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COMPLEX OSCILLATIONS OF NON-DEFINITE
STURM-LIOUVILLE PROBLEMS

MERVIS KIKONKO, ANGELO B. MINGARELLI

ABSTRACT. We expand upon the basic oscillation theory for general boundary
problems of the form

=y +at)y=xr(t)y, tel=lab]
where ¢ and r are real-valued piecewise continuous functions and y is required
to satisfy a pair of homogeneous separated boundary conditions at the end-
points. The non-definite case is characterized by the indefiniteness of each of
the quadratic forms

b b
B+/<|y’|2+q\y|2) and /r|y|2,
a a

over a suitable space where B is a boundary term. In 1918 Richardson proved
that, in the case of the Dirichlet problem, if r(t) changes its sign exactly
once and the boundary problem is non-definite then the zeros of the real and
imaginary parts of any non-real eigenfunction interlace. We show that, unfor-
tunately, this result is false in the case of two turning points, thus removing
any hope for a general separation theorem for the zeros of the non-real eigen-
functions. Furthermore, we show that when a non-real eigenfunction vanishes
inside I, the absolute value of the difference between the total number of zeros
of its real and imaginary parts is exactly 2.

1. INTRODUCTION
We are concerned here with Sturm-Liouville problems of the form
—y" +at)y = Ar(t)y (1.1)
where —oo < a <t < b < oo and y satisfies the boundary conditions
y(a)cosa — gy (a)sina = 0, (1.2)
y(b) cos B+ y'(b)sin B = 0, (1.3)

0 < o, 8 <, the potential function ¢(¢) and the weight function r(¢) are real-valued
in general. The value of the parameter A € C for which there exists a solution
y(t,\) which is non-identically zero on [a,b] is called an eigenvalue of problem

(1.1)-(1.2)-(1.3)), and the corresponding function y(¢, \) is called an eigenfunction

of the problem. The set consisting of all the eigenvalues of the problem is called
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the spectrum of (L.1)-(1.2)-(1.3). For the sake of simplicity we assume occasionally
that ¢,r are both continuous or both piecewise continuous on [a, b].

As alluded to in [3], the classical Sturm-Liouville oscillation theory of problems
of the form — is concerned with the position and the number of zeros of
solutions. The position of such zeros varies when the functions ¢, r, and/or the
parameter \ are changed. In particular, the weight function r plays a critical role
in the form and nature of these results. For example, in [7] the authors show that
the oscillation of the weight function can drive away the real eigenvalues from the
real line into the complex plane. It is also known [2] that for a fixed weight function,
an increase in the number of negative squares of

b
B+/ (' + qaly?)
a

by varying q, can lead to an increase in the number of non-real eigenvalues. For an
historical overview of this subject until 1986, see [6].

It is clear that, in the non-definite case, the weight function r must take on
both signs in the interval (a,b), [§]. A point about which the weight function r(t)
actually changes its sign in the interval (a,b) is called a turning point of r.

We now focus on the the Dirichlet problem (i.e., « = 8 =0 in —).

Theorem 1.1 ([5, Theorem 3]). Let A and y(t, ) be a non-real eigenvalue and as-
sociated non-real eigenfunction of the problem (L.1)). If r(t) has precisely n turning
points in (a,b) then y(t,\) may vanish at most (n — 1) times in (a,b).

Corollary 1.2 ([5 Corollary 1]). Let A and y(t,\) be a non-real eigenvalue and
associated non-real eigenfunction of the problem (1.1)-(1.3). If r(t) has exactly one
turning point in (a,b) then y(t,\) # 0 in (a,b).

Below we show that the previous conclusion fails in the case of more than one
turning point.

Theorem 1.3 (See [8,5,[6]). Let r be continuous and not vanish identically in any
right neighborhood of t = a. If r(t) changes its sign precisely once in (a,b) then the
roots of the real and imaginary parts v and ¢ of any non-real eigenfunction y =
Y +1ip corresponding to a non-real eigenvalue, separate one another (or interlace).

Thus, Theorem implies that if the weight function has one turning point (i.e.,
n = 1) then no non-real eigenfunction can have a zero in (a,b). Of course, Richard-
son’s separation theorem, Theorem above, also gives the same conclusion. In
the case where the weight function r(¢) has exactly two turning points, numerical
results in [4] indicate that some non-real eigenfunctions can vanish once in (a,b),
in agreement with Theorem 1.1

In the sequel we present basic results in the non-definite case of Sturm-Liouville
problems and give necessary examples in some cases. In Section [2| we present a
non-definite Sturm-Liouville problem in which the weight function has more than
one turning point in (a,b) which then violates Richardson’s separation theorem,
Theorem [1.3] This shows that we cannot easily generalize the separation theorem
to the case of more than one turning point. In Section [3] we consider the case in
which the weight function 7(¢) has two turning points in (a,b) with the assumption
that 7(t) does not vanish identically on a subinterval of (a,b). We prove that
the absolute value of the difference between the total number of zeros of the real
and imaginary parts of a given non-real eigenfunction (corresponding to a non-real
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eigenvalue) of a problem of the form (L.1)-(1.3]) is equal to 2. The main stimulus
for the work covered in Section |3| arose out of the numerical results presented in
the paper [4].

2. FAILURE OF THE INTERLACING PROPERTY

In this section we show that Richardson’s separation theorem, Theorem [I.3] fails
for a weight function having more than one turning point. We do this by exhibiting
a non-definite Sturm-Liouville problem whose weight function has more than one
turning point in (a,b) having a non-real eigenfunction that vanishes there.

Let A = o+i7, y(t) be some non-real eigenvalue-eigenfunction pair of the complex
coefficient Sturm-Liouville equation

—y" +exp(it)y = Ay, (2.1)
satisfying the boundary conditions
y(a) = y(b) = 0. (2.2)

The existence of such eigenvalues is due to Hilb, see [6].
Next, let kK = p+1in, z, be a non-real eigenvalue-eigenfunction pair of the problem

— 2" +exp(it)z = kz, (2.3)
satisfying the new set of boundary conditions, namely,
z( =2z(2b) =0, 2'(b)=1v(b), (2.4)
where y already satisfies (2.1)-(2.2]) (and, of course, y'(b) # 0). Separating real and
imaginary parts in (2.1] j and in ([2.3) we get

—y" + (cost — o)y =i(r —sint)y, yla)=y(b) =0,
—2" + (cost —p)z =i (n—sint)z, z(b) = z(2b) =0,
with z being normalized by setting 2’ (b) = v/ (b).
Now, on the interval [a, 2b], consider the equation
-W"+ (cost — p(t))W = i(r(t) — sin t)VV7 (2.7)
where,

_Jo, ifte(a,b)
p(t)_{u, if t € (b,20),
(

7, ift € (a,b)
r(t) = :
n, ift € (b,2b).

Then p,r are real piecewise continuous functions on [a, 2b]. In addition, we know
that 7—sin ¢ must change its sign at least once in (a, b) since i is a non-real eigenvalue
in (2:5)). So, the function r(t) changes its sign on (a,b) on account of and then
again on (b, 2b) on account of (2.6). Now the function

if
2(t), ift € [b,20]
satisfies the boundary conditions

W (a) = W(2b) = 0. (2.8)



4 M. KIKONKO, A. B. MINGARELLI EJDE-2016/314

Claim: W is an eigenfunction of the Sturm-Liouville problem (2.7)-(2.8)) having
the complex eigenvalue, 7. In addition, W (b) = 0.

Proof. That W (b) = 0 is clear from the definition. Clearly, W’(¢) exists in the
two intervals (a,b) and (b,2b). We show that W’(b) exists. Let W/ (b) be the
right/left derivatives of W at ¢ = b. By the definition of W(t), we know that
Wi(b) = 2'(b) = y'(b) = WL(b), so we conclude that W’'(b) exists, and that the
function W (t) is thus continuously differentiable on the interval (a,2b). Finally, W’
is an absolutely continuous function on each of (a,b) and (b, 2b) since y', 2z’ have
this property. It follows that, in fact, W’ is itself absolutely continuous on [a, 2],
and therefore W is an eigenfunction of —, corresponding to the non-real
eigenvalue 4 that vanishes at an interior point (i.e, t = b). O

We have therefore proved the following theorem.

Theorem 2.1. There exists a reqular non-definite Sturm-Liouville problem on a
finite interval I having a non-real eigenfunction y(t, \), corresponding to a non-real
eigenvalue X, such that y(t,\) =0 for some t in the interior of I.

Of course, this shows that the expected interlacing property of the zeros of the
real and imaginary parts of a non-real eigenfunction cannot hold, in general.

3. ZEROS OF REAL AND IMAGINARY PARTS OF NON-REAL EIGENFUNCTIONS IN
THE TWO-TURNING POINT CASE

When the weight function r(¢) has two turning points, a non-real eigenfunction
may vanish at most once in the interval (a,b), by Theorem [1.1} If r(¢) has two
turning points, then the two turning points divide the interval (a,b) into three
subintervals and if a non-real eigenfunction vanishes once in the interval (a,b), it
will vanish in the middle interval. Moreover, we establish the difference between
the number of zeros of the real and imaginary parts of a non-real eigenfunction
corresponding to a non-real eigenvalue of a problem of the form —.

Theorem 3.1. Let ¢, € Cla,b] and assume that the weight function r has precisely
two turning points in the interval (a,b), and that it does not vanish identically in
any subinterval of (a,b). Let A be a non-real eigenvalue of problem

—y" +aq(t)y = Ar(t)y, (3.1)
y(a) =y(b) =0 (3.2)

and let y(t, \) be a corresponding, necessarily non-real, eigenfunction having exactly
one zero in (a,b). Then the absolute value of the difference between the total number
of zeros of the real and imaginary part of y in (a,b) is two.

Proof. Since A ¢ R, classical arguments imply that

b
/ rly[*dt = 0. (3.3)

We define a function f by f(t) = f;r ly|? dzx, (see [5]). It then follows that

f(a) = f(b) =0. (3-4)
By hypothesis there exists k € (a,b) such that y(k) = 0. Hence, y is a non-real
eigenfunction of (3.1) on the interval [a, k] satisfying y(a) = 0 = y(k) and, as a
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result, f(a) =0 = f(k) must hold. Similarly, y(k) = 0 = y(b) forces f(k) = f(b) =
0. Let ¢; and ¢ be the two turning points of r with a < ¢; < ¢ < b.

We now claim that k& € (¢1,c2). Without loss of generality, let us assume that
k € (a,c1). Then there is a number ¢; € (a,c1) such that 0 = f/(t1) = r(¢t1)|y(t1)]>.
This means that y(t1) = 0, since » # 0 in (a,c1). Hence t; is another zero of
y, contradicting the assumption that k is the only zero of y in (a,b). The same
argument holds if k& € (c2,b). So, this case is impossible.

In the second case, without loss of generality, we assume that & = ¢;. Then
the open interval (a,c;) is turning point free, by hypothesis. This means that
r(t) # 0 for any t € (a,c;). But then the Dirichlet problem for must be
definite on [a, ¢1]. Classical Sturm-Liouville Theory now implies that all its Dirichlet
eigenvalues on [a, ¢;] must be real. But this is impossible as we started with a non-
real eigenvalue! A similar argument applies in the case where k = ¢o. Thus, this
case cannot occur. Since the first two cases are impossible, it must be the case that
k € (c1,c2), as stated.

Now, k divides the interval (a,b) into two intervals (a, k) and (k,b) on each of
which r(¢) has one turning point. So, in particular, our non-real eigenfunction y
satisfies a Dirichlet problem for on the interval [a, k], where r has one turning
point (namely, ¢1) in (a,k). By Richardson’s Theorem the zeros of the real
and imaginary parts of y must interlace in the interval (a, k). Similarly, the same
argument applied to [k,b] yields that the zeros of the real and imaginary parts of
y must interlace in the interval (k,b). This means that the zeros of the real and
imaginary parts of y interlace on almost the whole interval (a,b) except near, and
at, the only zero of y(t), i.e., where t = k.

We write y(t) = p(t) + i9(t). If o(t) has n zeros in (a, k), then ¢(t) has n — 1
zeros in (a, k), since the zeros interlace in (a, k). Similarly, if ¢(t) has m zeros in
(k,b), then 1 (t) has m — 1 zeros in (k,b). Recall that both ¢(k) = (k) = 0 by
hypothesis. Adding the total number of zeros we find that ¢ has n+m+1 zeros in
(a,b) while ¢ (t) must have n +m — 1 zeros in (a,b). The difference in the number
of zeros being equal to two, the proof is complete. O

4. CONCLUSION

We have proved two main results that further develop the work that Richardson
started some 100 years ago. First, we show that Richardson’s separation theorem
(1918) for the zeros of the real and imaginary part of a non-real eigenfunction
(corresponding to a non-real eigenvalue) of a non-definite Sturm-Liouville Dirichlet
problem in the case of one turning point is false, in general, by exhibiting a coun-
terexample in the case of two turning points. The counterexample shows that a
complex eigenfunction can actually vanish in the interior of the interval of definition!

Then we show that if a non-real eigenfunction (corresponding to a non-real eigen-
value) of a non-definite Sturm-Liouville Dirichlet problem in the case of two turning
points vanishes in the interior of the interval under consideration then the absolute
value of the difference between the total number of zeros of the real and imaginary
parts of this eigenfunction must be equal to 2.

Many questions in this area remain unanswered. For instance, one observation
on the spectrum of a non-definite Sturm-Liouville problem is that if the problem

—y" +q(t)y = Ar(t)y, (4.1)
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y(a) =y(b) =0 (4.2)

has a non-real eigenvalue, ¢+ id, d # 0 and a real eigenvalue, say ~, then ¢ # . In
other words we claim that, in the non-definite case, there cannot exist a non-real
eigenvalue whose real part is also an eigenvalue. Whether this is an accident or a
result of a more general yet unproven theorem, is unknown, but we conjecture that
it is so and leave this for future research.

Furthermore, there is a need to prove general results on the behaviour of the
real and imaginary parts of non-real eigenfunctions in the case where the weight
function has a finite number of turning points. For further open questions on the
non-real spectrum of non-definite problems see the monograph, [IJ.
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