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THIRD-ORDER PRODUCT-TYPE SYSTEMS OF DIFFERENCE
EQUATIONS SOLVABLE IN CLOSED FORM

STEVO STEVIĆ

Abstract. It is shown that a class of third order product-type systems of dif-
ference equations is solvable in closed form if initial values and multipliers are

complex numbers, whereas the exponents are integers, by finding the formulas

for the general solution in all possible cases. The main results complement
some quite recent ones in the literature. The presented class of systems is the

last one for whose investigation is not needed use of some associated polynomi-

als of degree three or more, completing the investigation of such product-type
systems.

1. Introduction

Many recent publications are devoted to the study of nonlinear difference equa-
tions and systems of difference equations; see for example [1]-[3], [6]-[8], [11]-[35].
Papaschinopoulos and Schinas essentially initiated a serious study of some classes
of concrete systems of difference equations in [13, 14, 15], which was later continued
by several authors in numerous other papers; see for example [3, 12, 16, 17, 19, 22,
23, 25, 26, 28, 29, 30, 31, 32, 34, 35] and the related references therein. The study of
solvability of difference equations and systems, which is a classical topic [4, 5, 9, 10],
has re-attracted some recent interest; see for example [1]-[3], [18], [25]-[28], [30]-[35],
where several methods have been used. One of them is transforming the original
equation, which have been used and developed in several directions; see for example
[1, 3, 18, 27, 30, 31, 32, 33] and the related references therein.

Having studied real-valued difference equations and systems whose right-hand
sides are essentially obtained by acting with translations or some operators with
maximum on product-type expressions [24, 29], we started studying some sys-
tems of difference equations in the complex domain (with complex initial values
and/or parameters). One of the basic classes of difference equations and systems
are product-type ones. The main obstacle in studying the equations and systems
on the complex domain is the fact that many complex-valued functions are not
single valued. Hence, we need to pose some conditions to prevent such a situation
to obtain uniquely defined solutions. Also, the transformation method or its mod-
ifications [3, 30, 31, 32, 33] cannot be directly applied to product-type systems on
the complex domain.
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In [28] we studied the following two-dimensional class of product-type systems
of difference equations

zn+1 =
wa

n

zb
n−1

, wn+1 =
zc
n

wd
n−1

, n ∈ N0,

where a, b, c, d ∈ Z, z−1, z0, w−1, w0 ∈ C \ {0}, and showed that it is solvable
in closed form (a three dimensional extension of the system was investigated in
[26]). A related product-type system was studied later in [34], whereas in paper
[27] appeared some product-type equations during the study of a general difference
equation. Soon after the publication of [26, 28, 34] we realized that some multipliers
could be added in product-type systems so that the solvability of the systems is
preserved. The first system of this type was studied in our paper [25]. Quite
recently we have presented another such a system in [35]. Another thing that we
have realized is that there is only a few product-type systems of difference equations
which are solvable in closed form, which is connected to the inability of solving the
polynomial equations of the degree five or more by radicals. This means that
finding all the product-type systems of difference equations which are solvable in
closed form is of some interest and importance.

The purpose of this paper is to continue this research, by presenting another
solvable product-type system of difference equations. More precisely, we will inves-
tigate the solvability of the system

zn = αza
n−2w

b
n−1, wn = βwc

n−2z
d
n−3, n ∈ N0, (1.1)

where a, b, c, d ∈ Z, α, β ∈ C \ {0}, z−3, z−2, z−1, w−2, w−1 ∈ C \ {0}. Cases when
α = 0 or β = 0 or if some of the initial values z−3, z−2, z−1, w−2, w−1 is equal to
zero are quite simple or produce not well-defined solutions, which is why they are
excluded from our consideration. The presented class of systems is the last one
for whose investigation is not needed use of some associated polynomials of degree
three or more, completing the investigation of such product-type systems.

2. Main results

In this section we prove our main results, which concern the solvability of system
(1.1). Essentially there are six different results, but we incorporate them all in a
theorem. Some of the formulas presented in the theorem hold on set N0, some hold
on set N, or even on the set N \ {1} (such a situation appears, for example, if we
have an expression of the form xn−1 and x can be equal to zero and n = 1). We
will not specify which formula holds on which set and leave the minor observatory
problem to the reader. What is interesting is that closed form formulas for solutions
to the system of difference equations, although relatively complicated, are obtained
in a more or less compact form, which is a rare case (one can note that it was not
the case for the equation treated in [34]).

Theorem 2.1. Consider system of difference equation (1.1) where a, b, c, d ∈ Z,
α, β ∈ C\{0} and z−3, z−2, z−1, w−2, w−1 ∈ C\{0}. Then the following statements
hold.

(a) If ac = bd, a+ c 6= 1, then the general solution to system (1.1) is given by

z2n = α
1−c−a(a+c)n

1−a−c βb
1−(a+c)n

1−a−c w
b(a+c)n

−1 z
a(a+c)n

−2 , (2.1)

z2n+1 = α
1−c−a(a+c)n

1−a−c βb
1−(a+c)n+1

1−a−c w
bc(a+c)n

−2 z
bd(a+c)n

−3 z
a(a+c)n

−1 , (2.2)
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w2n = αd
1−(a+c)n−1

1−a−c β
1−a−c(a+c)n

1−a−c w
c2(a+c)n−1

−2 z
cd(a+c)n−1

−3 z
d(a+c)n−1

−1 , (2.3)

w2n−1 = αd
1−(a+c)n−1

1−a−c β
1−a−c(a+c)n−1

1−a−c w
c(a+c)n−1

−1 z
d(a+c)n−1

−2 . (2.4)

(b) If ac = bd, a+ c = 1, then the general solution to system (1.1) is given by

z2n = αan+1βbnwb
−1z

a
−2, (2.5)

z2n+1 = αan+1βb(n+1)wbc
−2z

bd
−3z

a
−1, (2.6)

w2n = αd(n−1)β(1−a)n+1wc2

−2z
cd
−3z

d
−1, (2.7)

w2n−1 = αd(n−1)β(1−a)n+awc
−1z

d
−2. (2.8)

(c) If ac 6= bd, (a + c)2 6= 4(ac − bd) and bd 6= (a − 1)(c − 1), then the general
solution to system (1.1) is given by

z2n = α
(t2−1)(t1−c)t

n+1
1 −(t1−1)(t2−c)t

n+1
2 +(t1−t2)(1−c)

(t1−1)(t2−1)(t1−t2)

β
b
(t2−1)t

n+1
1 −(t1−1)t

n+1
2 +t1−t2

(t1−1)(t2−1)(t1−t2)

× w
b

t
n+1
1 −t

n+1
2

t1−t2
−1 z

(t1−c)t
n+1
1 −(t2−c)t

n+1
2

t1−t2
−2 ,

(2.9)

z2n+1 = α
(t2−1)(t1−c)t

n+1
1 −(t1−1)(t2−c)t

n+1
2 +(t1−t2)(1−c)

(t1−1)(t2−1)(t1−t2) β
b
(t2−1)t

n+2
1 −(t1−1)t

n+2
2 +t1−t2

(t1−1)(t2−1)(t1−t2)

× w
bc

t
n+1
1 −t

n+1
2

t1−t2
−2 z

bd
t
n+1
1 −t

n+1
2

t1−t2
−3 z

(t1−c)t
n+1
1 −(t2−c)t

n+1
2

t1−t2
−1 ,

(2.10)

w2n = α
d

(t2−1)tn
1−(t1−1)tn

2 +t1−t2
(t1−1)(t2−1)(t1−t2)

× β
(t2−1)(t1−a)t

n+1
1 −(t1−1)(t2−a)t

n+1
2 +(t1−t2)(1−a)

(t1−1)(t2−1)(t1−t2)

× w
c

(t1−a)tn
1−(t2−a)tn

2
t1−t2

−2 z
d

(t1−a)tn
1−(t2−a)tn

2
t1−t2

−3 z
d

tn
1−tn

2
t1−t2

−1 ,

(2.11)

w2n−1 = α
d

(t2−1)tn
1−(t1−1)tn

2 +t1−t2
(t1−1)(t2−1)(t1−t2) β

(t2−1)(t1−a)tn
1−(t1−1)(t2−a)tn

2 +(t1−t2)(1−a)
(t1−1)(t2−1)(t1−t2)

× w
(t1−a)tn

1−(t2−a)tn
2

t1−t2
−1 z

d
tn
1−tn

2
t1−t2

−2 ,

(2.12)

where

t1,2 =
a+ c±

√
(a+ c)2 − 4(ac− bd)

2
. (2.13)

(d) If ac 6= bd, (a+c)2 = 4(ac−bd), bd 6= (a−1)(c−1), then the general solution
to system (1.1) is given by

z2n = α
1−c+tn

1 ((n+1)t21−(n(c+1)+2)t1+c(n+1))

(1−t1)2 β
b
1−(n+1)tn

1 +nt
n+1
1

(1−t1)2

× wb(n+1)tn
1

−1 z
(n(t1−c)+2t1−c)tn

1
−2 ,

(2.14)

z2n+1 = α
1−c+tn

1 ((n+1)t21−(n(c+1)+2)t1+c(n+1))

(1−t1)2 β
b
1−(n+2)t

n+1
1 +(n+1)t

n+2
1

(1−t1)2

× wbc(n+1)tn
1

−2 z
bd(n+1)tn

1
−3 z

(n(t1−c)+2t1−c)tn
1

−1 ,

(2.15)
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w2n = α
d

1−nt
n−1
1 +(n−1)tn

1
(1−t1)2 β

1−a+tn
1 ((n+1)t21−((1+a)n+2)t1+a(n+1))

(1−t1)2

× wc(n(t1−a)+t1)tn−1
1

−2 z
d(n(t1−a)+t1)tn−1

1
−3 z

dntn−1
1

−1 ,

(2.16)

w2n−1 = α
d

1−nt
n−1
1 +(n−1)tn

1
(1−t1)2 β

1−a+t
n−1
1 (nt21−((1+a)n+1−a)t1+an)

(1−t1)2

× w(n(t1−a)+t1)tn−1
1

−1 z
dntn−1

1
−2 ,

(2.17)

where

t1 =
a+ c

2
.

(e) If ac 6= bd, (a + c)2 6= 4(ac − bd), bd = (a − 1)(c − 1), a + c 6= 2, then the
general solution to system (1.1) is given by

z2n = α
(t1−c)t

n+1
1 +((c−1)n+c−2)t1+(1−c)n+1

(1−t1)2 β
b

t
n+1
1 −(n+1)t1+n

(1−t1)2

× w
b

t
n+1
1 −1
t1−1

−1 z
(t1−c)t

n+1
1 +c−1

t1−1

−2 ,

(2.18)

z2n+1 = α
(t1−c)t

n+1
1 +((c−1)n+c−2)t1+(1−c)n+1

(1−t1)2 β
b

t
n+2
1 −(n+2)t1+n+1

(1−t1)2

× w
bc

t
n+1
1 −1
t1−1

−2 z
bd

t
n+1
1 −1
t1−1

−3 z
(t1−c)t

n+1
1 +c−1

t1−1

−1 ,

(2.19)

w2n = α
d

tn
1−nt1+n−1

(1−t1)2 β
(t1−a)t

n+1
1 +((a−1)n+a−2)t1+(1−a)n+1

(1−t1)2

× w
c

(t1−a)tn
1 +a−1

t1−1

−2 z
d

(t1−a)tn
1 +a−1

t1−1

−3 z
d

tn
1−1

t1−1

−1 ,

(2.20)

w2n−1 = α
d

tn
1−nt1+n−1

(1−t1)2 β
(t1−a)tn

1 +((a−1)n−1)t1+(1−a)n+a

(1−t1)2

× w
(t1−a)tn

1 +a−1
t1−1

−1 z
d

tn
1−1

t1−1

−2 ,

(2.21)

where t1 = a+ c− 1.
(f) If ac 6= bd, (a+ c)2 = 4(ac− bd), bd = (a− 1)(c− 1), and a+ c = 2, then the

general solution to system (1.1) is given by

z2n = α
(n+1)((1−c)n+2)

2 βb
n(n+1)

2 w
b(n+1)
−1 z

(1−c)n+2−c
−2 , (2.22)

z2n+1 = α
(n+1)((1−c)n+2)

2 βb
(n+1)(n+2)

2 w
bc(n+1)
−2 z

bd(n+1)
−3 z

(1−c)n+2−c
−1 , (2.23)

w2n = αd
(n−1)n

2 β
(n+1)((1−a)n+2)

2 w
c((1−a)n+1)
−2 z

d((1−a)n+1)
−3 zdn

−1, (2.24)

w2n−1 = αd
(n−1)n

2 β
n((1−a)n+1+a)

2 w
(1−a)n+1
−1 zdn

−2. (2.25)

Proof. Since α, β ∈ C \ {0} and z−3, z−2, z−1, w−2, w−1 ∈ C \ {0}, using (1.1) and
induction we easily get

zn 6= 0 for n ≥ −3, and wn 6= 0 for n ≥ −2.

Hence, from (1.1) we have

wb
n−1 =

zn

αza
n−2

, n ∈ N0, (2.26)

wb
n = βbwbc

n−2z
bd
n−3, n ∈ N0. (2.27)
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From (2.26) and (2.27) it follows that

zn+1 = α1−cβbza+c
n−1z

bd−ac
n−3 , n ∈ N. (2.28)

Let η := α1−cβb,
u1 = 1, a1 = a+ c, b1 = bd− ac. (2.29)

From (2.28) we have
z2(n+1)+i = ηu1za1

2n+iz
b1
2(n−1)+i, (2.30)

for n ∈ N0 and i = 0, 1. From (2.30) it follows that

z2(n+1)+i = ηu1(ηza1
2(n−1)+iz

b1
2(n−2)+i)

a1zb1
2(n−1)+i

= ηu1+a1za1a1+b1
2(n−1)+iz

b1a1
2(n−2)+i

= ηu2za2
2(n−1)+iz

b2
2(n−2)+i,

(2.31)

for n ∈ N and i = 0, 1, where

u2 := u1 + a1, a2 := a1a1 + b1, b2 := b1a1. (2.32)

Assume that for a k ≥ 2 it holds

z2(n+1)+i = ηukzak

2(n−k+1)+iz
bk

2(n−k)+i, (2.33)

for n ≥ k − 1 and i = 0, 1, where

uk := uk−1 + ak−1, ak := a1ak−1 + bk−1, bk := b1ak−1. (2.34)

Using (2.30) in (2.33), it follows that

z2(n+1)+i = ηukzak

2(n−k+1)+iz
bk

2(n−k)+i

= ηuk(ηza1
2(n−k)+iz

b1
2(n−k−1)+i)

akzbk

2(n−k)+i

= ηuk+akza1ak+bk

2(n−k)+iz
b1ak

2(n−k−1)+i

= ηuk+1z
ak+1

2(n−k)+iz
bk+1

2(n−k−1)+i,

(2.35)

for n ≥ k and i = 0, 1, where

uk+1 := uk + ak, ak+1 := a1ak + bk, bk+1 := b1ak. (2.36)

Equalities (2.31), (2.32), (2.35), (2.36) along with induction show that (2.33) and
(2.34) hold for all k, n ∈ N such that 2 ≤ k ≤ n+ 1.

From (2.33) we have
z2n+i = ηunzan

i zbn
i−2,

for n ∈ N and i = 0, 1, from which along with

z0 = αza
−2w

b
−1, z1 = αza

−1w
b
0 = αza

−1(βwc
−2z

d
−3)b = αβbwbc

−2z
bd
−3z

a
−1,

it follows that
z2n = ηunzan

0 zbn
−2 = (α1−cβb)un(αza

−2w
b
−1)anzbn

−2

= α(1−c)un+anβbunwban
−1 z

aan+bn
−2

= αun+1−cunβbunwban
−1 z

an+1−can

−2 ,

(2.37)

z2n+1 = ηunzan
1 zbn

−1 = (α1−cβb)un(αβbwbc
−2z

bd
−3z

a
−1)anzbn

−1

= α(1−c)un+anβbun+banwbcan
−2 zbdan

−3 zaan+bn
−1

= αun+1−cunβbun+1wbcan
−2 zbdan

−3 z
an+1−can

−1 ,

(2.38)
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for n ∈ N.
From (2.34) and since u1 = 1, we have

ak = a1ak−1 + b1ak−2, k ≥ 3, (2.39)

uk = 1 +
k−1∑
j=1

aj , k ∈ N. (2.40)

Case ac = bd. Since b1 = bd− ac = 0 equation (2.39) is reduced to

ak = a1ak−1 = (a+ c)ak−1, k ≥ 3,

which implies
ak = a2(a+ c)k−2 = (a+ c)k, (2.41)

for k ∈ N (for k = 1, 2 this is directly verified).
Equalities (2.40) and (2.41) yield

uk = 1 +
k−1∑
j=1

(a+ c)j , k ∈ N,

so that

uk =
1− (a+ c)k

1− a− c
, k ∈ N, (2.42)

if a+ c 6= 1, whereas
uk = k, k ∈ N, (2.43)

if a+ c = 1.
If a+ c 6= 1, then from (2.37), (2.38), (2.41), (2.42) and since

un+1 − cun =
1− c− a(a+ c)n

1− a− c
an+1 − can = a(a+ c)n

we obtain formulas (2.1) and (2.2), for n ≥ 2.
If a+ c = 1, then from (2.37), (2.38), (2.41), (2.43) and since

un+1 − cun = (1− c)n+ 1 = an+ 1

we obtain formulas (2.5) and (2.6), for n ∈ N.
Case ac 6= bd. Let t1,2 be the roots of the characteristic polynomial

P (t) = t2 − (a+ c)t+ ac− bd, (2.44)

associated with difference equation (2.39). Note that they are given by the formulas
in (2.13). We have

an = c1t
n
1 + c2t

n
2 , n ∈ N,

where c1, c2 ∈ R, if (a+ c)2 6= 4(ac− bd), whereas

un = (d1n+ d2)tn1 , n ∈ N,

where d1, d2 ∈ R, if (a+ c)2 = 4(ac− bd).
Since a1 = t1 + t2 and a2 = (t1 + t2)2− t1t2 = t21 + t1t2 + t22, it is easily obtained

that

ak =
tk+1
1 − tk+1

2

t1 − t2
, k ∈ N, (2.45)
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if (a+ c)2 6= 4(ac− bd), whereas

ak = (k + 1)tk1 , k ∈ N, (2.46)

if (a+ c)2 = 4(ac− bd).
From (2.40) and (2.45) we have

uk = 1 +
k−1∑
j=1

tj+1
1 − tj+1

2

t1 − t2
=

(t2 − 1)tk+1
1 − (t1 − 1)tk+1

2 + t1 − t2
(t1 − 1)(t2 − 1)(t1 − t2)

, (2.47)

for k ∈ N, if (a+ c)2 6= 4(ac− bd) and bd 6= (a− 1)(c− 1).
From (2.40) and (2.46) it follows that

uk = 1 +
k−1∑
j=1

(j + 1)tj1 =
1− (k + 1)tk1 + ktk+1

1

(1− t1)2
, (2.48)

for k ∈ N, if (a+ c)2 = 4(ac− bd) and bd 6= (a− 1)(c− 1).
If (a+ c)2 6= 4(ac− bd), bd = (a−1)(c−1) and a+ c 6= 2, then polynomial (2.44)

has exactly one zero equal to one, say t2. From (2.40) and (2.45) we have

uk = 1 +
k−1∑
j=1

tj+1
1 − 1
t1 − 1

=
tk+1
1 − (k + 1)t1 + k

(t1 − 1)2
, (2.49)

for k ∈ N.
Finally, if (a + c)2 = 4(ac − bd), bd = (a − 1)(c − 1) and a + c = 2, then both

zeros of polynomial (2.44) are equal to one. From (2.40) and (2.46) it follows that

uk = 1 +
k−1∑
j=1

(j + 1) =
k(k + 1)

2
, (2.50)

for k ∈ N.
If (a+ c)2 6= 4(ac− bd) and bd 6= (a− 1)(c− 1), then from (2.37), (2.38), (2.45),

(2.47) and since

un+1 − cun =
(t2 − 1)(t1 − c)tn+1

1 − (t1 − 1)(t2 − c)tn+1
2 + (t1 − t2)(1− c)

(t1 − 1)(t2 − 1)(t1 − t2)

an+1 − can =
(t1 − c)tn+1

1 − (t2 − c)tn+1
2

t1 − t2
,

we obtain formulas (2.9) and (2.10).
If (a+ c)2 = 4(ac− bd) and bd 6= (a− 1)(c− 1), then from (2.37), (2.38), (2.46),

(2.48) and since

un+1 − cun =
1− c+ tn1 ((n+ 1)t21 − ((c+ 1)n+ 2)t1 + c(n+ 1))

(1− t1)2

an+1 − can = ((t1 − c)n+ 2t1 − c)tn1 ,

we obtain formulas (2.14) and (2.15).
If (a + c)2 6= 4(ac − bd), bd = (a − 1)(c − 1) and a + c 6= 2, then from (2.37),

(2.38), (2.45) with t2 = 1, (2.49) and since

un+1 − cun =
(t1 − c)tn+1

1 + ((c− 1)n+ c− 2)t1 + (1− c)n+ 1
(1− t1)2
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an+1 − can =
(t1 − c)tn+1

1 + c− 1
t1 − 1

,

we obtain formulas (2.18) and (2.19), where t1 = ac− bd = a+ c− 1.
If (a + c)2 = 4(ac − bd), bd = (a − 1)(c − 1) and a + c = 2, then from (2.37),

(2.38), (2.46) with t1 = 1, (2.50) and since

un+1 − cun =
(n+ 1)((1− c)n+ 2)

2
an+1 − can = (1− c)n+ 2− c,

we obtain formulas (2.22) and (2.23).
From (1.1) we also have

zd
n−3 =

wn

βwc
n−2

, n ∈ N0, (2.51)

zd
n = αdzad

n−2w
bd
n−1, n ∈ N0. (2.52)

Thus, from (2.51) and (2.52) it follows that

wn+3 = αdβ1−awa+c
n+1w

bd−ac
n−1 , n ∈ N0. (2.53)

Note that difference equations (2.28) and (2.53) have only different constant mul-
tipliers.

Let ν := αdβ1−a,

û1 = 1, â1 = a+ c, b̂1 = bd− ac. (2.54)

As above it is proved that for any k ∈ N it holds

w2(n+1)+i = νûkwâk

2(n−k+1)+iw
b̂k

2(n−k)+i, (2.55)

for n ≥ k and i = −1, 0, where

ûk := ûk−1 + âk−1, âk := â1âk−1 + b̂k−1, b̂k = b̂1âk−1. (2.56)

Since initial conditions (2.54) and system (2.56) are the same as those in (2.29)
and (2.34), it follows that

âk = ak, b̂k = bk, ûk = uk, (2.57)

for every k ∈ N. From (2.55) we have

w2n+i = νun−1w
an−1
2+i w

bn−1
i ,

for n ≥ 2 and i = −1, 0, from which along with

w0 = βwc
−2z

d
−3, w1 = βwc

−1z
d
−2,

w2 = βwc
0z

d
−1 = β(βwc

−2z
d
−3)czd

−1 = β1+cwc2

−2z
cd
−3z

d
−1,

it follows that

w2n = νun−1w
an−1
2 w

bn−1
0

= (αdβ1−a)un−1(β1+cwc2

−2z
cd
−3z

d
−1)an−1(βwc

−2z
d
−3)bn−1

= αdun−1β(1−a)un−1+(1+c)an−1+bn−1w
c2an−1+cbn−1
−2 z

cdan−1+dbn−1
−3 z

dan−1
−1

= αdun−1βun+1−aunw
c(an−aan−1)
−2 z

d(an−aan−1)
−3 z

dan−1
−1 ,

(2.58)



EJDE-2016/285 SYSTEMS OF DIFFERENCE EQUATIONS 9

w2n−1 = νun−1w
an−1
1 w

bn−1
−1

= (αdβ1−a)un−1(βwc
−1z

d
−2)an−1w

bn−1
−1

= αdun−1β(1−a)un−1+an−1w
can−1+bn−1
−1 z

dan−1
−2

= αdun−1βun−aun−1w
an−aan−1
−1 z

dan−1
−2 ,

(2.59)

for n ≥ 2.
Case ac = bd. If a+ c 6= 1, then from (2.41), (2.42), (2.58), (2.59) and since

un − aun−1 =
1− a− c(a+ c)n−1

1− a− c
an − aan−1 = c(a+ c)n−1

we obtain formulas (2.3) and (2.4).
If a+ c = 1, then from (2.41) with a+ c = 1, (2.43), (2.58), (2.59) and since

un − aun−1 = (1− a)n+ a

we obtain formulas (2.7) and (2.8).
Case ac 6= bd. If ac 6= bd, (a+ c)2 6= 4(ac− bd) and bd 6= (a− 1)(c− 1), then from
(2.45), (2.47), (2.58), (2.59) and since

un − aun−1 =
(t2 − 1)(t1 − a)tn1 − (t1 − 1)(t2 − a)tn2 + (t1 − t2)(1− a)

(t1 − 1)(t2 − 1)(t1 − t2)

an − aan−1 =
(t1 − a)tn1 − (t2 − a)tn2

t1 − t2
we obtain formulas (2.11) and (2.12).

If ac 6= bd, (a + c)2 = 4(ac − bd), bd 6= (a − 1)(c − 1), then from (2.46), (2.48),
(2.58), (2.59) and since

un − aun−1 =
1− a+ tn−1

1 (nt21 − ((1 + a)n+ 1− a)t1 + an)
(1− t1)2

an − aan−1 = (n(t1 − a) + t1)tn−1
1

we obtain formulas (2.16) and (2.17).
If ac 6= bd, (a + c)2 6= 4(ac − bd), bd = (a − 1)(c − 1) and a + c 6= 2, then from

(2.45) with t2 = 1, (2.49), (2.58), (2.59) and since

un − aun−1 =
(t1 − a)tn1 + ((a− 1)n− 1)t1 + (1− a)n+ a

(1− t1)2

an − aan−1 =
(t1 − a)tn1 + a− 1

t1 − 1

we obtain formulas (2.20) and (2.21), where t1 = ac− bd = a+ c− 1.
If ac 6= bd, (a + c)2 = 4(ac − bd), bd = (a − 1)(c − 1) and a + c = 2, then from

(2.46) with t1 = 1, (2.50), (2.58), (2.59) and since

un − aun−1 =
n((1− a)n+ 1 + a)

2
an − aan−1 = (1− a)n+ 1

we obtain formulas (2.24) and (2.25).
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By some standard but tedious and time-consuming calculations it is checked that
all the formulas in the theorem really present general solution to system (1.1) (in
each of these six cases), completing the proof of the theorem. �
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