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BIFURCATION FOR NON LINEAR ORDINARY DIFFERENTIAL
EQUATIONS WITH SINGULAR PERTURBATION

SAFIA ACHER SPITALIER, RACHID BEBBOUCHI

Abstract. We study a family of singularly perturbed ODEs with one pa-

rameter and compare their solutions to the ones of the corresponding reduced

equations. The interesting characteristic here is that the reduced equations
have more than one solution for a given set of initial conditions. Then we con-

sider how those solutions are organized for different values of the parameter.

The bifurcation associated to this situation is studied using a minimal set of
tools from non standard analysis

1. Introduction

We study the singularly perturbed equation

εÿ(t) + ẏ3(t)− y2(t) + a = 0, t ∈ R, (1.1)

with the control parameter a ≥ 0 finite (see [8] for the terminology in non standard
analysis) and ε > 0 infinitely small (i.e. ∀x ∈ R∗+, |ε| < x, and we note ε ' 0). For
a given a, we compare its solutions to the ones of the reduced equation

ẏ3 − y2 + ◦a = 0 (1.2)

(note that for any limited hyperreal x there is a unique standard real noted ◦x
infinitely close to x, i.e. ◦x− x ' 0).

As this equation has different properties for a = 0 and a > 0, we study the two
cases separately then try to understand what happens when a→ 0.

2. Properties of (1.1)

Equation (1.1) is equivalent to the differential system
ẏ = u,

εu̇ = y2 − u3 − a.
(2.1)

This is a slow-fast system and its slow manifold has the equation

y2 − u3 − a = 0 (2.2)

In the phase plane, the field is infinitely large outside of (2.2), as 1/ε is infinitely
large (i.e. its inverse is infinitely small) and inward. On (2.2) the field is transverse
and has the same sign as u. The slow manifold is attractive everywhere.
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2.1. Case a = 0. This case has been studied in [1]. Here, the system has one
saddle-node equilibrium point in (0, 0).

In this case, the reduced equation ẏ3− y2 = 0 has an infinity of solutions, for an
initial condition y(0) ≤ 0, such that

y(t) =


(
t
3 + 3

√
y(0)

)3
, 0 ≤ t ≤ −3 3

√
y(0),

0, −3 3
√
y(0) ≤ t ≤ −3 3

√
y(0) + δ,(

t−δ
3 + 3

√
y(0)

)3
, −3 3

√
y(0) + δ ≤ t.

where δ ≥ 0 is the time spent on the t-axis by the solution.
In such a configuration, the main question that arises is which of these solutions

of (1.1) with ε = 0 and a = 0, starting from y(0) will be the closest to the unique
solution of (1.1) with a = 0, starting from a given point infinitely close to that y(0).
The following theorem gives the answer to that question for the solutions of (1.1)
with a = 0 starting from y(0) < 0 not infinitely small (that we call slow paths).

Theorem 2.1. The standard part of a slow path for (1.1) with a = 0 and ε ' 0
is the solution of (1.1) with ε = 0 and a = 0 that starts from ◦y(0) and does not
spend time on the t-axis.

For a proof of the above theorem see [1]. This phenomenon is shown in Figure
1.

Figure 1. Convergence of the solution of (1.1) with a = 0 towards
the “fastest” solution of (1.1) with ε = 0 and a = 0 (in red) for
y(0) = −50, shown here (in green) for ε ∈ {1, 0.1, 0.01}.

2.2. Case a > 0. The field is shown in Figure 2.
Let us now discuss the nature of the equilibria that appear here.

Theorem 2.2. The system has two equilibrium points:
• (
√
a, 0) which is a saddle point;

• (−
√
a, 0) which is a stable sink.

Proof. The equilibria are: (y, u) = (±
√
a, 0). The Jacobian matrix of (2.1) at these

points is

Jε,a =
(

0 1
2y/ε 0

)
.
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Figure 2. Slow manifold (C1) such that: y2 − u3 − 1 = 0 and
vector field, for ε = 1.

Nature of the equilibrium (
√
a, 0). The eigenvalues of Jε,a are

λ = ±
√

2
√
a/ε.

This equilibrium is a saddle point (attractive-repulsive) which is structurally stable;
this means that this point will have the same dynamic in the initial non-linearised
system (2.1).

Figure 3. Equilibrium (
√
a, 0) still acts as saddle point on the

paths of (1.1).

Nature of the equilibrium (−
√
a, 0). The eigenvalues of Jε,a are

λ = ±i
√

2
√
a/ε.

This equilibrium is a center which is structurally unstable; this means that it will
not necessarily have the same dynamic in the initial system (2.1). We thus need a
further analysis to get the nature of this equilibrium.

The equilibrium point (−
√
a, 0) can be of one of the following types: center,

center-sink, or sink. Both a center and a center-sink have at least one periodic
solution. Let us prove that this is excluded.

Lemma 2.3. The equilibrium point (−
√
a, 0) is asymptotically stable for a postive

and finite.
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Figure 4. Equilibrium (−
√
a, 0) no longer acts as a center on the

paths of (1.1).

Proof. Let γ be a path that starts with initial conditions in the basin of attraction
of (−

√
a, 0). We put y = ȳ −

√
a and use the following change of variables, with

β > 0:

ȳ = β3Y, u = βU, t = β2T,

to write (2.1) as

Y ′ = U,

U ′ =
β4

ε

(
− 2
√
aY + β3Y 2 − U3

)
.

For β = ε1/4, γ’s standard part (i.e. t 7→ ◦γ(t).) is solution of the standard system

Y ′ = U,

U ′ = −2
√
◦aY − U3,

as β3 = ε
3
4 � 1. Note that ◦a can be 0 if a ' 0. Multiplying the second equation

by U = Y ′ leads to

d
dT

[K(Y,U)] = UU ′ + 2
√
◦aY Y ′ = −U4 < 0

for U 6= 0, with K(Y,U) = U2

2 +
√
◦aY 2 > 0. Hence K is a Lyapunov function for

the system so γ converges towards (0, 0).
The equilibrium point (−

√
a, 0) is thus a stable sink. Every path in its basin of

attraction converges towards −
√
a as t→ +∞. �

Definition 2.4. We call slow paths the ones who enter in the slow manifold Ca
neighborhood with an abscissa lower than and non infinitely close to −

√
◦a.

In the phase plane, the attractive separatrix of (
√
a, 0) goes, for a appreciable (i.e.

a bounded non infinitely small.), from this point and is almost vertical according
to the vector field description made earlier. Therefore, every slow path is in the
basin of attraction of (−

√
a, 0) and thus is firstly increasing than oscillating around

y = −
√
a to finally converge towards it. Their standard part is the only solution of

the reduced equation ẏ3 − y2 + ◦a = 0 starting from ◦y(0).
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Figure 5. Convergence of the solution of (1.1) with a = 1 towards
the “slow” solution of (1.1) with ε = 0 (in red) for y(0) = −50,
shown here (in green) for ε ∈ {1, 0.1, 0.01}.

3. Case a approaches 0

Observations on the behaviors of the solutions. When a→ 0, the two equilib-
ria collide into one to create a saddle-node singularity. This saddle-node bifurcation
is a classical one and refers to the topological change that occurs between a = 0
and any a > 0.

Figure 6. Saddle-node bifurcation for a = 1 and a = 0, and ε = 1.

Now let us look at what is happening with slow paths. We saw that as ε ' 0,
their standard parts are the solutions of the reduced equation starting from ◦y(0)
that do not stay on the time axis for a = 0 (cf. Theorem 2.1) and the ones that
stay indefinitely on y = −

√
a for a > 0 (cf. Theorem 2.2). Let us look at those

solutions for different values of a.

Figure 7. Slow paths converge towards these solutions as ε→ 0,
shown here for a = 1 and a = 0.



6 S. A. SPITALIER, R. BEBBOUCHI EJDE-2016/275

The graphs above show that as a goes to 0, the shift between the “chosen”
solutions of the reduced equations suddenly jumps at a = 0 from the ones that
stay indefinitely near the time axis (as y = −

√
a is getting closer to t-axis here)

to the ones that do not spend time on this axis at all. From this perspective, a
discontinuity appears.

Exhibiting the bifurcation. We now analyze the natural 1-dimensional foliation
of R2 defined by the vector field of (1.1), its leaves being the integral curves. This
foliation evolving continuously with the parameter a ≥ 0, the solutions of (1.1) that
converge towards the solutions of the reduced equation that do not spend time near
t-axis should leave some traces around a = 0. Let a > 0 be infinitely small along
with ε. For different infinitely small values of a, the global aspect of the foliation
is independent on the parameter, both look identical:

Figure 8. Global aspect for a = 0.26 (left), and a = 0.2601
(right), for ε = 1.

But if we separate the leaves based on whether they are in the basin of attractions
of (
√
a, 0) or of (−

√
a, 0), we realise that the foliation composition is actually very

dependant on the value of a.

Figure 9. Phase plane foliation composition for those same values.

We realise here that there is an analytical bifurcation where the foliation of
the part of the phase plane y < 0 and y not infinitely small evolves very quickly
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but continuously from being included in the basin of attraction of (−
√
a, 0) to

being included in the basin of attraction of (
√
a, 0) as a decreases. The first case

corresponds to when the standard part of (1.1) slow paths are the solutions of the
reduced equation (1.1) with ε = 0 and a = 0 (here ◦a = 0) that stay indefinitely on
the time axis and the second when they are the ones of the reduced equation that
do not spend time on the t-axis.

As this phenomenon takes place, we can see that as a → 0, the upper attrac-
tive separatrix Σ0 of (

√
a, 0) will have to continuously go from a quasi-vertical

position above the slow manifold Ca to crossing it just above (−
√
a, 0) and going

straight down. A noteworthy value associated to this bifurcation is when this Σ0

is asymptotical to the slow manifold without crossing it, let’s call it a0. This value
is necessarily infinitely small.

The following theorem is the main result of our study and gives an expression
for a0.

Theorem 3.1. The characteristic value associated to the bifurcation described
above is

a0 = s0ε
6/5

for ε ' 0 and s0 ∈ R standard. Simulation gives 0.26 < s0 < 0.2601.

Proof. Using the change of variables

y = a
1/2
0 Y, u = a

1/3
0 U, t = a

1/6
0 T,

System (2.1) with a = a0 becomes

Y ′ = U,

U ′ =
a
5/6
0

ε
[Y 2 − U3 − 1].

Let us discuss the values of β = a
5/6
0
ε :

β is infinitely small The standard part of the slow paths of (1.1) with α = a0

are solutions of the trivial system

Y ′ = U,

U ′ = 0.

All its paths are horizontal in the phase plane. This forces ◦Σ0 to cross the slow
manifold C0 = ◦Ca0 at a bounded abscissa. This is excluded as Σ0 does not cross
Ca0 such that y2 − u3 − a0 = 0, i.e. Y 2 − U3 − 1 = 0 which is not horizontal in
(Y, U).

β is infinitely large The initial system is equivalent to (Sε,1). Σ0 being asymp-
totical to Y 2 − U3 − 1 = 0, i.e. C1 in (Y,U), a path starting on this separatrix will
enter the slow manifold C1 neighborhood and will stay in it until it spiral-sinks into
the equilibrium (−1, 0). This is impossible as such a path is supposed to follow Σ0

until it reaches (
√
a0, 0) ' (0, 0).

Therefore the only value possible is β appreciable (i.e. a bounded real number
not infinitely small), and a0 = β6/5ε6/5. �
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