') \) absolutely continuous on \([0, 1] \) and satisfying (1.1).

Our main results read as follows:

Theorem 1.1. Let (A1)–(A4) hold. Then (1.1) has a positive solution \(u \) with \(\inf_{(0,1)}(u/q) > 0 \).

Theorem 1.2. Let (A1)–(A3), (A5), (A6) hold. Then there exists a constant \(\lambda_0 > 0 \) such that for \(\lambda > \lambda_0 \), Equation (1.1) has a positive solution \(u_\lambda \) with

\[
\inf_{(0,1)}(u_\lambda/q) \to \infty \quad \text{as} \quad \lambda \to \infty.
\]

Let \(\bar{\lambda} < \lambda_1 \) and consider the problem

\[
-(r(t)\phi(u'))' - \bar{\lambda}g(t)\phi(u) = \lambda g(t)f(t, u), \quad t \in (0, 1),
\]

\[
a u(0) - b \phi^{-1}(r(0))u'(0) = 0, \quad c u(1) + d \phi^{-1}(r(1))u'(1) = 0.
\]

Then, as an immediate consequence of Theorem 1.1 we obtain the following corollary.

Corollary 1.3. Let (A1)–(A3) hold and suppose that

\[
\lim_{u \to \infty} \sup_{\phi(u)} \frac{f(t, u)}{\phi(u)} < \frac{\lambda - \bar{\lambda}}{\lambda} < \lim_{u \to 0^+} \inf_{\phi(u)} \frac{f(t, u)}{\phi(u)}.
\]

Then (1.2) has a positive solution.

Remark 1.4. When \(p = 2 \) and \(f : [0, 1] \times [0, \infty) \to \mathbb{R} \) is continuous, Theorem 3.1 follows from Theorem 1.1 with \(\gamma = 0 \).
Example 1.5. Let \(g(t) \equiv 1 \equiv r(t) \) and consider the BVP
\[
-(\phi(u'))' = \lambda f(t, u), \quad t \in (0, 1),
\]
\[u(0) = u(1) = 0.\] (1.3)

Note that \(\lambda_1 = \pi_p^2 \), where
\[\pi_p = 2(p-1)^{1/p} \int_0^1 \frac{ds}{(1-s^p)^{1/p}}\]
is the first eigenvalue of \(-(\phi(u'))' \) with zero boundary conditions (see [5, 6]).

(i) Let \(f(t, u) = u^{p-1} \left(\frac{u'}{u} - u^\beta \right), \) where \(\gamma \in [0, 1), \) and \(\beta > 0. \) Suppose \(\lambda > \lambda_1 \) if \(\gamma = 0, \) and \(\lambda \) is any positive constant if \(\gamma > 0. \) Then (A1)–(A4) hold and therefore Theorem 1.1 gives the existence of a positive solution to (1.3).

(ii) Let \(f(t, u) = -\frac{1}{u^q} + \frac{1}{u^p}, \) where \(0 < \beta < \gamma < 1. \) Then it is easy to see that the assumptions of Theorem 1.2 are satisfied and therefore (1.3) has a positive solution for \(\lambda \) large. Note that since \(\lim_{u \to 0^+} \inf_{u \in (0, 1)} f(t, u) = -\infty \) and \(\lim_{u \to \infty} \inf_{u \in (0, 1)} f(t, u) = 0, \) the results in [1, 4, 7, 8, 9, 10, 12, 13, 14] do not apply here.

(iii) Let \(f(t, u) = (1 - u^{p-1}) \cos t. \) Then
\[\lim_{u \to \infty} \sup \frac{f(t, u)}{\phi(u)} < 0 \quad \text{and} \quad \lim_{u \to 0^+} \inf \frac{f(t, u)}{\phi(u)} = \infty\]
uniformly in \(t \in (0, 1) \) and so (1.2) has a positive solution for all \(\lambda > 0, \) by Corollary 1.3

2. Preliminaries

We shall denote the norms in \(C^1[0, 1] \) and \(L^q(0, 1) \) by \(| \cdot |_1 \) and \(\| \cdot \|_q \) respectively. Here \(|u|_1 = \max(\|u\|_{\infty}, \|u'\|_{\infty}) \). We first recall the following results in [5, 6].

Lemma 2.1. Let \(h \in L^1(0, 1). \) Then the problem
\[-(r(t)\phi(u'))' = h, \quad t \in (0, 1),\]
\[au(0) - b\phi^{-1}(r(0))u'(0) = 0, \quad cu(1) + d\phi^{-1}(r(1))u'(1) = 0\]
has a unique solution \(u = Sh \in C^1[0, 1]. \) Furthermore, \(S \) is completely continuous and there exists a constant \(m > 0 \) such that
\[|u|_1 \leq m\phi^{-1}(\|h\|_1)\].

Lemma 2.2. Suppose \(u \in C^1[0, 1] \) satisfies
\[-(r(t)\phi(u'))' \geq 0, \quad t \in (0, 1),\]
\[au(0) - b\phi^{-1}(r(0))u'(0) \geq 0, \quad cu(1) + d\phi^{-1}(r(1))u'(1) \geq 0.\]
Then there exists a constant \(m_0 > 0 \) independent of \(u \) such that
\[u(t) \geq m_0\|u\|_{\infty}q(t)\]
for \(t \in [0, 1], \) where \(q \) is defined by (A2).

Remark 2.3. Lemma 2.2 is a special case of [5, Lemma 3.4] when \(h = 0. \) Note that the proof of [5, Lemma 3.4] is incorrect for \(1 < p < 2 \) when \(h \neq 0 \) since it uses the inequality
\[|\phi^{-1}(x) - \phi^{-1}(y)| \leq 2\phi^{-1}(|x - y|) \quad \text{for all} \ x, y \in \mathbb{R},\]
which is not true when $1 < p < 2$. However, when $h = 0$, this inequality is not needed in [8] Proof of Lemma 3.4], which guarantees the validity of Lemma 2.2.

Lemma 2.4. There exists a constant $k > 0$ such that $|u| \le k|u|q$ in $[0, 1]$ for all $u \in C^1[0, 1]$ satisfying the Sturm-Liouville boundary conditions in (1.1).

Proof. Let $u \in C^1[0, 1]$. Then, if $b > 0$,

$$u(t) = u(0) + \int_0^t u' \le 2|u|_1 \le \frac{2}{b}|u|_1(b + at)$$

for $t \in [0, 1]$, while if $b = 0$ then $a > 0$, this implies $u(0) = 0$ and $u(t) \le |u|_1t$ for $t \in [0, 1]$. Hence

$$u(t) \le k_0|u|_1(b + at), \quad (2.1)$$

for $t \in [0, 1]$, where $k_0 = 2/b$ if $b > 0$, and $1/a$ if $b = 0$. Similarly, using

$$u(t) = u(1) - \int_t^1 u',$$

we obtain

$$u(t) \le k_1|u|_1(d + c(1 - t)) \quad (2.2)$$

for $t \in [0, 1]$, where $k_1 = 2/d$ if $d > 0$, and $1/c$ if $d = 0$.

Combining (2.1) and (2.2), we see that $u \le k|u|q$ in $[0, 1)$, where $k = \max(k_0, k_1)$.

By replacing u by $-u$, we see that Lemma 2.4 holds. \hfill \Box

Lemma 2.5. Let $h_0, h_1 \in L^1(0, 1)$. Suppose $u_0, u_1 \in C^1[0, 1]$ satisfy

$$-(r(t)\phi(u_i'))' = h_i, \quad t \in (0, 1),$$

$$au_i(0) - b\phi^{-1}(r(0))u_i'(0) = 0, \quad cu_i(1) + d\phi^{-1}(r(1))u_i'(1) = 0,$$

for $i = 0, 1$. Then there exists a constant $M_0 > 0$ depending on $p, a, b, c, d, \text{ and } C$ such that

$$|u_1 - u_0|_1 \le M_0 \max\{\|h_1 - h_0\|_1, \|h_1 - h_0\|_1^{1/p}\}, \quad (2.3)$$

where $C > 0$ is such that $\|h_i\|_1 < C$ for $i = 0, 1$.

Proof. By integrating, we obtain

$$u_i(t) = C_i + \int_0^t \phi^{-1}\left(\frac{D_i - \int_0^s h_i}{r(s)}\right)ds \quad (2.4)$$

for $i = 0, 1$, where C_i, D_i are constants satisfying

$$aC_i - b\phi^{-1}(D_i) = 0,$$

$$c\left(C_i + \int_0^1 \phi^{-1}\left(\frac{D_i - \int_0^s h_i}{r(s)}\right)ds\right) + d\phi^{-1}(D_i - \int_0^1 h_i) = 0.$$

Suppose first that $a = 0$. Then $b, c > 0, D_i = 0$, and

$$C_i = \frac{d}{c}\phi^{-1}\left(\int_0^1 h_i\right) + \int_0^1 \phi^{-1}\left(\frac{\int_0^s h_i}{r(s)}\right)ds,$$

and so

$$u_i(t) = \frac{d}{c}\phi^{-1}\left(\int_0 h_i\right) + \int_t^1 \phi^{-1}\left(\frac{\int_0^s h_i}{r(s)}\right)ds.$$

For $p \ge 2$, using the inequality

$$|\phi^{-1}(x) - \phi^{-1}(y)| \le 2\phi^{-1}(|x - y|) \quad \text{for } x, y \in \mathbb{R},$$

we obtain

$$|u_i(t)| \le C_i + \int_0^t |\phi^{-1}(\frac{D_i - \int_0^s h_i}{r(s)})|ds \le C_i + \int_0^t \frac{|D_i|}{r(s)}ds.$$
we obtain
\[
\max\{|u(t) - u_0(t)|, |u'(t) - u'_0(t)|\} \leq M_1\|h_1 - h_0\|^{1/p},
\] for \(t \in [0, 1] \), where \(r_0 = \min_{t \in [0, 1]} r(t) > 0 \), \(M_1 = 2(d/c + \phi^{-1}(1/r_0)) \).

For \(1 < p < 2 \), using the Mean Value Theorem, we obtain
\[
|\phi^{-1}(x) - \phi^{-1}(y)| \leq (p - 1)^{-1}|x - y|(|x|, |y|)^{2 - p}
\]
for \(x, y \in \mathbb{R} \), which implies
\[
\max\{|u(t) - u_0(t)|, |u'(t) - u'_0(t)|\} \leq M_2\|h_1 - h_0\|_1,
\] for \(t \in [0, 1] \), where \(M_2 = (p - 1)^{-1}(dc^{-1} + r_0^{-1/(p - 1)})C^{2 - p} \).

Suppose next that \(a > 0 \). Then \(C_i = (b/a)\phi^{-1}(D_i) \), and \(D_i \) satisfies
\[
c_{i}(b/a)\phi^{-1}(D_i) + \int_0^1 \phi^{-1}\left(D_i - \frac{\int_0^s h_i}{r(s)}\right)ds + d\phi^{-1}\left(D_i - \int_0^1 h_i\right) = 0
\]
for \(i = 0, 1 \). Since \(\phi^{-1} \) is increasing and \(\phi^{-1}(0) = 0 \), it follows from (2.7) that
\[
|D_i| \leq \|h_i\|_1, \text{ and } |D_1 - D_0| \leq \|h_1 - h_0\|_1
\]
which, together with (2.4), imply
\[
\max\{|u(t) - u_0(t)|, |u'(t) - u'_0(t)|\} \leq M_3\max\{|h_1 - h_0|, \|h_1 - h_0\|^{1/p}\}
\] for \(t \in [0, 1] \), where \(M_3 = 2(b/a + (2/r_0)^{1/(p - 1)})C^{2 - p} \) if \(p \geq 2 \), and \(M_3 = (p - 1)^{-1}(b/a + (2/r_0)^{1/(p - 1)})C^{2 - p} \) if \(1 < p < 2 \). Combining (2.5), (2.6), and (2.8), we obtain (2.3) with \(M_0 = \max_{1 \leq i \leq 3} M_i \), which completes the proof. \(\square \)

3. Proofs of main results

Let \(z_1 \in C^1[0, 1] \) be the normalized positive eigenfunction of \(-(r(t)\phi(u'))' = \lambda g(t)\phi(u)\) in \((0, 1)\) with Sturm-Liouville boundary conditions corresponding to \(\lambda_1 \) i.e. \(z_1 > 0 \) on \((0, 1)\) and \(\|z_1\|_\infty = 1 \). By Lemma 2.2, there exists a constant \(m_0 > 0 \) such that \(z_1 \geq m_0q \) in \((0, 1)\).

Proof of Theorem 1.1 Since \(\lim_{z \to 0^+} \inf \frac{f(t, z)}{\phi(z)} > \frac{\lambda_1}{\lambda} \) uniformly in \(t \in (0, 1) \), there exists a constant \(c > 0 \) such that
\[
\frac{f(t, z)}{\phi(z)} > \frac{\lambda_1}{\lambda}
\]
for \(z \in (0, c) \) and \(t \in (0, 1) \). Let \(Z = cz_1 \) and \(Z_1 = Mz_1 \), where \(M > c \) is a large constant to be determined later. In view of (3.1), \(Z \) satisfies
\[
-(r(t)\phi(Z'))' = \lambda g(t)\phi(Z) \leq \lambda g(t)f(t, Z)
\]
for \(t \in (0, 1) \). For \(v \in C[0, 1] \), let \(\tilde{v} = \min\{v, Z_1\} \). Then \(Z \leq \tilde{v} \leq Z_1 \leq M \) in \((0, 1)\) and (A3) gives
\[
|g(t)f(t, \tilde{v})| \leq \frac{K_Mg(t)}{(cz_1)^{\gamma}} \leq \frac{K_Mg(t)}{(cm_0)^{\gamma}q^{\gamma}(t)}
\]
for \(t \in (0, 1) \). Hence \(g(t)f(t, \tilde{v}) \in L^1(0, 1) \) by (A2). Define \(Tv = u \), where \(u \) is the solution of
\[
-(r(t)\phi(u'))' = \lambda g(t)f(t, \tilde{v}), \quad t \in (0, 1),
\]
\[
au(0) - b\phi^{-1}(r(0))u'(0) = 0, \quad cu(1) + d\phi^{-1}(r(1))u'(1) = 0.
\]
in Lemma 2.1, it follows that T is bounded. Hence, by the Schauder Fixed Point Theorem, $u(t_0) = T(u(t_0))$ has a fixed point u. To complete the proof, we will first show that u is a fixed point of T.

Using (3.3) and the Lebesgue Dominated Convergence Theorem, we see that $\sup_{t \in (0, 1)} |u(t)| < \infty$. Since u is bounded, it is compact. Hence, by the Schauder Fixed Point Theorem, T has a fixed point u. To complete the proof, we will first show that u is a fixed point of T.

Indeed, if $t_0 > 0$ then $u(t_0) = Z(t_0)$ and $u(t_0) \leq Z(t_0)$, while if $t_0 = 0$ then we have equality in (3.5). Similarly,

$$
au(t_0) - b\phi^{-1}(r(t_0))u'(t_0) = aZ(t_0) - b\phi^{-1}(r(t_0))Z'(t_0).
$$

(3.5)

Since $\lambda > 0$ and ϕ^{-1} is increasing,

$$
-(r(t)\phi(u'))' = \lambda g(t)f(t, Z(t)) \leq g(t)\left(\lambda \phi(u) + \frac{K_\lambda}{z^\gamma}\right)
$$

for $z > 0$ and $t \in (0, 1)$. Hence

$$
-(r(t)\phi(u'))' = \lambda g(t)f(t, Z(t)) \leq g(t)\left(\lambda \phi(u) + \frac{K_\lambda}{z^\gamma}\right)
$$

for $t \in (0, 1)$. Let $u_M = u/M$. Then u_M satisfies

$$
-(r(t)\phi(u'_M))' = \lambda g(t)z_1^{p-1} + \frac{K_\lambda g(t)}{(cm_0)^\gamma M^{p-1} q^\gamma(t)}
$$

for $t \in (0, 1)$. Let \bar{u}_M and \tilde{u} satisfy

$$
-(r(t)\phi(\bar{u}_M'))' = \lambda g(t)z_1^{p-1} + \frac{K_\lambda g(t)}{(cm_0)^\gamma M^{p-1} q^\gamma(t)}
$$

and

$$
-(r(t)\phi(\tilde{u}'))' = \lambda g(t)z_1^{p-1} = h, \quad t \in (0, 1),
$$

with Sturm-Liouville boundary conditions in (1.1). Note that $\bar{u} = (\lambda/\lambda_1)^{1/(p-1)} z_1$. By the comparison principle, $u_M \leq \bar{u}_M$ in $(0, 1)$. Let $\varepsilon > 0$ be such that $(\lambda/\lambda_1)^{1/(p-1)} + \varepsilon < 1$. Since

$$
\|h_M - h\|_1 = \frac{K_\lambda}{(cm_0)^\gamma M^{p-1}} \left(\int_0^1 \frac{g(t)}{q^\gamma(t)} \, dt\right) \to 0 \quad \text{as } M \to \infty,
$$
it follows from Lemmas 2.4 and 2.5 that
\[\bar{u}_M - \bar{u} \leq k|\bar{u}_M - \bar{u}|_q \leq km_0^{-1}|\bar{u}_M - \bar{u}|_1 \leq km_0^{-1} M_0 \max\{\|h_M - h\|_1, \|h_M - h\|_{1/2}^{1/2}\} z_1 < \varepsilon z_1, \]
provided that \(M \) is large enough. Consequently,
\[u_M \leq \bar{u}_M \leq \bar{u} + \varepsilon z_1 = \left(\lambda/\lambda_1\right)^{1/(p-1)} + \varepsilon\right) z_1 \leq z_1 \text{ in } (0, 1), \]
i.e. \(u \leq M z_1 = Z_1 \) in \((0, 1) \). Hence \(Z \leq u \leq Z_1 \) in \((0, 1) \) i.e. \(u \) is a positive solution of (1.1), which completes the proof. \(\square \)

Proof of Theorem 1.2. By Theorem 1.1, there exists a positive solution \(w \) of the problem
\[-(r(t)\phi(w'))' = \frac{g(t)}{w^\gamma}, \quad t \in (0, 1), \]
\[aw(0) - b\phi^{-1}(r(0))w(0) = 0, \quad cw(1) + d\phi^{-1}(r(1))w'(1) = 0 \]
with \(w \geq \alpha q \) in \((0, 1) \) for some \(\alpha > 0 \). Let \(w_0 \) satisfy
\[-(r(t)\phi(w_0'))' = \begin{cases} \frac{L_1 g(t)}{w^\gamma} & \text{if } w > \frac{2AL_1^{-1/(p-1)}}{\lambda^{1/(p-1)}}, \\ -\frac{K_1 g(t)}{w^\gamma} & \text{if } w \leq \frac{2AL_1^{-1/(p-1)}}{\lambda^{1/(p-1)}} \end{cases} \equiv h_\lambda \text{ in } (0, 1), \]
with Sturm-Liouville boundary conditions, where \(\delta = (\gamma + p - 1)^{-1}, L_1 = L^{1/(p-1)}, \) and \(K_1 = 2\gamma L_1^{-\gamma/(p-1)}K_{2A} \), and \(K_{2A} \) is defined in (A3). Let \(w_1 \) satisfy
\[-(r(t)\phi(w_1'))' = \frac{L_1 g(t)}{w^\gamma} \equiv h \text{ in } (0, 1) \]
with Sturm-Liouville boundary conditions. Then \(w_1 = L_1^{1/(p-1)} w \) and \(w_0 \leq w_1 \) in \((0, 1) \) by the comparison principle. Since
\[\|h_\lambda - h\|_1 = (L_1 + K_1) \int_{w \leq \frac{2AL_1^{-1/(p-1)}}{\lambda^{1/(p-1)}}} \frac{g(t)}{w^{\gamma}(t)} dt \to 0 \text{ as } \lambda \to \infty, \]
it follows from Lemma 2.5 that
\[|w_0 - w_1|_1 \leq M_0 \max\{\|h_\lambda - h\|_1, \|h_\lambda - h\|_{1/2}^{1/2}\} \to 0 \text{ as } \lambda \to \infty. \]
Hence by Lemma 2.4 there exists a constant \(\lambda_0 > 0 \) such that
\[w_0 \geq w_1 - k|w_0 - w_1|_q \geq \frac{L_1^{1/(p-1)} w}{2} \text{ in } (0, 1) \quad (3.7) \]
for \(\lambda > \lambda_0 \). Let \(Z = \lambda^q w_0 \) and \(Z_1 = M z_1 \) where \(M > \lambda^q km_0^{-1} \|w_1\|_1 \) (so that \(Z_1 > Z \) in \((0, 1) \)). We shall verify that \(Z \) satisfies
\[-(r(t)\phi(Z'))' \leq \lambda g(t)f(t, Z) \text{ in } (0, 1). \quad (3.8) \]
Indeed,
\[-(r(t)\phi(Z'))' = \begin{cases} \frac{\lambda^q(p-1)L_1 g(t)}{w^{\gamma}} & \text{if } w > \frac{2AL_1^{-1/(p-1)}}{\lambda^{1/(p-1)}}, \\ -\frac{\lambda^q(p-1)K_1 g(t)}{w^{\gamma}} & \text{if } w \leq \frac{2AL_1^{-1/(p-1)}}{\lambda^{1/(p-1)}}. \end{cases} \]
If \(w > 2AL_{1}^{-1/(p-1)}/\lambda^{\delta} \) then by (3.7),
\[
Z \geq \frac{\lambda^{\delta}L_{1}^{1/(p-1)}w}{2} \geq A,
\]
from which (A6) gives
\[
\lambda g(t)f(t, Z) \geq \frac{\lambda Lg(t)}{Z^{\gamma}} = \frac{\lambda^{1-\gamma\delta}Lg(t)}{w^{\gamma}} \geq \frac{\lambda^{1-\gamma\delta}Lg(t)}{w_{1}^{\gamma}} = \frac{\lambda^{1-\gamma\delta}L_{1}g(t)}{w^{\gamma}} \geq \frac{\lambda^{1-\gamma\delta}L_{1}g(t)}{w^{\gamma}}.
\]
On the other hand, if \(w \leq 2AL_{1}^{-1/(p-1)}/\lambda^{\delta} \), then
\[
Z \leq \lambda^{\delta}w_{1} = L_{1}^{1/(p-1)}\lambda^{\delta}w \leq 2A,
\]
from which (A3) and (3.7) give
\[
\lambda g(t)f(t, Z) \geq -\frac{\lambda K_{2}Ag(t)}{Z^{\gamma}} = -\frac{\lambda^{1-\gamma\delta}K_{2}Ag(t)}{w_{1}^{\gamma}} \geq -\frac{\lambda^{1-\gamma\delta}K_{2}Ag(t)}{(L_{1}^{1/(p-1)/2})^{\gamma}w^{\gamma}} = -\frac{\lambda^{1-\gamma\delta}K_{2}Ag(t)}{(L_{1}^{1/(p-1)/2})^{\gamma}w^{\gamma}}.
\]
Combining (3.9) and (3.10), we see that (3.8) holds. Let \(T \) be the operator defined in the proof of Theorem 1.1 i.e. for \(v \in C[0, 1], \ u = Tv \) satisfies (3.4): i.e.,
\[
-(r(t)\phi(u'))' = \lambda g(t)f(t, \tilde{v}), \ t \in (0, 1),
\]
\[
uu(0) - b\phi^{-1}(r(0))u'(0) = 0, \ \ \ \ \ \ cu(1) + d\phi^{-1}(r(1))u'(1) = 0,
\]
where \(\tilde{v} = \min\{\max\{v, Z\}, Z_{1}\} \). Then \(T \) has a fixed point \(u_{\lambda} \) in \(C[0, 1] \). Using the same arguments as in the proof of Theorem 1.1 we see that \(u_{\lambda} \geq Z \) and, for \(M \) large enough \(u_{\lambda} \geq Z_{1} \) in \((0, 1) \); i.e., \(u_{\lambda} \) is a positive solution of (1.1) for \(\lambda > \lambda_{0} \) with \(u_{\lambda} \geq \lambda^{\delta}(L_{1}^{1/(p-1)/2})w \) in \((0, 1) \), which completes the proof. \(\square \)

Acknowledgements. The author wants to thank the anonymous referee for pointing out some errors in the original manuscript and providing helpful suggestions.

References

6. M. Del Pino, M. Elgueta, R. Manasevich; A homotopic deformation along p of a Leray-Schauder degree result and existence for \(|uv'p-2u')'+f(t, u) = 0, u(0) = u(T) = 0, p > 1 \). *J. Differential Equations*, 80 (1989), no. 1, 1–13.

Hai Dinh Dang
DEPARTMENT OF MATHEMATICS AND STATISTICS, MISSISSIPPI STATE UNIVERSITY, MISSISSIPPI STATE, MS 39762, USA
E-mail address: dang@math.msstate.edu