UNIFORM ESTIMATE AND STRONG CONVERGENCE OF MINIMIZERS OF A p-ENERGY FUNCTIONAL WITH PENALIZATION

BEI WANG, YUZE CAI

Abstract. This article concerns the asymptotic behavior of minimizers of a p-energy functional with penalization as a parameter ε approaches zero. By establishing $W^{1,p}$ uniform estimates, we obtain $W^{1,p}$ convergence of the minimizer to a p-harmonic map.

1. Introduction

Let $G \subset \mathbb{R}^2$ be a bounded and simply connected domain with smooth boundary ∂G, and $B_1 = \{ x \in \mathbb{R}^2; x_1^2 + x_2^2 < 1 \}$. Denote $S^1 = \{ x \in \mathbb{R}^3; x_1^2 + x_2^2 = 1, x_3 = 0 \}$ and $S^2 = \{ x \in \mathbb{R}^3; x_1^2 + x_2^2 + x_3^2 = 1 \}$. Sometimes we write the vector value function $u = (u_1, u_2, u_3)$ as (u', u_3). Let $g = (g', 0)$ be a smooth map from ∂G into S^1 satisfying $d = \text{deg}(g', \partial G) \neq 0$. Without loss of generality, we may assume $d > 0$. Consider the energy functional

$$E_\varepsilon(u, G) = \frac{1}{p} \int_G |\nabla u|^p dx + \frac{1}{2 \varepsilon^p} \int_G u_3^2 dx, \quad p > 2$$

with a small parameter $\varepsilon > 0$. From the direct method in the calculus of variations it is easy to see that the functional achieves its minimum in the function class $W^{1,p}_g(G, S^2)$. Obviously, the minimizer u_ε on $W^{1,p}_g(G, S^2)$ is a weak solution of

$$- \text{div}(|\nabla u|^{p-2} \nabla u) = u|\nabla u|^p + \frac{1}{\varepsilon^p} (uu_3^2 - u_3 e_3), \quad \text{on } G,$$

where $e_3 = (0, 0, 1)$. Namely, for any $\psi \in W^{1,p}_0(G, \mathbb{R}^3)$, u_ε satisfies

$$\int_G |\nabla u|^{p-2} \nabla u \nabla \psi dx = \int_G u\psi|\nabla u|^p dx + \frac{1}{\varepsilon^p} \int_G \psi(uu_3^2 - u_3 e_3) dx. \quad (1.1)$$

Without loss of generality, we assume $u_3 \geq 0$, otherwise we may consider $|u_3|$ in view of the expression of the functional.

When $p = 2$, the functional $E_\varepsilon(u, G)$ was introduced in the study of some simplified model of high-energy physics, which controls the statics of planer ferromagnets and antiferromagnets (see [10] [18]). The asymptotic behavior of minimizers of $E_\varepsilon(u, G)$ has been considered by Fengbo Hang and Fanghua Lin in [8]. When
the term $\frac{\alpha^2}{4^2}$ replaced by $(1-|u|)^2$ and S^2 replaced by \mathbb{R}^2, the problem becomes the simplified model of the Ginzburg-Landau theory for superconductors and was well studied in many papers such as [3, 4, 17, 19]. These works enunciate that the study of minimizers of the functional with some penalization terms is connected tightly with the study of harmonic maps with S^1-value. When $p > 2$, it also shows an enlightenment, namely, the properties (such as the partial regularity, the properties of singularities) of p-harmonic maps can be seen via studying the asymptotic properties of minimizers of some p-energy functional with penalization (cf. [11, 12, 13, 14, 16, 19]).

In this article, as in [3, 4, 8], we concern with the asymptotic behavior of minimizers of functional $E_\varepsilon(u,G)$ on $W^{1,p}(G, S^2)$ where $p > 2$ as $\varepsilon \to 0$.

Theorem 1.1 ([15 Theorem 1.1]). Assume u_ε is a minimizer of $E_\varepsilon(u,G)$ on $W^{1,p}(G, S^2)$. Then all the zeros of $|u'_\varepsilon|$ are included in finite, disintersected discs $B(x_j^\varepsilon, h\varepsilon)$, $j = 1, 2, \ldots, N_1$ where N_1 and $h > 0$ do not depend on $\varepsilon \in (0, 1)$.

As $\varepsilon \to 0$, there exists a subsequence $x_{i_\varepsilon}^\varepsilon$ of the center x_i^ε and $a_i \in \overline{G}$ such that $x_{i_\varepsilon}^\varepsilon \to a_i$, $i = 1, 2, \ldots, N_1$. Perhaps there may be at least two subsequences converging to the same point, we denote by a_1, a_2, \ldots, a_N, $N \leq N_1$, the collection of distinct points in $\{(a_i)_{i=1}^{N_1}\}$. Although the relationship between N and ε is unknown, the integer N is independent of $\varepsilon \in (0, 1)$. By virtue of Theorem 1.1 we see that all the zeros of $|u'_\varepsilon|$ converge to a_1, a_2, \ldots, a_N as ε tends to 0. In addition, (2.3) in [15] shows

$$|u'_\varepsilon| \geq 1/2 \quad \text{on } K,$$

where K is an arbitrary compact subset of $G \setminus \cup_{i=1}^{N_1} \{a_i\}$.

Theorem 1.2 ([15 Theorem 1.2]). Assume u_ε is a minimizer of $E_\varepsilon(u,G)$ on $W^{1,p}(G, S^2)$. K is an arbitrary compact subset of $\overline{G} \setminus \cup_{j=1}^{N} \{a_j\}$. Then there exists a subsequence u_{ε_k} of u_ε such that as $k \to \infty$,

$$u_{\varepsilon_k} \rightharpoonup u_p = (u'_p, 0), \quad \text{weakly in } W^{1,p}(K, \mathbb{R}^3),$$

where u'_p is a map of the least p-energy $\int_K |\nabla u|^p dx$ in $W^{1,p}(K, \partial B_1)$.

We shall give the uniform L^p_{loc} estimate of ∇u_ε in §3. Recalling the case that the parameter p equals to the dimension 2, we know it is available to estimate the upper bound and the lower bound of $\int |\nabla u_\varepsilon|^2 dx$ since we can use the property of conformal transformation of $\int |\nabla u_\varepsilon|^2 dx$ (the idea of which can be seen in [4, 7, 8, 9]). In fact, when scaling $x = ye^\varepsilon$ in $E_\varepsilon(u,G)$, there is a coefficient ε^λ appearing in the scaled energy functional. when $p = 2$, it can be derived that the exponent λ of ε is zero. Therefore, the estimate of the upper bound

$$E_\varepsilon(u_\varepsilon, G) \leq C_1 \ln \frac{1}{\varepsilon} + C$$

and the lower bound

$$\frac{1}{2} \int_{G \setminus \cup_{i=1}^{N_1} B(a_i, h\varepsilon)} |\nabla u'_\varepsilon|^2 dx \geq C_2 \ln \frac{1}{\varepsilon} - C$$

can be obtained, where $C_1 = C_2 = \pi d$ (cf. [8, §4]). The uniform estimate is deduced at once. When $p > 2$, the property of conformal transformation of $\int |\nabla u_\varepsilon|^p dx$ is invalid. Therefore, $\lambda \neq 0$. It is impossible to derive such results as the case $p = 2$
if the idea of estimating the upper and the lower bounds of $\int |\nabla u_\varepsilon|^p dx$ is adopted. In fact, the upper bound

$$E_\varepsilon(u_\varepsilon, G) \leq C_3 \varepsilon^{2-p} + C$$

and the lower bound

$$\frac{1}{p} \int_{G \setminus \cup_{i=1}^N B(a_i, \varepsilon)} |\nabla u'_\varepsilon|^p dx \geq C_4 \varepsilon^{2-p} - C,$$

are also obtained. However, the relationship between C_3 and C_4 is not clear except that C_4 may be smaller. In [13], a comparison method was used to obtain a uniform estimate where the average functions come into plays.

Here, we use the iteration technique introduced in [12] to obtain the uniform L^p estimate of ∇u_ε. In fact, the term $\int_K |\nabla u_\varepsilon|^p dx$ of the functional $E_\varepsilon(u_\varepsilon, K)$ can be divided into three terms, $\int_K |\nabla u'_\varepsilon|^p dx$, $\int_K |\nabla u_3|^p dx$ and $\int_K |u_3|^p |\nabla u'_3|^p dx$.

We will prove that $\int_K |\nabla u'_\varepsilon|^p dx + \int_K |\nabla u_3|^p dx + \frac{1}{\varepsilon^p} \int_K u_3^2 dx$ may be bounded by $O(\varepsilon^\lambda)$ with $\lambda > 0$ as $\varepsilon \to 0$. Using this estimate we will prove

$$\int_K |\nabla u_\varepsilon|^p dx \leq C + O(\varepsilon^\lambda).$$

Based on the Theorem 1.2 we will prove in §3 that the p-harmonic map u_ε is a map of least p-energy $\int_K |\nabla u|^p dx$, and the convergence is also in strong $W^{1,p}_{loc}$ sense.

Theorem 1.3. Assume u_ε is a minimizer of $E_\varepsilon(u, G)$ on $W^{1,p}_g(G, S^2)$. K is an arbitrary compact subset of $\overline{G} \setminus \cup_{j=1}^N \{a_j\}$. Then there exists a subsequence u_{ε_k} of u_ε such that as $k \to \infty$,

$$u_{\varepsilon_k} \to u_p = (u'_p, 0), \quad \text{in} \quad W^{1,p}(K, \mathbb{R}^3),$$

where u'_p is the map in Theorem 1.2.

2. Uniform estimate

The following inverse Hölder inequality will be applied later.

Proposition 2.1. Assume that $p > 1$, and u_ε is a minimizer of $E_\varepsilon(u, G)$ on $W^{1,p}_g(G, S^2)$. Then there exist constants $t, R_0 \in (0, 1/2)$ and $C > 0$ which is independent of ε, such that for any $B_R \subset G$ ($2R < R_0$), we have

$$\left(\int_{B_R} |\nabla u_\varepsilon|^q dx \right)^{1/q} \leq C \left(\int_{B_{2R}} (|\nabla u_\varepsilon|^2 + 1)^{p/2} dx \right)^{1/p}, \quad \forall q \in [p, p + 2t).$$

The above proposition is a corollary from [6] Theorem 4.1, with a rescaling.

Theorem 2.2. Let $R > 0$ be a small constant such that $B(x, 2R) \subset G \setminus \cup_{j=1}^N \{a_j\}$. There exist constant $\varepsilon_0 > 0$ and $C_j > 0$, and $R_j = 2R - \frac{R}{|p|+1}$ such that for $j = 2, 3, \ldots, [p]$,

$$E_\varepsilon(u_\varepsilon, B_j) \leq C_j \varepsilon^{j-p}$$

where $\varepsilon \in (0, \varepsilon_0)$, $B_j = B(x, R_j)$, and $[p]$ is the integer part of p.

For $j = 2$, the inequality [2.1] follows from [13] Proposition 2.1. Suppose that [2.1] holds for all $j \leq m$. Then we have, in particular,

$$E_\varepsilon(u_\varepsilon, B_m) \leq C_m \varepsilon^{m-p}.$$ \hfill (2.2)

If $m = [p]$, then we are done. Suppose $m < [p]$, we want to prove [2.1] for $j = m+1$. \hfill (2.2)
Applying (1.2) we have $\frac{1}{2} \leq |u'_\varepsilon(y)| \leq 1$, for all $y \in B(x, 2R)$. Using the integral mean value theorem we know that there exists $r \in [R_{m+1/2}, R_m]$ such that

$$E_\varepsilon(u_\varepsilon, B_m \setminus B_{m+1/2}) = C_0(r) \int_{\partial B(x,r)} \frac{1}{p} |\nabla u_\varepsilon|^p + \frac{1}{4\varepsilon^p} u_\varepsilon^3 d\xi,$$

and applying (2.2), we see that

$$\int_{\partial B(x,r)} |\nabla u_\varepsilon|^p d\xi + \frac{1}{\varepsilon^p} \int_{\partial B(x,r)} u_\varepsilon^2 d\xi \leq C_0^{-1}(r) C_m \varepsilon^{m-p}. \quad (2.3)$$

We denote $B = B(x, r)$, and introduce two propositions.

Proposition 2.3. If ρ_1 is a minimizer of the functional

$$E(\rho, B) = \frac{1}{p} \int_B (|\nabla \rho|^2 + 1)^{p/2} d\rho + \frac{1}{2\varepsilon^p} \int_B (1 - \rho)^2 d\rho,$$

on $W^{1,p}_{\rho_1}(B, \mathbb{R}^+ \cup \{0\})$. Then $E(\rho_1, B) \leq C \varepsilon^{m-p+1}$.

Proof. Obviously, the minimizer ρ_1 exists and satisfies

$$-\text{div}(v^{(p-2)/2} \nabla \rho) = \frac{1}{\varepsilon^p} (1 - \rho) \quad \text{on } B,$$

$$\rho|_{\partial B} = |u'_\varepsilon|, \quad (2.5)$$

where $v = |\nabla \rho|^2 + 1$. Since $1/2 \leq |u'_\varepsilon| \leq 1$, it follows from the maximum principle that on ∂B,

$$\frac{1}{2} \leq \rho_1 \leq 1. \quad (2.6)$$

Applying (2.2) and noting $(1 - |u'_\varepsilon|)^2 \leq u_\varepsilon^2$, we see easily that

$$E(\rho_1, B) \leq E(|u'_\varepsilon|, B) \leq CE_\varepsilon(u_\varepsilon, B) \leq C \varepsilon^{m-p}. \quad (2.7)$$

Multiplying (2.4) by $\partial_{\nu} \rho$, where ρ denotes ρ_1, and integrating over B, we have

$$-\int_{\partial B} v^{(p-2)/2} (\partial_{\nu} \rho)^2 d\xi + \int_B v^{(p-2)/2} \nabla \rho \nabla (\partial_{\nu} \rho) d\rho = \frac{1}{\varepsilon^p} \int_B (1 - \rho) (\partial_{\nu} \rho) d\rho, \quad (2.8)$$

where ν denotes the unit outside norm vector on ∂B. Using (2.7) we obtain

$$\left| \int_B v^{(p-2)/2} \nabla \rho \cdot \nabla (\partial_{\nu} \rho) d\rho \right| \leq C \int_B v^{(p-2)/2} |\nabla \rho|^2 d\rho + \frac{1}{p} \int_B \nu \cdot \nabla (v^{p/2}) d\rho \leq C \varepsilon^{m-p} + \frac{1}{p} \int_{\partial B} v^{p/2} d\xi. \quad (2.9)$$

Combining (2.3), (2.5) and (2.7) we also have

$$\left| \frac{1}{\varepsilon^p} \int_B (1 - \rho)(\partial_{\nu} \rho) d\rho \right| \leq \frac{1}{2\varepsilon^p} \int_B (1 - \rho)^2 d\rho \leq \int_{\partial B} (1 - \rho)^2 d\xi \leq C \varepsilon^{m-p}.$$

Substituting this result and (2.9) into (2.8) yields

$$\left| \int_{\partial B} v^{(p-2)/2} (\partial_{\nu} \rho)^2 d\xi \right| \leq C \varepsilon^{m-p} + \frac{1}{p} \int_{\partial B} v^{p/2} d\xi. \quad (2.10)$$
Applying (2.3), (2.5), (2.10) and the Young inequality, we obtain that for any \(\delta \in (0, 1) \),
\[
\int_{\partial B} v^{p/2} d\xi = \int_{\partial B} v^{(p-2)/2} [1 + (\partial_\nu \rho)^2 + (\partial_\tau \rho)^2] d\xi \\
\leq \int_{\partial B} v^{(p-2)/2} d\xi + \int_{\partial B} v^{(p-2)/2} (\partial_\nu \rho)^2 d\xi \\
+ \left(\int_{\partial B} v^{p/2} d\xi \right)^{p-2/p} \left(\int_{\partial B} (\tau \cdot \nabla |u_\varepsilon|)^p d\xi \right)^{2/p} \\
\leq C(\delta)\varepsilon^{m-p} + \left(\frac{1}{p} + 2\delta \right) \int_{\partial B} v^{p/2} d\xi,
\]
where \(\tau \) denotes the unit tangent vector on \(\partial B \). Therefore, it follows by choosing \(\delta > 0 \) sufficiently small that
\[
\int_{\partial B} v^{p/2} d\xi \leq C\varepsilon^{m-p}.
\] (2.11)

We multiply both sides of (2.4) by \((1 - \rho)\) and integrate over \(B \). Then
\[
\int_B v^{(p-2)/2} |\nabla \rho|^2 dx + \frac{1}{\varepsilon^p} \int_B (1 - \rho)^2 dx = -\int_{\partial B} v^{(p-2)/2} (\nu \cdot \nabla \rho)(1 - \rho) d\xi,
\]
whose left hand side is proportional to \(E(\rho_1, B) \). Thus
\[E(\rho_1, B) \leq C \int_{\partial B} v^{(p-2)/2} (\nu \cdot \nabla \rho)(1 - \rho) d\xi. \]
Applying Holder’s inequality and (2.3), (2.5), (2.6) and (2.11), we obtain
\[
E(\rho_1, B) \leq C \int_{\partial B} v^{p/2} d\xi \left(\int_{\partial B} (1 - \rho^2)^2 d\xi \right)^{1/p} \leq C\varepsilon^{(m-p)(p-1)/p} \int_{\partial B} u_\varepsilon^{2p} d\xi \leq C\varepsilon^{m-p+1}.
\] (2.12)
The proof is complete. \(\square \)

Proposition 2.4. Denote \(h = |u_\varepsilon'| \). Then there is \(t \in (0, 1/2) \) such that for any \(\delta \in (0, 1/2) \),
\[
\frac{1}{p} \int_B |\nabla h|^p dx + \frac{1}{p} \int_B |\nabla u_\varepsilon|^p dx + \frac{1}{4\varepsilon^p} \int_B (1 - h^2)^2 dx \\
\leq C\varepsilon^{m-p+1} + \frac{1}{4\varepsilon^p} \int_B |\nabla u_\varepsilon|^p dx + C \left(\int_{B(x, 2r)} |\nabla u_\varepsilon|^p dx \right)^{1/p} + \frac{1}{p} \int_B (1 - h^2)^2 dx \right)^{t/(p+t)}.
\] (2.13)

Proof. Let \(U = (\sqrt{2\rho_1 - \rho_1^2} w, 1 - \rho_1) \) on \(B \); \(U = u_\varepsilon \) on \(G \setminus B \), where \(w = w_\varepsilon = \frac{u_\varepsilon'}{|u_\varepsilon'|} \). Then \(U \in W^{1,p}_g(G, S^d) \). Since \(u_\varepsilon \) is a minimizer of \(E_{\varepsilon}(u, G) \), we have
\[E_{\varepsilon}(u_\varepsilon, G) \leq E_{\varepsilon}(U, G) = E_{\varepsilon}(U, B) + E_{\varepsilon}(u_\varepsilon, G \setminus B), \]
which means \(E_{\varepsilon}(u_\varepsilon, B) \leq E_{\varepsilon}(U, B) \). Using (2.12) it is not difficult to see that for any \(\delta > 0 \),
\[
\int_B |\nabla \rho_1|^2 |\nabla w|^{p-2} dx \leq \left(\int_B |\nabla \rho_1|^p dx \right)^{2/p} \left(\int_B |\nabla w|^p dx \right)^{\frac{p-2}{p}}
\]
\[\leq \delta \int_{B} |\nabla u_{\varepsilon}|^{p} \, dx + C\varepsilon^{m+1-p}. \]

By using (2.6) and the mean value theorem,
\[\int_{B} \left(\frac{1 - \rho_{1}^{2}}{2\rho_{1} - \rho_{1}^{2}} |\nabla \rho_{1}|^{2} + (2\rho_{1} - \rho_{1}^{2})|\nabla u_{\varepsilon}|^{p/2} \right) \, dx - \int_{B} ((2\rho_{1} - \rho_{1}^{2})|\nabla u_{\varepsilon}|^{p/2} \, dx \]
\[\leq C \int_{B} (|\nabla \rho_{1}|^{p} + |\nabla \rho_{1}|^{2}|\nabla w|^{p-2}) \, dx, \]
and noting \(2\rho - \rho^{2} - 1 = -(1 - \rho)^{2} \leq 0\), we have
\[E_{\varepsilon}(u_{\varepsilon}, B) \leq E_{\varepsilon}(U, B) \]
\[\leq \frac{1}{p} \int_{B} (\rho_{1}^{2} - \rho_{1}^{2})|\nabla \rho_{1}|^{2} \, dx + C \int_{B} (|\nabla \rho_{1}|^{p} + |\nabla \rho_{1}|^{2}|\nabla w|^{p-2}) \, dx \]
\[\leq \frac{1}{p} \int_{B} |\nabla \rho_{1}|^{p} \, dx + \delta \int_{B} |\nabla u_{\varepsilon}|^{p} \, dx + C\varepsilon^{m+1-p} + CE(\rho_{1}, B). \]

From this result and (2.12), we deduce
\[E_{\varepsilon}(u_{\varepsilon}, B) \leq \frac{1}{p} \int_{B} |\nabla \rho_{1}|^{p} \, dx + C\varepsilon^{m+1-p} + \delta \int_{B} |\nabla u_{\varepsilon}|^{p} \, dx. \quad (2.14) \]

By Jensen’s inequality and (2.14), we obtain
\[\frac{1}{p} \int_{B} |\nabla h|^{p} \, dx + \frac{1}{p} \int_{B} (h^{p} - 1)|\nabla w|^{p} \, dx + \frac{1}{p} \int_{B} |\nabla u_{\varepsilon}|^{p} \, dx \]
\[+ \frac{1}{4\varepsilon^{p}} \int_{B} (1 - \rho_{1})^{2} \, dx \]
\[\leq E_{\varepsilon}(u_{\varepsilon}, B) - \frac{1}{p} \int_{B} |\nabla \rho_{1}|^{p} \, dx \]
\[\leq C\varepsilon^{m-p+1} + \delta \int_{B} |\nabla u_{\varepsilon}|^{p} \, dx. \quad (2.15) \]

Since \(h \geq 1/2\) and Proposition 2.1, there exists a \(t \in (0, 1/2)\) such that
\[\frac{1}{p} \int_{B} (1 - h^{p})|\nabla w_{\varepsilon}|^{p} \, dx \]
\[\leq \frac{2p}{p} \int_{B} (1 - h^{p})|\nabla u_{\varepsilon}|^{p} \, dx \]
\[\leq C \left(\int_{B} |\nabla u_{\varepsilon}|^{p+t} \, dx \right)^{p/(p+t)} \left(\int_{B} (1 - h^{p})^{(p+t)/t} \, dx \right)^{t/(p+t)} \]
\[\leq C \left(\int_{B(x, 2r)} |\nabla u_{\varepsilon}|^{p} \, dx + 1 \right) \left(\int_{B} (1 - h^{2})^{2} \, dx \right)^{t/(p+t)}. \quad (2.16) \]

Combining this with (2.15) we complete the proof. \(\square\)
Proof of Theorem 2.2.

Step 1. Since \(|u'_{\varepsilon}| \geq \frac{1}{2}\), there exists \(\phi \in W^{1,p}(B(x, 3R),[0, 2\pi))\) such that \(w = \frac{u'_{\varepsilon}}{|u'_{\varepsilon}|} = (\cos \phi, \sin \phi)\). Obviously, \(|\nabla w|^2 = |\nabla \phi|^2\). Substituting this into (1.1) with the test function \((\psi, 0)\) yields

\[
\int_{B(x, 3R)} |\nabla u|^{p-2}(w \nabla h + h \nabla w) \nabla \psi dx
\]

\[
= \int_{B(x, 3R)} h w |\nabla u|^{p} \psi dx + \frac{1}{\varepsilon^p} \int_{B(x, 3R)} h w \psi (1 - h^2) dx
\]

where \(\psi \in W^{1,p}_0(G, \mathbb{R}^2)\). Let \(e^{i\phi} = \cos \phi + i \sin \phi\). Then

\[
\int_{B_{3R}(x)} h e^{i\phi} |\nabla u|^{p} \psi dx + \frac{1}{\varepsilon^p} \int_{B_{3R}(x)} h \psi e^{i\phi} (1 - h^2) dx
\]

\[
= \int_{B_{3R}(x)} |\nabla u|^{p-2}(e^{i\phi} \nabla h + h \varepsilon e^{i\phi} \nabla \phi) \nabla \psi dx.
\]

Taking \(\psi = e^{-i\phi} \zeta\), where \(\zeta \in W^{1,p}_0(B(x, 3R), \mathbb{R}^2)\), we obtain

\[
\frac{1}{\varepsilon^p} \int_{B(x, 3R)} h(1 - h^2) \zeta dx
\]

\[
= \int_{B(x, 3R)} |\nabla u|^{p-2}(\nabla h \nabla \zeta + h(|\nabla \phi|^2 - |\nabla u|^2) \zeta) dx.
\]

\[
0 = \int_{B(x, 3R)} |\nabla u|^{p-2}(h \nabla \phi \nabla \zeta - \zeta \nabla h \nabla \phi) dx.
\]

Taking \(\zeta = h\xi\) in (2.18), where \(\xi \in W^{1,p}_0(B(x, 3R), \mathbb{R}^2)\), we have

\[
0 = \int_{B(x, 3R)} |\nabla u|^{p-2} h^2 \nabla \phi \nabla \xi dx.
\]

Assume \(\rho\) is an arbitrary constant in \((0, 3R/2)\). Let \(\zeta \in W^{1,p}_0(B(x, 2\rho), [0, 1])\), and \(\zeta = 1\) on \(B(x, \rho)\). Taking \(\xi = \phi \zeta^2\) in (2.19) and using the Young inequality, for any \(\eta \in (0, 1)\) we obtain

\[
\int_{B(x, 2\rho)} |\nabla u|^{p-2} h^2 |\nabla \phi|^2 \zeta^2 dx \leq C \int_{B(x, 2\rho)} |\nabla u|^{p-2} h^2 (\eta |\nabla \phi|^2 \zeta^2 + C(\eta)) dx.
\]

Choosing \(\eta\) sufficiently small and noticing \(\zeta = 1\) on \(B(x, \rho)\), we obtain

\[
\int_{B(x, \rho)} |\nabla u|^{p-2} h^2 |\nabla \phi|^2 dx \leq C \left(\int_{B(x, 2\rho)} |\nabla u|^{p} dx \right)^{1-2/p}.
\]
Applying (2.20) with \(\rho = r \) we obtain
\[
\int_B |\nabla u|^p \leq \int_B |\nabla u|^{p-2}(h^2|\nabla \phi|^2 + |\nabla h|^2 + |\nabla u_3|^2)dx
\leq C \left(\int_{B(x,2r)} |\nabla u|^p dx \right)^{1-2/p}
+ \left(\int_B (|\nabla h|^p + |\nabla u_3|^p)dx \right)^{2/p} \left(\int_B |\nabla u|^p dx \right)^{(p-2)/p}
\leq C \left(\int_{B(x,2r)} |\nabla u|^p dx \right)^{1-2/p} + \delta \int_B |\nabla u|^p dx
+ C(\delta) \int_B (|\nabla h|^p + |\nabla u_3|^p)dx.
\] (2.21)

Substituting (2.13) into (2.21) and choosing \(\delta > 0 \) sufficiently small we derive
\[
\int_B |\nabla u|^p dx \leq C \left(\int_{B(x,2r)} |\nabla u|^p dx \right)^{1-2/p} + C_\varepsilon^{m-p+1}
+ C \left(\int_{B(x,2r)} |\nabla u_\varepsilon|^p dx + 1 \right) \left(\int_B (1-h^2)^2 dx \right)^{\varepsilon/(p+\varepsilon)}. \] (2.22)

From (2.2) it follows that
\[
\int_B |\nabla u|^p dx \leq C(\varepsilon^{m-p})^{1-2/p} + C_\varepsilon^{m-p+1} + C_\varepsilon^{m-p+\frac{m}{p+t}} = I_1 + I_2 + I_3. \] (2.23)

Step 2. When \(m \leq p/2 \), then \(m + 1 - p \leq (m - p)(1 - 2/p) \). Therefore \(I_1 \leq I_2 \). Let \(k_0 \in N \) be the minimum with the property \(m + 1 \leq (1 + \frac{1}{p+t})^k_0 m \).

In the following we shall improve the exponent \(m - p + \frac{1}{p+t} m \) of \(\varepsilon \) in \(I_3 \) to \(m - p + 1 \). Assume \(\zeta \in C_{\infty}^0(B(x,2R),[0,1]) \) satisfying \(\zeta = 1 \) on \(B_{m+1/2} \) and \(|\nabla \zeta| \leq C \). Taking the test function as \(h\zeta(1-h) \) in (2.17), we have
\[
\frac{1}{\varepsilon^p} \int_B h^2(1-h^2)\zeta(1-h)dx + \int_B |\nabla u|^{p-2}|\nabla h|^2 h\zeta dx + \int_B h^2|\nabla u|^p (1-h)\zeta dx
\leq \int_B |\nabla u|^{p-2} |\nabla h| \nabla \zeta h(1-h)dx + \int_B |\nabla u|^p \zeta (1-h) \leq C \int_B |\nabla u|^p dx.
\]

Noting \(\zeta = 1 \) on \(B_{m+1/2} \), applying \(h \geq 1/2 \) and (2.22), we obtain
\[
\frac{1}{\varepsilon^p} \int_{B_{m+1/2}} (1-h^2)^2 dx \leq C \frac{\varepsilon^p}{p} \int_B h^2(1-h^2)(1-h)\zeta dx \leq C(1 + \varepsilon^{m-p+\frac{m}{p+t}}),
\]
which implies
\[
\int_{B_{m+1/2}} (1-h^2)^2 dx \leq C\varepsilon^{m(1+\frac{m}{p+t})}, \quad \varepsilon \in (0,\varepsilon_0). \] (2.24)

On the other hand, similar to the derivation of (2.14), for \(B_{m+1/2} \) we still conclude that for any \(\delta > 0 \),
\[
\sum_{E\varepsilon(u_\varepsilon,B_{m+1/2})} \leq \frac{1}{p} \int_{B_{m+1/2}} |\nabla u|^p dx + C_\varepsilon^{m-p+1} + \delta \int_{B_{m+1/2}} |\nabla u_\varepsilon|^p dx.
\]
Therefore, (2.15) can be written as
\[
\frac{1}{p} \int_{B_{m+1/2}} |\nabla h|^p dx + \frac{1}{p} \int_{B_{m+1/2}} |\nabla u_3|^p dx + \frac{1}{4\varepsilon^p} \int_{B_{m+1/2}} (1 - h^2)^2 dx \\
\leq C \varepsilon^{m-p+1} + \frac{1}{p} \int_{B_{m+1/2}} (1 - h^p)|\nabla w|^p dx + \delta \int_{B_{m+1/2}} |\nabla u_\varepsilon|^p dx.
\tag{2.25}
\]

To estimate the second term of the right hand side of (2.25), we apply (2.23) and (2.24) to obtain
\[
\frac{1}{p} \int_{B_{m+1/2}} (1 - h^p)|\nabla w|^p dx \leq C \varepsilon^{(m-p+1)\frac{1}{m+1}+m+\frac{1}{m+1}m-p} = C \varepsilon^{m(1+\frac{1}{m+1})^2-p}
\]
by the same way as for (2.16). Substituting this into (2.25) yields
\[
\frac{1}{p} \int_{B_{m+1/2}} (|\nabla h|^p + |\nabla u_3|^p) dx \leq C \varepsilon^{m-p+1} + \varepsilon^{m(1+\frac{1}{m+1})^2-p} + \delta \int_{B_{m+1/2}} |\nabla u_\varepsilon|^p dx.
\]

Using this instead of (2.13) and by the same argument of Step 1 we can improve (2.23) as
\[
\int_{B_{m+1/2}} |\nabla u_\varepsilon|^p dx \leq C + C(\varepsilon^{m-p+1} + \varepsilon^{m(1+\frac{1}{m+1})^2-p}) \leq C \varepsilon^{m(1+\frac{1}{m+1})^2-p}.
\]

Now, we use this inequality replacing (2.23) to discuss, thus (2.24) can be written as
\[
\int_{B_{m+3/4}} (1 - h^2)^2 dx \leq C \varepsilon^{m(1+\frac{1}{m+1})^2}, \quad \varepsilon \in (0, \varepsilon_0).
\]

As a result, it is also follows that, as the derivation of (2.16) and (2.23),
\[
\frac{1}{p} \int_{B_{m+3/4}} (1 - h^p)|\nabla w|^p dx \leq C \varepsilon^{m(1+\frac{1}{m+1})^3-p},
\]
\[
\int_{B_{m+3/4}} |\nabla u_\varepsilon|^p dx \leq C + C(\varepsilon^{m-p+1} + \varepsilon^{m(1+\frac{1}{m+1})^3-p}) \leq C \varepsilon^{m(1+\frac{1}{m+1})^3-p}.
\]

If we do in this way, and noting the definition of k_0, we can derive by k_0 steps that
\[
\int_{B_{m+1-1/2k_0-1}} |\nabla u_\varepsilon|^p dx \leq C + C(\varepsilon^{m-p+1} + \varepsilon^{m(1+\frac{1}{m+1})k_0-p}).
\]

Thus
\[
\int_{B_{m+1}} |\nabla u_\varepsilon|^p dx \leq \int_{B_{m+1-1/2k_0-1}} |\nabla u_\varepsilon|^p dx \leq C(\varepsilon^{m-p+1} + 1).
\]

This is (2.2) for $j = m + 1$.

Step 3. When $m > p/2$, $(m-p)(1-2/p) < m + 1 - p$. Let $k \geq 1$ be an integer such that $(m-p)(1-2/p)^k \leq m + 1 - p < (m-p)(1-2/p)^{k+1}$. Now, $I_1 \geq I_2$ in (2.23). Thus,
\[
\int_{B} |\nabla u|^p dx \leq C(\varepsilon^{m-p})^{1-2/p} + C \varepsilon^{m-p+\frac{m}{p+1}}.
\]

Similar to Step 2, we may improve the exponent $m - p + \frac{m}{p+1}$ of ε in I_3 to $(m-p)(1-2/p)$ since we may find $k_0 > 0$ such that $m(1+\frac{1}{m+1})k_0 > (m-p)(1-2/p)$.

Namely, there is a constant $r_1 \in (R_{m+1}, r)$ such that
\[\int_{B(x,r_1)} |\nabla u_\varepsilon|^p \, dx \leq C_\varepsilon^{(m-p)(1-2/p)}. \]
Therefore, as the derivation of (2.24),
\[\int_{B(x,2r_1/3)} (1 - h^2)^2 \, dx \leq C_\varepsilon^{(m-p)(1-2/p) + p}. \]
Substituting these into (2.22) we have
\[\int_{B(x,r_1/2)} |\nabla u_\varepsilon|^p \, dx \leq C_\varepsilon^{m+1-p} + C \left[\int_{B(x,r)} |\nabla u_\varepsilon|^p \, dx \right]^{1-2/p} \]
\[+ C \left[\int_{B(x,r)} |\nabla u_\varepsilon|^p \, dx + 1 \right] \left[\int_{B(x,r)} (1 - h^2)^2 \, dx \right]^{p/(p+1)} \]
\[\leq C_\varepsilon^{m+1-p} + C_\varepsilon^{(m-p)(1-2/p)^2} + C_\varepsilon^{(m-p)(1-2/p) + [(m-p)(1-2/p)+p]^{p/(p+1)}}. \]
Noting $(m-p)(1-2/p)^2 < m + 1 - p$, we can see that
\[\int_{B(x,r_1/2)} |\nabla u_\varepsilon|^p \, dx \leq C_\varepsilon^{(m-p)(1-2/p)^2} + C_\varepsilon^{(m-p)(1-2/p) + [(m-p)(1-2/p)+p]^{p/(p+1)}}. \]
Using the idea of Step 2, we can improve the exponent $(m-p)(1-2/p)^2 + [(m-p)(1-2/p)+p]^{p/(p+1)}$ of ε to $(m-p)(1-2/p)^2$. Namely, there is a constant $r_2 \in (R_{m+1}, r_1/2)$ such that
\[\int_{B(x,r_2)} |\nabla u_\varepsilon|^p \, dx \leq C_\varepsilon^{(m-p)(1-2/p)^2}. \]
Suppose that for some $l \leq k - 1$,
\[\int_{B(x,r_l-1)} |\nabla u_\varepsilon|^p \, dx \leq C_\varepsilon^{(m-p)(1-2/p)^l} \]
holds, where $R_{m+1} < r_{l+1} < r_l/2$ for $l = 2, 3, \ldots, k-1$. Therefore, as the derivation of (2.24),
\[\int_{B(x,r_{l-1})} (1 - h^2)^2 \, dx \leq C_\varepsilon^{(m-p)(1-2/p)^l + p}. \]
Substituting these inequalities into (2.22) yields
\[\int_{B(x,r_l)} |\nabla u_\varepsilon|^p \, dx \leq C_\varepsilon^{m+1-p} + C_\varepsilon^{(m-p)(1-2/p)^{l+1}} + C_\varepsilon^{(m-p)(1-2/p)^l + [(m-p)(1-2/p)^l + p]^{p/(p+1)}} \]
\[\leq C_\varepsilon^{(m-p)(1-2/p)^{l+1}} + C_\varepsilon^{(m-p)(1-2/p)^l + [(m-p)(1-2/p)^l + p]^{p/(p+1)}}. \]
Similar to Step 2, we may improve again the exponent $(m-p)(1-2/p)^l + [(m-p)(1-2/p)^l + p]^{l/(l+1)}$ of ε to $(m-p)(1-2/p)^{l+1}$. Namely, it can be seen that
\[\int_{B(x,r_l)} |\nabla u_\varepsilon|^p \, dx \leq C_\varepsilon^{(m-p)(1-2/p)^{l+1}}. \]
From this result it follows that for $l = k - 1$,
\[
\int_{B(x, r_{k-1})} |\nabla u_\varepsilon|^p \leq C\varepsilon^{(m-p)(1-2/p)k}.
\]
Therefore, as the derivation of (2.24),
\[
\int_{B(x, r_{k-1})} (1 - h^2)^2 dx \leq C\varepsilon^{(m-p)(1-2/p)k} + p.
\]
Combining these with (2.22) we obtain
\[
\int_{B(x, r_{k-1}/2)} |\nabla u_\varepsilon|^p dx \leq C\varepsilon^{m+1-p} + C\varepsilon^{(m-p)(1-2/p)k} + [m-p(1-2/p)^k + p] \frac{1}{\varepsilon^{k-1}}.
\]
As in Step 2 and noting the definition of k, we may also improve the exponent of ε to $m + 1 - p$ finally. Namely, we have
\[
\int_{B(x, r_{k-1}/2)} |\nabla u_\varepsilon|^p dx \leq C\varepsilon^{m+1-p}.
\]
This is (2.2) for $j = m + 1$ and proof of Theorem 2.2 is complete.

Theorem 2.5. For an arbitrary compact subset K of $G \setminus \{a_1, a_2, \ldots, a_N\}$. There exists a constant $C > 0$ which does not depend on $\varepsilon \in (0, 1)$ such that $E_\varepsilon(u_\varepsilon, K) \leq C$.

Proof. It is sufficient to prove that $E_\varepsilon(u_\varepsilon, B(x, R)) \leq C$, where $B(x, R)$ is the disc in $G \setminus \{a_1, a_2, \ldots, a_N\}$. Theorem 2.2 shows that
\[
E_\varepsilon(u_\varepsilon, B_{[p]}) \leq C\varepsilon^{[p]-p}.
\] (2.26)
Using this and the integral mean value theorem, there exists a constant $r \in [R_{[p]+1/2}, R_{[p]}]$ such that
\[
\int_{\partial B(x, r)} |\nabla u_\varepsilon|^p d\xi + \frac{1}{\varepsilon^p} \int_{\partial B(x, r)} u_\varepsilon^2 d\xi \leq C(r)\varepsilon^{[p]-p}.
\] (2.27)
Consider the functional
\[
E(\rho, B) = \frac{1}{p} \int_B (|\nabla \rho|^2 + 1)^{p/2} dx + \frac{1}{2\varepsilon^p} \int_B (1 - \rho)^2 dx,
\]
where $B = B(x, r)$. It is easy to prove that the minimizer ρ_2 of $E(\rho, B)$ on $W^{1, p}_{[p]}(B, \mathbb{R}^+ \cup \{0\})$ exists. Similar to the proof of proposition 2.3 by (2.26) and (2.27) we can derive
\[
E(\rho_2, B) \leq C\varepsilon^{[p]-p+1}.
\] (2.28)
From this it follows that for any $\delta > 0$,
\[
\int_B |\nabla \rho_2|^2 |\nabla w|^{p-2} dx \leq \delta \int_B |\nabla u_\varepsilon|^p dx + C\varepsilon^{[p]+1-p}.
\]
Since u_ε is a minimizer of $E_\varepsilon(u, G)$, we have

$$E_\varepsilon(u_\varepsilon, B) \leq E_\varepsilon((\rho_2 w, \sqrt{1 - \rho_2^2}), B)$$

$$\leq \frac{1}{p} \int_B (|\nabla \rho_2^p|^p + |\nabla w|^p) dx + C \int_B (|\nabla \rho_2|^p + |\nabla w|^{p-2}) dx$$

$$+ \frac{1}{4p} \int_B (1 - \rho_2^2)^2 dx. \quad (2.29)$$

Therefore,

$$E_\varepsilon(u_\varepsilon, B) \leq \frac{1}{p} \int_B |\nabla w|^p dx + C_\varepsilon|\rho|^1 + 1 \int_B |\nabla u_\varepsilon|^p dx.$$

Combining this with Jensen’s inequality yields

$$\frac{1}{p} \int_B |\nabla h|^p dx + \frac{1}{p} \int_B |\nabla u_\varepsilon|^p dx + \frac{1}{4p} \int_B (1 - h^2)^2$$

$$\leq E_\varepsilon(u_\varepsilon, B) - \frac{1}{p} \int_B |\nabla w|^p dx + \frac{1}{p} \int_B (1 - h^p) |\nabla w|^p dx$$

$$\leq C_\varepsilon|\rho|^1 + 1 + \delta \int_B |\nabla u_\varepsilon|^p dx + \frac{1}{p} \int_B (1 - h^p) |\nabla w|^p dx. \quad (2.30)$$

To estimate the third term of the right hand side, we proceed in the same way of the proof of Proposition 2.4, and use $\frac{1}{p} \int_B (1 - h^2)^2 dx \leq C_\varepsilon|\rho|^{-p}$ which is implied by (2.26). As a result, there exists $t \in (0, 1/2)$ such that

$$\frac{1}{p} \int_B (1 - h^p) |\nabla w|^p dx \leq C_\varepsilon|\rho|^1 + 1 + \delta \int_B |\nabla u_\varepsilon|^p dx.$$

Substituting this into (2.30) yields

$$\frac{1}{p} \int_B |\nabla h|^p dx + \frac{1}{p} \int_B |\nabla u_\varepsilon|^p dx + \frac{1}{4p} \int_B (1 - h^2)^2 dx$$

$$\leq C_\varepsilon|\rho|^1 + 1 + \varepsilon|\rho| + \frac{|\nabla u_\varepsilon|^p}{p} + \frac{1}{p} \int_B (1 - h^p) |\nabla w|^p dx.$$

This and (2.21) imply that

$$\int_B |\nabla u_\varepsilon|^p dx \leq C_\varepsilon|\rho|^{-p+1} + C_\varepsilon|\rho|^{-p+1 - \frac{1}{p}} + C_\varepsilon|\rho|^{-p+1 - \frac{1}{p}} + C_\varepsilon|\rho|^{-p+1 - \frac{1}{p}} + C, \quad (2.31)$$

as long as we choose $\delta > 0$ sufficiently small. Discussing in the same way to Step 2 and Step 3, we may improve the exponent of ε in the second and the third terms of the right hand side of (2.31) step by step such that the improved exponent is not smaller than $|\rho| - p + 1$, thus for some $B_{|\rho|+1} \subset B$, there exists C independent of $\varepsilon \in (0, \varepsilon_0)$ with ε_0 sufficiently small such that

$$\int_{B_{|\rho|+1}} |\nabla u_\varepsilon|^p dx \leq C + C_\varepsilon|\rho|^{-1} \leq C.$$

The proof is complete. \qed
3. Proof of Theorem 1.3

Step 1. Suppose \(B(x_0,2\sigma) \subset [G \setminus \cup_{j=1}^N \{a_j\}] \), where the constant \(\sigma \) may be sufficiently small but independent of \(\varepsilon \). Since theorem 2.5 implies \(E_\varepsilon(u_\varepsilon,B(x_0,2\sigma) \setminus B(x_0,\sigma)) \leq C \), there is a constant \(r \in (\sigma,2\sigma) \) such that

\[
\int_{\partial B(x_0,r)} |\nabla u_\varepsilon|^p d\xi + \frac{1}{\varepsilon^p} \int_{\partial B(x_0,r)} u_\varepsilon^2 d\xi \leq C(r).
\]

Thus, we can find a subsequence \(u_{\varepsilon_k} \) of \(u_\varepsilon \) such that \(u_{\varepsilon_k} \to u_p = (u'_p,0) \) in \(C(\partial B(x_0,r),\mathbb{R}^3) \), where \(u'_p \) is the \(S^1 \)-valued harmonic map, which leads to

\[
u'_{\varepsilon_k} \to u'_p, \quad \text{in} \quad C(\partial B(x_0,r)).
\] (3.1)

Step 2. Denote \(B = B(x_0,r) \). It is easy to see the existence of the solution \(w_\varepsilon \) of

\[
\min \left\{ \int_B |\nabla u|^p dx : u \in W^{1,p}_{\varepsilon} \right\}.
\] (3.2)

Theorem 2.5 and \(|u'_{\varepsilon} | \geq 1/2 \) on \(B \) imply \(2^{-p} \int_B |\nabla \frac{u'_\varepsilon}{|u'_\varepsilon|}|^p dx \leq \int_B |\nabla u_\varepsilon|^p dx \leq C \), and hence

\[
\int_B |\nabla u_\varepsilon|^p dx \leq \int_B |\nabla \frac{u'_\varepsilon}{|u'_\varepsilon|}|^p dx \leq C. \quad (3.3)
\]

From this and \((2.28)\) it follows that \(\int_B |\nabla \rho_2|^2 |\nabla w_\varepsilon|^p-2 dx \leq C\varepsilon^{2(|p|+1-p)/p} \), where \(\rho_2 \) is the minimizer of \(E(\rho,B) \) on \(W^{1,p}_{u'_\varepsilon}(B,\mathbb{R}^+ \cup \{0\}) \). Substituting this result into \((2.29)\) and using \((2.28)\), we obtain

\[
\int_B |\nabla u_\varepsilon|^p dx \leq C\varepsilon^{2(|p|+1-p)/p} + \int_B |\nabla w_\varepsilon|^p dx. \quad (3.4)
\]

Step 3. Let \(w_\varepsilon^\tau \) be a solution of

\[
\min \left\{ \int_B \left(|\nabla w|^2 + \tau \right)^{p/2} dx : w \in W^{1,p}_{\varepsilon/|\varepsilon|} \right\}, \quad \tau \in (0,1).
\] (3.5)

Clearly, \(w_\varepsilon^\tau \) also solves

\[-\text{div}(v_\varepsilon^{(p-2)/2} \nabla w) = w|\nabla w|^2 v_\varepsilon^{(p-2)/2}, \quad v_\varepsilon = |\nabla w|^2 + \tau.\] (3.6)

Noticing \(\frac{u'_\varepsilon}{|u'_\varepsilon|} \in W^{1,p}_{\varepsilon/|\varepsilon|} \), we have

\[
\int_B |\nabla w_\varepsilon^\tau|^p dx \leq \int_B \left(|\nabla \frac{u'_\varepsilon}{|u'_\varepsilon|}|^2 + \tau \right)^{p/2} dx
\leq \int_B \left(|\nabla \frac{u'_\varepsilon}{|u'_\varepsilon|}|^2 + 1 \right)^{p/2} dx \leq C
\] (3.7)

by using \((3.3)\), where \(C \) is a constant which is independent of \(\varepsilon, \tau \). Then there exist \(w^* \in W^{1,p}_{\varepsilon/|\varepsilon|} \) and a subsequence of \(w_\varepsilon^\tau \) denoted still by itself such that

\[
\lim_{\tau \to 0} w_\varepsilon^\tau = w^* \quad \text{weakly in} \quad W^{1,p}(B,R^2).
\] (3.8)
Noting the weak lower semi-continuity of \(\int_B |\nabla w|^p \), we have
\[
\int_B |\nabla w^\tau|^p dx \leq \liminf_{\tau \to 0} \int_B |\nabla w^\tau_\varepsilon|^p dx \leq \limsup_{\tau \to 0} \int_B |\nabla w^\tau_\varepsilon|^p dx. \tag{3.9}
\]
The fact that \(w^\tau_\varepsilon \) solves \(\text{(3.5)} \) implies
\[
\limsup_{\tau \to 0} \int_B (|\nabla w^\tau_\varepsilon|^2 + \tau)^{p/2} dx \leq \lim_{\tau \to 0} \int_B (|\nabla w^\tau_\varepsilon|^2 + \tau)^{p/2} dx = \int_B |\nabla w^\tau_\varepsilon|^p dx,
\]
where \(w^\tau_\varepsilon \) is a solution of \(\text{(3.2)} \). This and \(\text{(3.9)} \) lead to
\[
\int_B |\nabla w^\tau|^p dx \leq \liminf_{\tau \to 0} \int_B |\nabla w^\tau_\varepsilon|^p dx \leq \limsup_{\tau \to 0} \int_B |\nabla w^\tau_\varepsilon|^p dx \leq \int_B |\nabla w^\tau_\varepsilon|^p dx. \tag{3.10}
\]
Since \(w^\tau \in W^{1,p}_{w^\tau} (B, \partial B_1) \), we know \(w^\tau \) also solves \(\text{(3.2)} \), namely
\[
\int_B |\nabla w^\tau_\varepsilon|^p dx = \int_B |\nabla w^\tau|^p dx. \tag{3.11}
\]
Combining this with \(\text{(3.10)} \) yields \(\lim_{\tau \to 0} \int_B |\nabla w^\tau_\varepsilon|^p dx = \int_B |\nabla w^\tau|^p dx \), which and \(\text{(3.8)} \) imply that as \(\tau \to 0 \),
\[
\nabla w^\tau_\varepsilon \to \nabla w^\tau \quad \text{in} \quad L^p(B, R^2). \tag{3.12}
\]

Step 4. By the same argument as in Step 3, we obtain the following conclusion: Let \(u^\tau \) be a solution of
\[
\min \{ \int_B (|\nabla u|^2 + \tau)^{p/2} dx : u \in W^{1,p}_{u_\varepsilon}(B, \partial B_1) \}, \quad \tau \in (0, 1). \tag{3.13}
\]
Then \(u^\tau \) satisfies
\[
\int_B |\nabla u^\tau|^p dx \leq C, \tag{3.14}
\]
where \(C \) is which is independent of \(\tau \), and \(u^\tau \) solves
\[
-\text{div}(u^\tau)^{(p-2)/2} \nabla u^\tau = u^\tau |\nabla u|^2 u^{(p-2)/2}, \quad u^\tau = |\nabla u|^2 + \tau. \tag{3.15}
\]
As \(\tau \to 0 \), there exists a subsequence of \(u^\tau \) denoted by itself such that
\[
\nabla u^\tau \to \nabla u^* \quad \text{in} \quad L^p(B, R^2), \tag{3.16}
\]
where \(u^* \) is a minimizer of \(\int_B |\nabla u|^p dx \) in \(W^{1,p}_{u_\varepsilon}(B, \partial B_1) \). It is well-known that \(u^* \) is a map of the least p-energy, and also a p-harmonic map.

Step 5. From [5] Lemma 1, Page 65], we can write
\[
w^\tau_\varepsilon = (\cos \phi^\tau_\varepsilon, \sin \phi^\tau_\varepsilon), \quad u^\tau = (\cos \psi^\tau, \sin \psi^\tau), \nabla w^\tau_\varepsilon = (\cos \phi^\tau, \sin \phi^\tau), \quad u^* = (\cos \psi^*, \sin \psi^*), \nabla u^\tau_\varepsilon |_{\partial B} = (\cos \phi_\varepsilon, \sin \phi_\varepsilon), \quad u^\tau_\varepsilon |_{\partial B} = (\cos \psi, \sin \psi),
\]
where \(\phi^\tau_\varepsilon, \psi^\tau, \phi^\tau, \psi^* \) belong to \(W^{1,p}(B, R) \), \(\phi^*, \psi \) belong to \(W^{1,p}(\partial B, R) \), and they are all single-valued functions since their degrees around \(\partial B \) are zero. Therefore,
\[
\phi^\tau_\varepsilon |_{\partial B} = \phi_\varepsilon, \quad \psi^\tau |_{\partial B} = \psi, \tag{3.17}
\]
and $|\nabla w^\tau_\epsilon| = |\nabla \phi^\tau_\epsilon|$, $|\nabla w^\tau| = |\nabla \psi^\tau|$. Moreover, by (3.6) and (3.15), we obtain that both ϕ^τ_ϵ and ψ^τ satisfy $-\text{div}[(|\nabla \Phi|^2 + \tau)^{(p-2)/2}\nabla \Phi] = 0$. Thus,

$$-\text{div}[(|\nabla \phi^\tau_\epsilon|^2 + \tau)^{(p-2)/2}\nabla \phi^\tau_\epsilon] - (|\nabla \psi^\tau|^2 + \tau)^{(p-2)/2}\nabla \psi^\tau] = 0. \quad (3.18)$$

Multiplying both sides of (3.18) by $\phi^\tau_\epsilon - \psi^\tau$ and integrating over B, we obtain

$$-\int_{\partial B} (v_\epsilon^{(\tau-2)/2} \phi_\nu - v^{(\tau-2)/2} \psi_\nu)(\phi - \psi)d\xi + \int_B (v_\epsilon^{\tau(p-2)/2} \nabla \phi - v^{\tau(p-2)/2} \nabla \psi) \nabla (\phi - \psi)dx = 0, \quad (3.19)$$

where ν denotes the unit outside-norm vector of ∂B.

Let $w = w^\tau_\epsilon$ be a solution of (3.5). Integrating both sides of (6) over B, we have

$$-\int_{\partial B} v_\epsilon^{(\tau-2)/2} w_\nu d\xi = \int_B w|\nabla w|^2 v_\epsilon^{(\tau-2)/2} dx,$$

this and (3.7) imply

$$|\int_{\partial B} v_\epsilon^{(\tau-2)/2} \phi_\nu d\xi| = |\int_{\partial B} v_\epsilon^{(\tau-2)/2} w_\nu d\xi| \leq \int_B v_\epsilon^{\tau p/2} dx \leq C. \quad (3.20)$$

An analogous discussion shows that for the solution $u = u^\tau$ of (3.13) which is equipped with (3.14), we may also obtain

$$|\int_{\partial B} v^{(\tau-2)/2} \phi_\nu d\xi| = \int_{\partial B} v^{(\tau-2)/2} u_\nu d\xi| \leq \int_B |\nabla u|^p dx \leq C. \quad (3.21)$$

Combining (3.17) with (3.19) and (3.21), we derive

$$\int_B (v_\epsilon^{(\tau-2)/2} \nabla \phi - v^{(\tau-2)/2} \nabla \psi) \nabla (\phi - \psi)dx \leq C \sup_{\partial B} |\phi^\tau_\epsilon - \psi^\tau| = C \sup_{\partial B} |\phi_\epsilon - \psi|,$$

where C is independent of ϵ, τ. Letting $\tau \to 0$ and applying (3.12) and (3.16), we obtain

$$|\int_B (|\nabla \phi^\tau_\epsilon|^2 (p-2)/2 \nabla \phi^\tau_\epsilon - |\nabla \psi^\tau|^2 (p-2)/2 \nabla \psi^\tau) \nabla (\phi^\tau_\epsilon - \psi^\tau)dx| \leq C \sup_{\partial B} |\phi^\tau_\epsilon - \psi|,$$

which implies $\int_B |\nabla \phi^\tau_\epsilon - \nabla \psi^\tau|^p dx \leq C \sup_{\partial B} |\phi^\tau_\epsilon - \psi|$. Letting $\epsilon \to 0$ and using (3.1), we obtain $\int_B |\nabla \phi^\tau_\epsilon|^p dx \to \int_B |\nabla \psi^\tau|^p dx$. That is,

$$\int_B |\nabla \phi^\tau_\epsilon|^p dx \to \int_B |\nabla \psi^\tau|^p dx. \quad (3.22)$$

Step 6. Since $\int_B |\nabla u|^p dx$ is weak lower semi-continuous, from Theorem 1.2 we deduce $\int_B |\nabla u|^p dx \leq \liminf_{\epsilon_\kappa \to 0} \int_B |\nabla u_\epsilon|^p dx$. Combining this result with (3.4), (3.11) and (3.22), we obtain

$$\int_B |\nabla u|^p dx \leq \liminf_{\epsilon_\kappa \to 0} \int_B |\nabla u_\epsilon|^p dx \leq \limsup_{\epsilon_\kappa \to 0} \int_B |\nabla u_\epsilon|^p dx \leq \lim_{\epsilon_\kappa \to 0} \int_B |\nabla u_\epsilon|^p dx = \int_B |\nabla u^\star|^p dx.$$
Recalling the definition of \(u^* \) in Step 4, and noticing \(u'_p \in W^{1,p}_p(B, \partial B_1) \), we know that \(u'_p \) is also a minimizer of \(\int_B |\nabla u|^p \), and
\[
\lim_{\varepsilon_k \to 0} \int_B |\nabla u_{\varepsilon_k}|^p \, dx = \int_B |\nabla u_p|^p \, dx = \int_B |\nabla u^*|^p \, dx.
\]
This result and Theorem 1.2 imply \(\nabla u_{\varepsilon_k} \to \nabla u_p \) in \(L^p(B, \mathbb{R}^3) \) when \(\varepsilon_k \to 0 \).
Combining this with the fact \(u_{\varepsilon_k} \to u_p \) in \(L^p(B, \mathbb{R}^3) \), which is implied by Theorem 1.2, we obtain
\[
u_{\varepsilon_k} \to u_p, \quad \text{in } W^{1,p}(B, \mathbb{R}^3)
\]
as \(\varepsilon_k \to 0 \). Then it is not difficult to complete the proof of this theorem.

Acknowledgements. The authors wish to express their appreciation to the anonymous referees for their suggestions that greatly improved this article.

REFERENCES

Bei Wang
School of mathematics and information technology, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, China
E-mail address: jsjywang@126.com

Yuze Cai
Department of Basic Science, Shazhou Professional Institute of Technology, Zhangjiagang, Jiangsu 215600, China
E-mail address: caibcd@163.com