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A REGULARIZATION METHOD FOR TIME-FRACTIONAL
LINEAR INVERSE DIFFUSION PROBLEMS

NGUYEN HUY TUAN, MOKHTAR KIRANE,
VU CAM HOAN LUU, BANDAR BIN-MOHSIN

ABSTRACT. In this article, we consider an inverse problem for a time-fractional
diffusion equation with a linear source in a one-dimensional semi-infinite do-
main. Such a problem is obtained from the classical diffusion equation by
replacing the first-order time derivative by the Caputo fractional derivative.
We show that the problem is ill-posed, then apply a regularization method to
solve it based on the solution in the frequency domain. Convergence estimates
are presented under the a priori bound assumptions for the exact solution. We
also provide a numerical example to illustrate our results.

1. INTRODUCTION

In this article, we consider the following inverse problem for the time-fractional
diffusion equation with a linear source in a one-dimensional semi-infinite domain,

—aug(z,t) = Dju(z, t) + F(x,t,u(z,t)), =>0,t>0,

u(]-at) = g(t)a t >0, (11)
lim w(z,t) = u(x,0) =0, t>0,

T— 00
where a is a constant diffusivity coefficient, F' is the source function which defined
later. The inverse problem here is of recovering u(z,t), 0 < z < 1, from the
given data u at x = 1. The fractional derivative D] u(z,t) is the Caputo fractional
derivative of order 0 < v < 1 defined by [16]

1 "ou(z,s) ds
Y _ )
Dtu(x’t)l“(l—’y)/o 95 (—s) for 0 < v <1,
ou(z,t
Djute, ) = 200y,

where I'(+) is the Gamma function. Problem is an inverse problem and is
ill-posed (see Lemma 2.1); that means the solution does not depend continuously
on the given data and any small perturbation in the given data may cause a large
change to the solution.

The homogeneous problem, i.e, F' = 0 has been considered by many authors. For
example: In 2011, Zheng and Wei [26] considered a homogeneous time fractional
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diffusion problem, where the time fractional derivative is understood in sense of
Dzerbayshan-Caputo also in a quarter plane, in the form

—aug(z,t) = Dju(z,t), x>0,t>0,

u(l,t) =g(t), t=0, (1.2)
lim w(z,t) =u(xz,0)=0, t>0,
r——400

In 2012, Xiong et al [20] applied an optimal regularization method for solving this
problem and obtained the optimal convergence estimate. In 2012, Hon et al [21]
considered this problem in 2-dimensional case. In 2012, Fu et al [I] gave a new
iteration regularization method to deal with this problem, and error estimates are
obtained for a priori and a posteriori parameter choice rules. In 2014, Mingli et
al [7] presented a new dynamic method for choosing a regularization parameter by
using a spectral method.

Until now, to our knowledge, the time-fractional diffusion equation with a linear
source term has not been studied. To solve the linear inhomogeneous problem,
many techniques and new ideas to deal with the fractional terms and source term
which can’t be treated by using known ideas are required.

The techniques and methods in previous articles on the homogeneous case cannot
be applied directly to solve the linear inhomogeneous problem. As is known, for
a linear problem, the solution (exact solution) can be represented in an integral
equation which contains some instability terms (See (2.9))). The main idea of this
method is to find a suitable integral equation for approximating the exact solution.
The working here is to replace instability terms by regularization terms and show
that the solution of our regularized problem converges to the exact solution, if it
exists as the regularization parameter tends to zero. In case of the homogeneous
problem, we have many choices of stability term for regularization. However, in
the case of a linear inhomogeneous problem, the main solution u is complex and
defined by an integral equation on right hand side dependents of u. This leads to
studying a linear inhomogeneous problem. In this paper, based on [5], we develop
some new techniques to overcome this difficulty.

This article is divided into five sections. In Section 2, we present the ill-posedness
of the problem and propose our new regularization method. In Section 3, conver-
gence estimates for the temperature u are given based on the a priori assumptions
for the exact solution. In section 4, a numerical example is proposed to show the
effectiveness of the regularized method.

2. ILL-POSEDNESS OF THE NONLINEAR PROBLEM

To use the Fourier transform, we extend the functions u(x,t), g(t) to the whole
line —o0 < t < +00 by defining them to be zero for ¢ < 0. The Fourier transform
of the function f € L?(R) is written as

~ 1 oo ,
flw) = —/ f(t)e “tdt, —00 < w < 400. (2.1)
27T J o
Since the measurements usually contain an error, we assume that the measured
data function g, € L?(R) satisfies

90 = 9llz2®) < a, (2.2)
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where a > 0 represents a bound on the measurement error. Here, we assume that
F(z,t,u) = b(x,t)u(z,t) + H(z,t), where b € L>(0,T; L?(R)) satisfies

16l Lo (0,1;L2 ) < K (2.3)

for any real number K > 0 and H € L?(0,1; L*(R)). It is easy to see that F
satisfies the global Lispchitz condition, i.e.,

||F‘(1’7 . Ul) — F(ZL', . u2)||L2(]R) S KH'LLl(iE, ) — UQ(.’E, ')||L2(R) (24)
Taking the Fourier transformation of (1.1)) with respect to ¢, we obtain

Uy (T, w) + @ﬁ(x,w) = éﬁ(%w,u(x,w)), x>0, weR
i(lw) = §w), w>0, (25
mll)rfoou(x,w) =0, w>0,
where
(iw)” = |w|” cos g + i|lw]” sign(w) sin g, (2.6)

and F(z,w,u(z,w)) is

~

+oo
Fla, w, u(z,w)) = 1% /_ Fla, t, u(w, £))e= " dt. 2.7)

—\/7
The solution to problem is given by
W)V (1 — 1/t W) (2 — )\
u(z,w) = exp (M)ﬁ(w) - 7/ exp (M)F(z,w,u(z7w))dz.
a xT

a a

(2.8)
Applying the inverse Fourier transform,
1 oo ()7 (1 — )\ .
u(x,t) = — exp | ——— |g(w
@)= o= [ [ew (=) -

1 /1 exp (W)ﬁ(z,w,u(z,w))dz et dw.

a Jg

Note that (iw)” has the positive real part |w|”cosZF and therefore the factors
\exp(%ﬂ and |exp(%)| tend to oo for 0 < z <z < 1 as w — +o0.
So the small perturbation for the data g(t) will be amplified infinitely by this factor
and lead to the integral (2.9) blow-up, therefore recovering the temperature u(z,t)

from the measured data g, (t) is ill-posed.
Lemma 2.1. Problem (2.9) is ill-posed.

Proof. To show the instability of w in this case, we construct the functions g,
defined by the Fourier transform, as follows:

5() {\;, ifw € W, (210
2n
Folz,w, u(s, ) = —Aow) (2.11)

2exp(L|w|7 cos L)

where W,, C R is
Wn::{w€R|n71§w§n+1}.
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Let u,, satisfy the integral equation
Un (2, 1)

1 (1w)"(1 —x)
_\/ﬂ/ Xp( a
(

) Gn(w)et™* duw

+o0 'y(z
a\/ﬂ/ exp

)

)Fo(z W, up(2,w))e ! dz dw (2.12)

a
n+1
ezwt dw

exp
nf n—1

+oo w)(z—x
e Fo(z,w, un(z,w))e™tdz dw.
[T [ew DY Foes 0 n (2, ))e

First, we show that (2.12) has a unique solution u,, € C([0,1]; L?(R)). In fact, we
consider the function

a

(=
e
(=

~ ntl w)V (1 —x)\
Q(w)(zx,t) = % B exp (%)ewt dw
(iw)7(z — =)

- % /+OO /1 exp (7)ﬁ(z,w,w(z,w))ewtdz dw.
av am J—-co Jz a
Then, for any wy,ws € C([0,1]; L?>(R)) we obtain
1Q(wr)(x, ) — Q(wz)(ﬂ% Nizm)
= Q1) (. ) — QLuwn)(a, iz

o0 (G =)
/ ‘/ eXp ))(ﬁ,\l_@)dzrdw

exp ( |cu|’y cos 5

s%/m (1:”)/961

1
< slllw — wsll?,

(iw)” (z—x) 9
oxp ( ) (@i - @) | dzdw
exp (5|w|7 cos 1)

where ||| - ||| is the sup norm in L2(R). This implies that @ is a contraction. Using
the Banach fixed-point theorem, we conclude that the equation Q(w) = w has a
unique solution u,, € C([0,1]; LQ( )). The inequality |c — d| > |c| — |d| implies

(

(e, > [exp (L2120 >) A0

o (2.13)
‘ / exp( (z—2 )Fo(z w, up (2, w))dz‘.
It holds ) .
E/x exp (W)F@(Z W, U (2, w))dz‘
! w)¥(z —x Un(2,w
= : P <( : (a )>‘ ‘exp (lll|u()|“/ cc))s ) ‘dz (2.14)
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Combining (2.13)), (2.14) and using the inequality 2(c? + d?) > (c + d)?, we obtain

ﬂn(z,w)‘ dz > exp (f|w|7(1 — &) cos 77”) G ()2,
a

_ 2
2o+ 2 [

x

By integrating over R with respect to the variable w, we obtain

_ 2 [t
20T (o) ey + 5 [ TG e d2
n+1
2
Z 5 ) exp <a|w|7(1 — ) cos g) dw.

A simple computation gives

exp (21 (n —1)7(1 — z) cos )
2

(24 5) swp (e, Mam > sup
a 0<z<1 0<z<1 n

exp (21 (n — 1) cos 2F)
5 .

n

By Parseval’s identity, it follows from (2.10) that

1 1
2 ~ 2
= = —dw = —. 2.15
lonlaqe) = Wn() s = | giade =5 (215)
As n — +oo, we see that
||gn||L2(R) — 0, sup ||1/L;(.’E, ')||L2(R) — 4-00. (216)

0<z<1

Thus, problem (2.9) is, in general, ill-posed in the Hadamard sense in L?-norm. [J

3. REGULARIZATION AND ERROR ESTIMATE

We must use some regularization methods to deal with this problem. To regular-
ize the problem, we have to replace the terms exp (%(zw)”) and exp (Z;x (iw)'y)

by some other terms.

Theorem 3.1. Suppose that (L.1)) has a unique solution u € C([0,1]; L*(R)) such
that

u(-,0)lr2r) < E. (3.1)

Suppose that 2K < a. Choose € := e(a) > 0 such that

lim e(a) =0, lim ae ' (a)is bounded. (3.2)

a—0 a—0
Then we construct a reqularized solution U such that

2(1 +p) - (e—1a+ Hu(O,-)HLz(R))ex, (3.3)

u(zx, ) — U (x, - < |
H ( ) ( )||L2(R) 1_2(1_’_1%)(172
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or anyp>1 ‘1—22 —1). Here UY is the function whose Fourier transform is
Yyp 3K €

. exp ((iw)'ylglfx))

U(x,w) =
fla,w) 1+ eexp (£|w|7 cos IF

1 [t (iw)Y (z—x) R
- f/ P ( & ) F(z,w, UM (z,w))dz

a 1+ eexp (L|w|7 cos LF)

)§;(w)

(3.4)

+1/ac eexp(g|w|7(:o “’7)
aJo

1+ eexp <%|w|“¥ cos %)
N R
X exp (M)F(z,w, Ul (z,w))dz.
a

Remark 3.2. In the above Theorem, we can choose €(a) := a.

Proof. Let V™ be the function whose Fourier transform is defined by

exp ( (iw)wa(ll—x) )

1+ eexp (L|w|" cos LF

1 1 (iw)Y (z—x) R
_ ,/ exp ( — )w F(z,w,V¥(z,w))dz
aJy 1+ eexp (E|w|vcos LF) (3.5)

1/z eexp (1|w|” cos )
aJo 1+eexp (Llw|rcos )
(iw)(z — x)

a

Ve (z,w) =

] g(w)

X exp ( )ﬁ(z,w, VA (z,w))dz.

We divide the proof of Theorem 3.1 into three steps.
Step 1. The existence and the uniqueness of a solution of (3.4). Let us define the
norm on C([0, 1]; L?(R)) as follows

|hlx = sup € “||h(z)|L2®), forall h € L*(R) and € > 0. (3.6)
0<z<1

It is obvious that || - ||; is a norm of C([0, 1]; L*(R)).
For V € C([0,1]; L%(R)), we consider
exp ((iw)"’a(lfa:))

+oo
PV = —
\/277/_ 1+ eexp (L|w|7 cos LF)

oo (GG _
/ / ex ( ) —F(z,w,V(z,w))e"" dzdw
1+eexp |w\“/ cos 17)

Ta(w)e™tdw

a\/27r
/+°°/ eexp ( |(,u|'Y cos 1)
a\/ 1+ eexp (L|w| cos LF)

X exp (y)F(z w,V(z,w))e™tdz dw.

We will prove that
K
[8Vi — V3l < Vi - Vall, (37)
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for any Vi, Va € C([0,1]; L*(R)).
In fact, we have

OV (z,t) — DVa(x,t)

+oo eXp (w) (2= T))
a\/27r / / 1+ eexp (£|w|7 cos L)
X (F(z w, Va(z,w)) — F(z,w, Vi (2 ) e“tdzdw

Foo eexp ( \w|7 cos 1) (lw)7(z — )
a\/ﬁ/ / 1+ eexp (L|w|7 cos %>ep< a )
X (F(z, w, Vi(z,w)) — F(z,w, Va(z, w)))e“"tdzdw
= Ai(z,t) + Ao (z,t).
First, for all 0 < x < z < 1, we have the inequality

(iw)" (z—=)

. (==—)
1+ eexp (£|w|7 cos LF)
_ exp(z_”’|w\700 'Y")
1+ eexp (L|w|7 cos 1)
_ exp (2=£=1|w|” cos )
~exp (Hw[rcos LT + €
exp (2=2=L|w|” cos )
[e—i—exp(%\whcosg”x_ﬁl [e + exp (ZLw[7 cos LT) ]”

1 r—z

e+ exp (S w7 cos LF) }Z_w N

—X

Then, using the latter inequality, we have an estimation for ||Ay||z2(g) as follows

[ A1 (2, ')H%?(R)

oo ! exP(M) R
/ (/ac 1+ eexp (L|w]7 cos IF) ( (z,w, Va(z,w))

_A | 2
— F(z,w,Vi(z, w)))ezwtdz) dw

oo exp ( m

(1—2x)
(L|w]7 cos IF)

zw) (z— x)) ’2

X ’F(z w, Vi(z,w)) — F(z w, Va(z, w))’ dz dw

“+o0
1_:1; / / 2 — 2Z

K r—az
sﬁu—méé 21V, = Va2aayd=

(z,w, V1(z,w)) — (z w, Va(z,w)) 2dzdw

K22 ! 2 2
= =) [ TVl d:
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2
< e (1—2)* sup e F|Vi(2) — Va(2)l|7am)
a 0<2<1
K2
= (- 2P|V - Vil (33)

Next, similarly, we obtain the estimation for ||As(x,-)|[z2(r) as follows

K2 ,,
A2 (@, )| Z2r) < (762 2®|[Vi = Valf3. (3.9)

For 0 < < 1, by using above observations and using the inequality (c + d)? <
(14 L)c? + (m+ 1)d? for all real numbers ¢, d and m > 0, we obtain

[®VL — ®Va |72 m

2
< (141, ey + 1 42(@, lzage) )

1
< (L4 ) As(@, e + (m + D As(@, ) [z
K2 1, K2,
< ?(1 + E)Ez (1 — $)2||V1 - V2||% + (m + 1)?62 K2x2HV1 - V2||%
By choosing m = (1 — z)/x, we obtain
—2z 2 K? 2
e T oVh — OVl 1a(r) < aTHVl —Wallf, for0<z<1. (3.10)
Combining (3.8)), (3.9)), (3.10]), we obtain
2 2 2 K 2
[@V1 — Valf = oiu%( ‘[ oVE — OV |lLo(my < CTQ”Vl — Vallf. (3.11)

This completes the proof of Step 1.
Step 2. Estimate for |U&(x,-) — V¥(x,-)|2®). Substituting (7; and ‘76“, we
obtain

ﬁg(x7"‘j) - ‘Za(l’,w)
(iw)w(l—x))

o exp( P
1+ eexp (L|w[rcos L) (9(w) —§(w))

1 ! exp (7@”)7527@) ~ N
— @ _ o d
+ a/w TR (%|W|'y o %) [F(Z,w, Ul(z,w)) — F(z,w, V, (z,w))] z

1/03: eexp (L|w|” cos 1) eXp((iw)”(z—w))

a 1+ eexp (L|w|7 cos ) a

X [ﬁ(z,w, Uf(z,w)) — F(z,w, Vf‘(z,w))} dz
= L(z,w) + I(z,w) + I3(z,w).
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‘We have the estimates

(i) (1—2)
+oo exp o 2 . R
e < [ ( )W)\ (Ga(w) ~ §(w))” d

1+ eexp (L|w|7cos X

400 9 (3.12)
- / 2 (Ga(w) — 7)) dw

— 00

=72 ga — gllf2my < 7%,

and
TAEB .
Foo 1 (W) (z—x) R
g/ (1/ exp( _a ) . {F(Z,w,Uf(z,w))
—eo M@ S, 14 eexp (L|w|cos LF)
~ 2
— (2,0, VE (2,0))] d2) " du
teo 1 exp (L) =)y 0 X
S/700 GQ(I_J;)(/I 1+ eexp (%|w|700577”)‘ [F(z,w,Ue (z,w))
— 2 (3.13)
— F(z,w,V(z, w))} dz) dw
+o0 N
= / 22 [P z,0, U2 (2,w)) = Fz,w, V0 (2,w))] dz dw
1, [P, X )
- a2€2 / ’ 1F (2, US) (2, 7) = F(z, ., Vi )(Zﬂ')H%Z(R)dZ
KZ N 1 o, N .
< B [z e~ Ve
and
‘|I3(x7')||%2(R)
< o1 " eexp (L|w|Y cos 1) (iw)'(z — z)
= (a 1+ T PZa exp( )
—o0 0 eexp (+|w|7 cos ) a
2
x [F(z,w, U2 ( w)) = F(z,0,V2(z, w))]dz) dw
/+oo eexp |w|7 CcoS '72 ) ((Zw)'v(z _x)>‘2
(L|w|7 cos L) P a
(3.14)

[ (z,w, U%(z,w)) fF(z,w,VEa(z,w))}dzdw
/+°° ! / Zw—2z ﬁ (z w7Ug(z,w))—ﬁ(z,w, Vea(z,w))rdzdw

- a? ezz/o _QZHF( 2y Uea)(z7 ) - F(Z’ 'vVea)(Z’ ')HQL"’(R)dZ
2

K 2 ’ 2 2
<o [ eI - Ve g
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From the inequality
(by + by 4 b3)? < 2(1 + p)b? +2(1 + )b2 +2(1+ )b2

for any real numbers by, by, b3 and p > 0, we obtam
JUe (@, ) = Ve (@, ) ey
1 1
<21 )10 My +2(1+ )l Maqe) + 20+ P) s, o

1, K? !
< 2(1+p)e % a® +2(1 + )72 21/ €N (2, ) = VE(2, ) T2y dz
1 20 v 2 ' 2
+2(1+ E)LTQE 1/0 e U2 (z,) - Vea(za‘)HLz(R)dZ

2x—2 2 1 K2 2:1: ! —2z « a 2
=2(1+p)e 200+ e ENUE (2, ) = VE(z )z ) d2-
0 R)
This implies
6_2$HU3({E7 ) - Vea(xv ')H%?(R)

—2 2 1 K2 ! —2z e} « 2
<2(1+pleTa”+2(1+ ) L 1U&(z,) = V(2 )22 myda-

Set J(x) = e **||U2 (x, ~)—Vf( )||L2 - Since U (x, ), V2 (w, ) € C((0,1]; L*(R)),
we see that J is the continuous functlon on [0,1]. Hence, J attains over there its
maximum P at some point zg € [0, 1]. This implies

(3.15)

1 .K?
J(zo) < 2(1 4 p)e2a® +2(1 + ) 5 (20)- (3.16)
Hence
1 K? -2 2
1-2(1+ 5)07} J(z0) < 2(1+ p)e2a2. (3.17)
Since p > 1/(5%= — 1), we know that 1 —2(1 + %)I;—; > 0. We deduce that
242
102 (@, ) =V, Yy < (o) < —— B 202 (318)

T1-201+ )&

Step 3. Estimate for [Ju(x,-) — V(,-)||12(r). First, we have

u(z,w) |
—exp (=) o)
_ 2 /wl exp <W)ﬁ(z, w, u(z, w))dz}
exp (42 (1 - - ! w)Y(z — .
B 1—|—eel:qE( L1,|7 co S)'Yg) {g(w)*é/w exp(%) (3.19)

(1 — x)) eexp (L|w|7 cos 1)
1+ eexp (L|w|7 cos LT)

X [’g\(w) - i/wl exp (M)ﬁ(z,w,u(z,w))dz}.

a

% ﬁ(z,w,u(z,w))d'z} + exp ((Zw) -
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On the other hand,

1

. 1 /1 ) ~
i(1,w) = g(w) = e~ a (@)’ [G(O,w) + f/ e%(Z“)WZF(z,w,u(z,w))dz}.

aJo

This implies

g(w) — i/wl exp (M)ﬁ(z,w,u(z,w))dz

a
o 1" W) (1 — )\ ~
= 30,0 + 1 [ e (VU A vz
a 0 a

Combining (3.19)), (3.20) and (3.21)), we obtain

(iw)"(1—=)
Sy e ()
i, w) = 1+ eexp (£|w|7 cos L) [g(w)
e w)7(z — 1)\ 5
- f/ exp (M>F(z,w,u(z,w))dz]
af, a
—(lw)7x L1l cos 2
+eexp( 21 2) exp (|w|” cos 2)1’2(0,w)

1+ eexp (L|w|7 cos )

eexp (+|w|” cos ) l/zexp<(iw)7(z—z))
0 a

1+ eexp (L|lw]rcos ) a
x F(z,w, u(z,w))dz.
It follows from and that
u(z,w) — ‘//:a(%w)

1 /1 exp (7@“’)15279”)) ~

a 1+ eexp (L|w|7 cos IF)

€exp (%) exp (|w|” cos ) R
1+ eexp (L|w|7 cos L)
coxp (Al cos ) 1 [T (i) (z—a)
1+eexp((ll|w|’Ycos72”)a/ eXp( a )
X {ﬁ(z,w,u(z,w)) - ﬁ(z,w,Vf‘(z,w))}dz

= Ii(z,w) + I (z,w) + Is(z,w).

+

, W

The term || I4(, )| z2(r) can be estimated as follows

1 a(2, )72 m)
(iw)w(z—$)>

1 o0 1 GXp ( N
<z ] e mrmg e
— F(zw, V2 (5,0))] dz)2 d

1 oo 1 eXp(W) )
Saﬁlm(l_x)/l: ‘

1+ eexp (L|w]7 cos )

11

(3.20)

(3.21)

(3.22)

[F(z, w,u(z,w)) — ﬁ(z, w, V(z, w))} dz
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X [ (z,w,u(z,w)) — (z w, V¥ (z, ))] dz dw
2
/ / 2= 22 F(z,w,u(z,w)) — F(z,w, V(z,w))| dzdw

E —4az - - «
= G [ NG ute) ~ e VoG ) e

It follows from the Lipschitz property of F' that

K227 1 . N
1oz, ) Temy < — / e 2 lu(z,w) = VE(z,0) |12 @y d2- (3.23)

a

The term ||I5(z, )| z2(r) is bounded by

€ exp (%) exp (L|w[7 cos )

o0 2
Is(@, )]s g = a(0,w)| d
s Wi = || e T ey 20
00 (3.24)
< 62/ 277210(0, w) |* dw
= [u(0, )12 (x)-
The term || Is(, )| £2(r) is bounded by
16 (2, ) 172 my
- /+oo (1 /93 € exp (é‘(z_}"y Ccos g)ﬂ- exp ((Zw)v(z—x))
—eo M@ Jo 1+ eexp (L|w|vcos L) a
2
[F(z w u(z w)) = F(z,w,V(z, w))}dz) dw
oo eexp ( |w|7 cos 1) ((zw)V(z — x)) ‘2
X
a2 1+ eexp (£|w|7 cos LF) P a
(3.25)

X [F(z w, u(z w)) — (z,w, Vea(z,w))}dzdw
/+°° ! / 2o 2Z (z,w,u(z,w)) —ﬁ(z,w,‘fe‘)‘(z,w))rdzdw

:76%/0 P (2, U (2,) = Flz, V) (2, ) 2wy d

a2
2

K%, (" . o
<Ko / 2 fulz, ) = VE(2, ) amyd=

a

From the inequality (b + bz + b3)? < 2(1 + p)b3 + 2(1 + %)b% +2(1+ %)b% for any

real numbers by, by, b3 and p > 0, we obtain
Ju(z,-) = V()2

<2(1+p)|5(z, )HL2(R)+2(1+ )HI4( )||L2(R)+2(1+ )||I6( M2

xr K2 xT ! —4az «
2(1 + p)e**[|u(0, )2 my + 2(1 + E)aTEQ / e Hlulz, ) = V(2 ) 2y d2

1 K2 ’ —2z «
214 2706 [l )~ VI ey
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x 1 K2 x ! —2z «@
= 20+ 2)e (0. g + 200+ D)o [ (e = Ve e
This implies

e lul@, ) = V(@) IL2 g
2 LE? 2
< 20+ D)0 ey + 200+ 1) g7 [ () = V2 g d
Set j(x) = 6_2w||u(x’ ) - Vea(xv ')”%%R)' Since u(x, ')7 Vea(xv ) € C([Ov 1]5 L2(R))7
we see the function .J is continous on [0,1]. and attains over there its maximum at
some point x; € [0, 1]. It is obvious that
2

Tw1) £ 2014 P, ey + 20+ 1) o7 Tla),

Therefore,

2(1+p) 2 2
_ AT 2, . (3.26
O e 320

a?

Since (3.18]), (3.26) and applying the triangle inequality, we obtain
Ju(z, ) = U (@, )2 @) < llulx, ) = VE (@, 2@ + U8 (@, 0) = VE (2, ) 2wy

20+p)  \Y2(
< (—=2TP2 . x
_(12(1+;)§§) (7t 0 s )

luz, ) = V@, N ia@) < J(21)e¥ <

O

Remark 3.3. For the estimation in the case z = 0, we can use the technique in
[19].

4. NUMERICAL EXPERIMENTS

To verify our proposed methods, we carry out the numerical experiment for
the above regularization methods. The numerical example is implemented for
t € (0,27), z € (0,1). In order to illustrate the sensitivity of the computational
accuracy to the noise of the measurement data, we use the random function to gen-
erate the noisy data similar to an observation data. The perturbation was defined
as erand(), where rand(size()) is a random number, and € plays as an amplitude
of the errors. The approximation of the regularization solution is computed by
discrete Fourier algorithm. In the example, we consider an inverse problem for
the time-fractional diffusion equation in a one-dimensional semi-infinite domain as

follows:
—aug(x,t) = Dju(x,t) +u+ H(z,t), x>0,t>0,

u(l,t) =g(t), t=0, (4.1)
HI_P u(z,t) = u(x,0) =0, t>0,
where
a x 277 T
H(z,t)= (= -1 “I2 92— exp(—=
(0,0) = (5 = 1) (=) ~ 2 (-3 w2

g(t) = exp(—0.5)t? .
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The exact solution of (1)) is u(z,t) = exp(—%)t?. The measured data g, is
9ga(t) = g(t) + arrand(size(g)) , (4.3)

where « indicates that the error level of g and the symbol rand(size()) is a random
number in [—1,1]. Assume that the constant diffusivity coefficient a is 2.1. Now,
we study the numerical results for ¢t bounded. Let us choose T' = 27. According to
Theorem 3.1, the regularized solution is

(iw)"(1—=)
=)

—~ exp

= /;w
1+ aexp (£|w|7 cos %)g )

L (i) (z=2)y
- = / &b ( & ) F(z,w, UM (z,w))dz

a 14 aexp (L|w|*cos L)

1 /’3 avexp (L |w|7 cos ) ((zw)W(z—x))
= ex
aJo 1+ aexp (w7 cos ) P a

x F(z,w, Uf(z,w))dz .

(4.4)

In general, the whole numerical procedure is proceeded in the following steps:

Step 1. Choose I and J to generate spatial and temporal discretizations as follows

1

I
o

T, =iAx, Ar=—-, i A,

~l =

=
<

tj = jAt, At=

~[¥

VA

)

Of course, the higher value of I and J will provide more stable and accurate nu-
merical calculation, however in the following examples I = J = 101 are chosen.

Step 2. We choose H* as the observed data including the noise in the manner
that

H*(-,-) = H(-,") + arand(:). (4.5)

Step 3. Errors between the exact and its regularized solutions are estimated by
the relative error estimation

1/2
(o0 109G ty) = uls, 1))
E(z) = - 7 . (4.6)
(oo lut,th)?)
From and , we know that
F(z,t,U(x,t)) = U2 (x,t) + H(x,t) (4.7)

Combining (4.4) and (4.7)), we can rewrite the regularized solution as follows

@(ma w) - (I)l(’% «,a, W)Wl,w + @2 (7; «,a, W)W2,w' (48)
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where

exp ( (iw)wél—r) )

1+ aexp (L|w|vcos L)’
avexp (Ew|? cos T) exp (£ (iw)?(1 — z))

1+ aexp (L|w]rcos IF)

/I/I717w = (ﬁ;(w) — clz_/l exp (%) (Ug(z,w) + ﬁ(z,w))dz),

x

/Wg’w = /OI exp (W%l)) (ﬁf(z,w) + f[(z,w))dz.

(I)l(p)/v @, a, UJ) =

Do (77 Q, a, w) =

)

(4.9)

Next, the integral equation is calculated as follows:
(1) We compute the Fourier transform of the function g(t) and H(z,t)
(2) Next, we compute the Fourier transform of the function U®, and to control
the nonlinear term, we use Gauss-Legendre quadrature method (see [I7]).
(3) Finally, we integrate exp (%) (U (z,w) + H(z,w)) to obtain Wi,
and /V[727w, then we multiply @4 (v, @, a,w) by Wl,w, and ®5(vy,a,a,w) by
/W\27w. Using ([4.8), we have the result in equation (4.4)).

TABLE 1. Relative error estimates between exact and regularized
solutions at v = 0.1.

a=0.1093 | « =0.05 | a = 0.01
z=0.5 0.664 0.283 0.423
xz=0.7 0.443 0.671 0.759

TABLE 2. Relative error estimates between exact and regularized
solutions at v = 0.3.

a=0.1093 | a=0.05 | « =0.01
z=0.5 0.459 0.095 0.186
z=0.7 0.340 0.633 0.655

and s approximation
ind s approximation

exact soluion

z=0.5 z=0.7

FicURE 1. 2D graphs of exact and regularized solutions with v =
0.1 and a = 0.1093.
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f‘;

exact solution and its approximation

exact solution and its approximation

x=0.5 z=0.7

FIGURE 2. 2D graphs of exact and regularized solutions with v =
0.3 and a = 0.1093.

exact solution and its approximation
exact solution and its approximation

x=0.5 z=0.7

FIGURE 3. 2D graphs of exact and regularized solutions with v =
0.1 and a = 0.05.

ha

exact solution and its approximation
exact solution and its approximation

x=0.5 z=0.7

FIGURE 4. 2D graphs of exact and regularized solutions with v =
0.3 and o = 0.05.

Tables [1 and 2 show the relative and absolute error estimates between the exact
and regularized solutions with v = 0.1 and v = 0.3, respectively. They clearly show
that the regularized solution converges to the exact solution with different values
of 7. Figures [[}f] show a comparison between the exact and regularized solutions
for several values of oz and . We can see that numerical accuracy becomes worse
as the order of the Caputo fractional derivative increases.
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exact solution and its approximation

L e om o oa

FIGURE 5. 2D graphs of exact solution and regularized solutions
with v = 0.1 and a = 0.01.

exact solution and its approximation
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0.3 and a = 0.01.
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