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NONTRIVIAL SOLUTIONS FOR NONLINEAR ALGEBRAIC
SYSTEMS VIA A LOCAL MINIMUM THEOREM FOR

FUNCTIONALS

GHASEM A. AFROUZI, ARMIN HADJIAN

Abstract. In this article, we use a critical point theorem (local minimum

result) for differentiable functionals to prove the existence of at least one non-

trivial solution for a nonlinear algebraic system with a parameter. Our goal
is achieved by requiring an appropriate asymptotic behavior of the nonlinear

term at zero. Some applications to discrete equations are also presented.

1. Introduction

In this article we study the nonlinear algebraic system

Au = λf(u), (1.1)

where u = (u1, . . . , un)t ∈ Rn is a column vector in Rn, A = (aij)n×n is a given pos-
itive definite matrix, f(u) := (f1(u1), . . . , fn(un))t, with fk : R→ R is a continuous
function for every k ∈ Z[1, n] := {1, . . . , n}, and λ is a positive parameter.

Discrete problems involving functions with two or more discrete variables are very
relevant and have been deeply investigated. Such great interest is undoubtedly due
to the advance of modern digital computing devices.

Indeed, since these relations can be simulated in a relatively easy manner by
means of such devices and since such simulations often reveal important information
about the behavior of complex systems, a large number of recent investigations
related to image processing, population models, neural networks, social behaviors,
digital control systems, are described in terms of such functional relations.

Moreover, a large number of problems can be formulated as special cases of the
nonlinear algebraic system (1.1). For a survey on these topics we cite the recent
paper [21]. A similar approach has also been used in others works (see for instance,
the papers [17, 18, 19] and [20, 22, 23]).

Here, motivated by the interest on the subject, by using variational methods in
finite dimensional setting and a local minimum theorem for differentiable function-
als due to Ricceri [15], we prove the existence of at least one nontrivial solution for
(1.1).

We also emphasize that if the functions fk are nonnegative, for every k ∈ Z[1, n],
our results guarantee a positive solution (see Remark 3.2 for more details). For
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instance, we can assume that A has the tridiagonal form

tridn(−1, 2,−1) :=


2 −1 0 . . . 0
−1 2 −1 . . . 0

. . .
0 . . . −1 2 −1
0 . . . 0 −1 2


n×n

.

A direct application of our result to second-order discrete equations reads as follows.

Theorem 1.1. Let f(u) = (f1(u1), . . . , fn(un))t, with fk : R→ R be a nonnegative
continuous function such that fk(0) = 0, for every k ∈ Z[1, n]. Assume also that

lim
s→0+

fk(s)
s

= +∞, ∀k ∈ Z[1, n].

Then, there exists an open interval Λ ⊆ (0,+∞) such that for each parameter
λ ∈ Λ, the problem

−∆2uk−1 = λfk(uk), ∀k ∈ Z[1, n]
u0 = un+1 = 0,

(1.2)

admits at least one positive solution uλ. Moreover, the real function

λ 7→ (uλ)ttridn(−1, 2,−1)uλ

2
− λ

n∑
k=1

∫ uλk

0

fk(s) ds

is negative and strictly decreasing on the set Λ.

For completeness, we mention the recent papers [5, 10, 11, 12, 13] where exis-
tence and multiplicity of solutions for non-linear discrete problems were studied by
using variational arguments. For a complete and exhaustive overview of variational
methods we refer the reader to the monographs [1, 8, 14].

The plan of the paper is as follows. In Section 2 we introduce some basic nota-
tions. In Section 3 we obtain our existence result (see Theorem 3.1). Finally, appli-
cations to discrete equations involving certain tridiagonal matrices and fourth-order
discrete equations are presented.

2. Preliminaries

We shall prove our results applying the following version of Ricceri’s variational
principle [15, Theorem 2.1].

Theorem 2.1. Let X be a reflexive real Banach space and let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is strongly continuous, sequentially
weakly lower semicontinuous and coercive in X and Ψ is sequentially weakly upper
semicontinuous in X. Let Jλ be the functional defined as Jλ := Φ − λΨ, λ ∈ R,
and for any r > infX Φ let ϕ be the function defined as

ϕ(r) := inf
u∈Φ−1((−∞,r))

supv∈Φ−1((−∞,r)) Ψ(v)−Ψ(u)
r − Φ(u)

.

Then, for any r > infX Φ and any λ ∈ (0, 1/ϕ(r)), the restriction of the functional
Jλ to Φ−1((−∞, r)) admits a global minimum, which is a critical point (precisely a
local minimum) of Jλ in X.
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As the ambient space X, we consider the n-dimensional Banach space Rn en-
dowed by the norm

‖u‖2 :=
( n∑
k=1

u2
k

)1/2

.

More generally, we set

‖u‖r :=
( n∑
k=1

|uk|r
)1/r

, (r ≥ 1)

for every u ∈ X.
Let Xn denote the class of all symmetric and positive definite matrices of order

n. Further, we denote by λ1, . . . , λn the eigenvalues of A ordered as follows 0 <
λ1 ≤ · · · ≤ λn.

It is well-known that if A ∈ Xn, for every u ∈ X, then one has

λ1‖u‖22 ≤ utAu ≤ λn‖u‖22, (2.1)

‖u‖∞ ≤
1√
λ1

(utAu)1/2, (2.2)

where ‖u‖∞ := maxk∈Z[1,n] |uk|.
For the rest of this article, we assume that A ∈ Xn. Set

Φ(u) :=
utAu

2
, Ψ(u) :=

n∑
k=1

Fk(uk), Jλ(u) := Φ(u)− λΨ(u), (2.3)

for u ∈ X, where Fk(t) :=
∫ t

0
fk(s) ds, for (k, t) ∈ Z[1, n]× R.

Standard arguments show that Jλ ∈ C1(X,R) as well as that the critical points
of Jλ are exactly the solutions of problem (1.1).

Indeed, a column vector u = (u1, . . . , un)t ∈ X is a critical point of the functional
Jλ if the gradient of Jλ at u is zero, i.e.,

∂Jλ(u)
∂u1

∣∣
u=u

= 0,
∂Jλ(u)
∂u2

∣∣
u=u

= 0, . . . ,
∂Jλ(u)
∂un

∣∣
u=u

= 0.

Moreover, for every k ∈ Z[1, n], one has that

∂utAu

∂uk
= 2(Au)k,

where (Au)k :=
∑n
j=1 akjuj . Thus

∂Jλ(u)
∂uk

= (Au)k − λfk(uk), ∀k ∈ Z[1, n]

which yields our assertion.

3. Main Results

In this section we prove our existence result that reads as follows.

Theorem 3.1. Let f(u) = (f1(u1), . . . , fn(un))t, with fk : R→ R be a continuous
function for every k ∈ Z[1, n]. In addition, if fk(0) = 0 for every k ∈ Z[1, n],
assume also that

lim
s→0+

Fk(s)
s2

= +∞, ∀k ∈ Z[1, n].
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Then, there exists an open interval Λ ⊆ (0,+∞) such that for each parameter
λ ∈ Λ, problem (1.1) admits at least one nontrivial solution uλ ∈ X. Moreover, the
real function

λ 7→ Jλ(uλ) (3.1)
is negative and strictly decreasing on Λ.

Proof. Our aim is to apply Theorem 2.1 to problem (1.1). To this end, let X := Rn,
and consider the functionals Φ and Ψ defined in (2.3). Note that Jλ := Φ − λΨ.
From (2.1) we know that the functional Φ is coercive. Also, Φ and Ψ satisfy all
regularity assumptions in Theorem 2.1, because X is finite dimensional.

Let c̄ > 0 and set
r :=

λ1

2
c̄2.

Then, for all u ∈ X with Φ(u) < r, taking (2.2) into account one has ‖u‖∞ ≤ c̄.
Hence,

Ψ(u) =
n∑
k=1

Fk(uk) ≤
n∑
k=1

max
|ξ|≤c̄

Fk(ξ),

for every u ∈ X such that Φ(u) < r. Then

sup
Φ(u)<r

Ψ(u) ≤
n∑
k=1

max
|ξ|≤c̄

Fk(ξ).

Taking into account the above computations, one has

ϕ(r) = inf
u∈Φ−1((−∞,r))

supv∈Φ−1((−∞,r)) Ψ(v)−Ψ(u)
r − Φ(u)

≤
supv∈Φ−1((−∞,r)) Ψ(v)

r

≤ 2
λ1

∑n
k=1 max|ξ|≤c̄ Fk(ξ)

c̄2
.

Hence, we put

λ? :=
λ1

2
c̄2∑n

k=1 max|ξ|≤c̄ Fk(ξ)
∈ (0,+∞].

At this point, thanks to Theorem 2.1, for every λ ∈ (0, λ?) ⊆ (0, 1/ϕ(r)), the
functional Jλ admits at least one critical point (local minima) uλ ∈ Φ−1((−∞, r)).

Now, we prove that for any fixed λ ∈ (0, λ?) the solution uλ found above is not
the trivial function. If fk(0) 6= 0 for some k ∈ Z[1, n], then it easily follows that
uλ 6≡ 0X , since the trivial vector does not solve problem (1.1).

Let us consider the case when fk(0) = 0 for every k ∈ Z[1, n]. In this setting, in
order to prove that uλ 6≡ 0X , first we claim that there exists a sequence {wj}j∈N in
X such that

lim sup
j→+∞

Ψ(wj)
Φ(wj)

= +∞. (3.2)

Because of our assumptions at zero, we can fix a sequence {ξj} ⊂ R+ converging
to zero and two constants σ, κ (with σ > 0) such that

lim
j→+∞

Fk(ξj)
ξ2
j

= +∞,

Fk(ξ) ≥ κξ2,
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for every ξ ∈ [0, σ] and k ∈ Z[1, n].
Now, fix 1 ≤ l < n and a vector v = (v1, . . . , vn) ∈ X such that:

(i) vk = 1, for every 1 ≤ k ≤ l;
(ii) vk ∈ [0, 1], for every l + 1 ≤ k ≤ n.

Finally, let wj := ξjv for any j ∈ N. It is easily seen that wj ∈ X for any j ∈ N.
Fix M > 0 and consider a real positive number η with

M <
lη + κ

∑n
k=l+1 v

2
k

Φ(v)
.

Then there is ν ∈ N such that ξj < σ and∫ ξj

0

fk(s) ds ≥ ηξ2
j ,

for every j > ν and k ∈ Z[1, n].
Now, for every j > ν, bearing in mind the properties of the vector v (0 ≤ ξjvk < σ

for j sufficiently large and every k ∈ Z[1, n]), one has

Ψ(wj)
Φ(wj)

=
∑l
k=1

( ∫ ξj
0
fk(s) ds

)
+
∑n
k=l+1 Fk(ξjvk)

ξ2
jΦ(v)

≥
lη + κ

∑n
k=l+1 v

2
k

Φ(v)
> M.

Since M could be taken arbitrarily large, (3.2) clearly follows.
Now, note that

‖wj‖2 = |ξj |‖v‖2 → 0,

as j → +∞, so that for j large enough,

‖wj‖2 <
√
λ1

λn
c̄.

As a consequence of this and taking into account (2.1),

wj ∈ Φ−1((−∞, r)), (3.3)

provided j is large enough. Also, by (3.2) and the fact that λ > 0,

Jλ(wj) = Φ(wj)− λΨ(wj) < 0, (3.4)

for j sufficiently large.
Since uλ is a global minimum of the restriction of Jλ to Φ−1((−∞, r)), by (3.3)

and (3.4) we conclude that

Jλ(uλ) ≤ Jλ(wj) < 0 = Jλ(0), (3.5)

so that uλ 6≡ 0X . Thus, uλ is a nontrivial solution of problem (1.1). Moreover,
from (3.5) we get that for every λ ∈ (0, λ?) the map (3.1) is negative.

Finally, we show that the map (3.1) is strictly decreasing in (0, λ?). For our goal
we observe that for any u ∈ X, one has

Jλ(u) = λ
(Φ(u)

λ
−Ψ(u)

)
. (3.6)

Now, let us fix 0 < λ1 < λ2 < λ? and let uλi be the global minimum of the
functional Jλi restricted to Φ

(
(−∞, r)

)
for i = 1, 2.
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Also, let

mλi :=
(Φ(uλi)

λi
−Ψ(uλi)

)
= inf
v∈Φ−1((−∞,r))

(Φ(v)
λi
−Ψ(v)

)
,

for i = 1, 2.
Clearly, (3.1) together (3.6) and the positivity of λ imply that

mλi < 0, for i = 1, 2. (3.7)

Moreover,
mλ2 ≤ mλ1 , (3.8)

thanks to the fact that 0 < λ1 < λ2. Then, by (3.6)–(3.8) and again by the fact
that 0 < λ1 < λ2, we get that

Jλ2(uλ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Jλ1(uλ1),

so that the map λ 7→ Jλ(uλ) is strictly decreasing in λ ∈ (0, λ?). The arbitrariness
of λ < λ? shows that λ 7→ Jλ(uλ) is strictly decreasing in (0, λ?). This concludes
the proof. �

Remark 3.2. A vector u := (u1, . . . , un)t ∈ Rn is said to be positive (nonnegative)
if uk > 0 (uk ≥ 0) for every k ∈ Z[1, n]. Now, let A ∈ Xn and consider the following
conditions:

(A1) If i 6= j, aij ≤ 0;
(A2) for every i ∈ Z[2, n], there exists ji < i such that aiji < 0.

Assuming that (A1) holds and u := (u1, . . . , un)t ∈ X is a solution of
n∑
j=1

aijuj ≥ 0, ∀i ∈ Z[1, n] , (3.9)

then ui ≥ 0, for every i ∈ Z[1, n] (see [4, 24] and [3, Proposition 2.1]). If, (A1)
and (A2) hold, then any solution of (3.9) is trivial or otherwise is positive (see [3,
Proposition 2.2]). Hence, if fk are nonnegative, for every k ∈ Z[1, n], our results
guarantee the existence of two nonnegative solutions if A satisfies hypothesis (A1).
Finally, if (A1) and (A2), then the obtained solutions are positive.

Here, we present some direct applications to discrete equations.

3.1. Tridiagonal matrices. Let n > 1 and (a, b) ∈ R− × R+ be such that

cos(
π

n+ 1
) < − b

2a
.

Set

tridn(a, b, a) =


b a 0 . . . 0
a b a . . . 0

. . .
0 . . . a b a
0 . . . 0 a b


n×n

∈ Xn.

Note that tridn(a, b, a) is a symmetric and positive definite matrix whose first eigen-
value is given by

λ1 = b+ 2a cos
(

π

n+ 1

)
,
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see, for instance, [16, Example 9; page 179]. This matrix verifies conditions (A1)
and (A2). Taking into account Theorem 3.1 and Remark 3.2, we have the following
theorem.

Theorem 3.3. In addition to the assumptions of Theorem 3.1, let fk be nonneg-
ative, for every k ∈ Z[1, n]. Then, there exists an open interval Λ ⊆ (0,+∞) such
that for each parameter λ ∈ Λ, the problem

tridn(a, b, a)u = λf(u) (3.10)

admits at least one positive solution uλ ∈ X. Moreover, the real function

λ 7→ (uλ)ttridn(a, b, a)uλ

2
− λ

n∑
k=1

∫ uλk

0

fk(s) ds

is negative and strictly decreasing on the set Λ.

An important case is given by the matrix

tridn(−1, 2,−1) :=


2 −1 0 . . . 0
−1 2 −1 . . . 0

. . .
0 . . . −1 2 −1
0 . . . 0 −1 2


n×n

∈ Xn,

which is associated to the second-order discrete boundary value problem

−∆2uk−1 = λfk(uk), ∀k ∈ Z[1, n]
u0 = un+1 = 0,

(3.11)

where ∆2uk−1 := ∆(∆uk−1), and, as usual, ∆uk−1 := uk − uk−1 denotes the
forward difference operator. We point out that the matrix tridn(−1, 2,−1) was
considered in order to study the existence of nontrivial solutions of nonlinear second-
order difference equations [2, 6, 7, 9].

According to the above discussion, Theorem 1.1 in the Introduction immediately
follows by Theorem 3.3 and Remark 3.2.

3.2. Fourth-order difference equations. As it is well-known, boundary value
problems involving fourth-order difference equations such as

∆4uk−2 = λfk(uk), ∀k ∈ Z[1, n]
u−2 = u−1 = u0 = 0,

un+1 = un+2 = un+3 = 0,
(3.12)
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can also be expressed as problem (1.1), where A is the real symmetric and positive
definite matrix of the form

A? :=



6 −4 1 0 . . . 0 0 0 0
−4 6 −4 1 . . . 0 0 0 0
1 −4 6 −4 . . . 0 0 0 0
0 1 −4 6 . . . 0 0 0 0

. . .
0 0 0 0 . . . 6 −4 1 0
0 0 0 0 . . . −4 6 −4 1
0 0 0 0 . . . 1 −4 6 −4
0 0 0 0 . . . 0 1 −4 6


∈ Xn.

A direct application of our result to fourth-order difference equations yields the
following result.

Theorem 3.4. Let f satisfy all the assumptions of Theorem 3.1. Then, there exists
an open interval Λ ⊆ (0,+∞) such that for each parameter λ ∈ Λ, problem (3.12)
admits at least one nontrivial solution uλ ∈ X. Moreover, the real function

λ 7→ (uλ)tA?uλ

2
− λ

n∑
k=1

∫ uλk

0

fk(s) ds

is negative and strictly decreasing on the set Λ.
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[7] A. Kristály, M. Mihăilescu, V. Rădulescu, S. Tersian; Spectral estimates for a nonhomoge-
neous difference problem, Commun. Contemp. Math. 12 (2010), no. 6, 1015-1029.
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[11] G. Molica Bisci, D. Repovš; On sequences of solutions for discrete anisotropic equations,

Expo. Math. 32 (2014), 284-295.
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