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GLOBAL ATTRACTOR FOR REACTION-DIFFUSION
EQUATIONS WITH SUPERCRITICAL NONLINEARITY IN

UNBOUNDED DOMAINS

JIN ZHANG, CHANG ZHANG, CHENGKUI ZHONG

Abstract. We consider the existence of global attractor for the inhomoge-

neous reaction-diffusion equation

ut −∆u− V (x)u + |u|p−2u = g, in Rn × R+,

u(0) = u0 ∈ L2(Rn) ∩ Lp(Rn),

where p > 2n
n−2

is supercritical and V (x) satisfies suitable assumptions. Since

−∆ is not positive definite in H1(Rn), the Gronwall inequality can not be

derived and the corresponding semigroup does not possess bounded absorbing
sets in L2(Rn). Thus, by a special method, we prove that the equation has

a global attractor in Lp(Rn), which attracts any bounded subset in L2(Rn) ∩
Lp(Rn).

1. Introduction

We consider the existence of global attractor for the inhomogeneous reaction-
diffusion equation in the whole space:

ut −∆u− V (x)u+ |u|p−2u = g, in Rn × R+,

u(0) = u0 ∈ L2(Rn),
(1.1)

where p > 2n
n−2 is a supercritical exponent, g ∈ L1(Rn) ∩ L∞(Rn) is given and the

function V (x) satisfies

V ∈ Ln/2(Rn) ∩ L∞(Rn) . (1.2)

The long-time behavior of solution for the reaction-diffusion equation

ut −∆u+ λu+ f(u) = g , (1.3)

in unbounded domain has been studied by many authors, where λ > 0 and f(u)
satisfying some growth condition. In the pioneering work [3], Babain and Vishik
proved the existence of global attractor in some weighted space. In paper [11], under
some structural assumptions on the nonlinearity f , Wang proved the existence
of global attractor in usual space L2(Rn) instead of the weighted space. Other
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investigations of global attractor for equation (1.3) in unbounded domain can be
found in [1, 7, 9].

In general, Gronwall inequality is utilized to prove the existence of absorbing set
in L2(Rn) for (1.3) when λ > 0. However, it will be difficult in the case λ = 0 or
λ < 0. Zelik [13] considered the existence of global attractor for the real Ginzburg-
Landau equation

ut −∆u− u+ u3 = g (1.4)

in Rn. For this equation, because of the infiniteness of the energy functional, the
global attractor can not be obtained in usual spaces, thus Zelik considered the
existence of the locally compact global attractors for the semigroup associated with
the equation (1.4) in uniformly local spaces. More detailed information can be
found in [6, 10].

Arrieta, Cholewa, Dlotko and Rodŕıguez-Bernal [2] consider the reaction-diffu-
sion equation

ut −∆u = f(x, u) + g

with f(x, s)s ≤ C(x)|s|2 + D(x)|s| in standard Lebesgue space. They prove that
for some suitable functions C(x) and D(x), the existence of global solutions can be
obtained. Furthermore, if the operator ∆ +C(x)I generates an analytic semigroup
which decay exponentially, then this equation has a global attractor.

Motivated by the above works, we consider the existence of a global attractor
for (1.1) (which is inhomogeneous type of equation (1.4) but u3 is replaced by
|u|p−2u). Following the proof in [2], we can obtain the existence and uniqueness
of the solutions. We encounter difficulties when proving the existence of global
attractor, since the operator ∆ + V (x)I may not be able to generate an analytic
semigroup, and the Gronwall inequality can not be applied to obtain the absorbing
set in L2(Rn). To overcome the difficulties, we assume that V (x) satisfies some
suitable conditions, and use the method of monotonicity of the energy functional
to obtain an absorbing set in D1,2(Rn) ∩ Lp(Rn). Furthermore, in order to estab-
lish the ω-limit compactness of the corresponding semigroup, we use the Sobolev
embeddings in interior, and estimate the Lp−norm of solutions is arbitrarily small
uniformly for large time in exterior. Our main result reads as follows.

Theorem 1.1. Assume p > 2n
n−2 , g ∈ L1(Rn) ∩L∞(Rn), V (x) satisfies conditions

(1.2). Then the semigroup {S(t)}t≥0 generated by the equation (1.1) has a global
attractor A in Lp(Rn), which attracts any bounded subset in L2(Rn) ∩ Lp(Rn).

Remark 1.2. Zelik [13] proved the existence of global attractor for the Ginzburg-
Landau equation

ut −∆u− u+ u3 = g (1.5)

in Rn, and the attractor is only locally compact in a uniformly local phase space.
To obtain a global attractor which is compact in usual space L2(Rn) ∩ Lp(Rn),
we assume that the nonlinear term is supercritical growth and the condition (1.2)
holds.

2. Preliminaries

In this section, we first review the basic concept about the Kuratowski measure
of noncompactness, which will be used to establish the ω-limit compactness of
semigroup. See [5, 8, 12] for its some basic properties.
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Definition 2.1. Let (M,d) be a metric space and let A be a bounded subset of
M . The measure of noncompactness κ(A) is defined by

κ(A) = inf{δ > 0 | A admits a finite cover by sets of diameter ≤ δ}.

The properties of the measure of noncompactness κ(A) are provided in the fol-
lowing lemmas.

Lemma 2.2. Let (M,d) be a complete metric space and κ be the measure of non-
compactness. Then

(i) κ(B) = 0, if and only if B is compact;
(ii) if M is a Banach space, then κ(B1 +B2) ≤ κ(B1) + κ(B2) ;
(iii) κ(B1) ≤ κ(B2) whenever B1 ⊂ B2 ;
(iv) κ(B1 ∪B2) = max{κ(B1), κ(B2)} ;
(v) κ(B) = κ(B) .

Lemma 2.3. Let M be an infinite dimensional Banach space and let B(ε) be a ball
of radius ε. Then κ(B(ε)) = 2ε.

The concept of ω-limit compactness of a semigroup, which is an important nec-
essary and sufficient condition for the existence of global attractor (see [8]).

Definition 2.4. A semigroup {S(t)}t≥0 in a complete metric space (M,d) is called
a C0 or continuous semigroup if it satisfies:

• S(0) = I,
• S(t)S(s) = S(s)S(t) = S(t+ s),
• S(t)x0 is continuous in x0 ∈M and t ∈ R.

Definition 2.5. A continuous semigroup {S(t)}t≥0 in a complete metric space
(M,d) is called ω-limit compact, if for any bounded subset B and any ε > 0, there
exists a time t∗ ≥ 0 such that

κ
(
∪t≥t∗ S(t)B

)
≤ ε.

Lemma 2.6. Let {S(t)}t≥0 be a continuous semigroup in a complete metric space
(M,d). Then S(t) has a global attractor A in M if and only if

(1) there is a bounded absorbing set B ⊂M , and
(2) {S(t)}t≥0 is ω-limit compact.

Now, we give the general existence and uniqueness of solutions which can be
obtained as in [2].

Theorem 2.7. Let p > 2, g ∈ L1(Rn) ∩ L∞(Rn), V (x) satisfies conditions (1.2).
Then for any u0 ∈ L2(Rn)∩Lp(Rn) and T > 0, there exists a unique weak solution
u(x, t) of (1.1) satisfies

u ∈ C([0, T ], L2(Rn) ∩ Lp(Rn)) ∩ L2(0, T,D1,2(Rn)).

Furthermore, u0 7→ u(t) is continuous on L2(Rn) ∩ Lp(Rn).

For convenience, here and subsequently, we can assume |V (x)| ≤ l since V ∈
L∞(Rn). In addition, for any R > 0, we denote ΩR := {x ∈ Rn : |x| ≤ R}.
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3. Bounded absorbing set in D1,2(Rn) ∩ Lp(Rn) and L2p−2(Rn)

By Theorem 2.7, we can define the operator semigroup {S(t)}t≥0 in L2(Rn) ∩
Lp(Rn) as

S(t)u = u(t) : L2(Rn) ∩ Lp(Rn)→ L2(Rn) ∩ Lp(Rn),
which is generated by the weak solutions of (1.1) with initial data u0 ∈ L2(Rn) ∩
Lp(Rn).

Theorem 3.1. There exist constants ρ1 > 0 and t1(|u0|2) such that, for the solution
u(t) of (1.1), ∫

Rn
|∇u(t)|2dx+

∫
Rn
|u(t)|pdx ≤ ρ1 , for all t ≥ t1 .

Proof. first, we multiply (1.1) by u and integrate over Rn,

1
2
d

dt
|u|22 +

∫
Rn
|∇u|2dx−

∫
Rn
V u2dx+

∫
Rn
|u|pdx =

∫
Rn
gudx . (3.1)

Applying Hölder inequality and Young inequality, we estimate the right-hand side
as ∣∣ ∫

Rn
gu dx

∣∣ ≤ 1
4

∫
Rn
|u|p dx+ C

(
|g| p

p−1

)
. (3.2)

Then, we divide the third term on the left-hand side into∣∣ ∫
Rn
V u2dx

∣∣ ≤ ∫
ΩR0

|V |u2dx+
∫

Rn\ΩR0

|V |u2dx := I1 + I2 ,

where the constant R0 is sufficiently large such that(∫
Rn\ΩR0

|V |n/2dx
)2/n

≤ S

2
,

and S is the Sobolev constant satisfying S|u|22n
n−2
≤ |∇u|22. Therefore, utilizing

Hölder and Young inequality, the two terms I1 and I2 can be estimated as

I1 ≤
1
4

∫
Rn
|u|p dx+ C(p, l, n,R0), I2 ≤

S

2
|u|22n

n−2
≤ 1

2

∫
Rn
|∇u|2 dx. (3.3)

Combining the estimates (3.1), (3.2) and (3.3) yields

1
2
d

dt
|u|22 +

1
2

∫
Rn
|∇u|2dx+

1
2

∫
Rn
|u|pdx ≤ C . (3.4)

Integrating this inequality between 0 and t gives∫ t

0

∫
Rn

(|∇u(s)|2 + |u(s)|p) dx ds ≤ tC + |u(0)|22 ,

it follows from |u(0)|22 is bounded that there exists a sufficiently large time t1 such
that ∫

Rn
|∇u(t1)|2dx+

∫
Rn
|u(t1)|pdx ≤ 2C . (3.5)

Meanwhile, denoting

E(u(t)) :=
1
2

∫
Rn
|∇u(t)|2dx− 1

2

∫
Rn
V |u(t)|2dx+

1
p

∫
Rn
|u(t)|pdx−

∫
Rn
gu(t)dx ,
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and multiplying the equation (1.1) by ut and integrating over Rn, this yields
d
dtE(u(t)) = −|ut|22 ≤ 0, thus

E(u(t)) ≤ E(u(t1)), for all t ≥ t1 . (3.6)

Utilizing the similar techniques in (3.2) and (3.3), the following two estimates∣∣ ∫
Rn
gu dx

∣∣ ≤ 1
4p

∫
Rn
|u|p dx+ C ,∣∣ ∫

Rn
V u2 dx

∣∣ ≤ 1
2

∫
Rn
|∇u|2 dx+

1
4p

∫
Rn
|u|p dx+ C

are also valid, and yield

E(u(t)) ≥ 1
4

∫
Rn
|∇u(t)|2dx+

1
2p

∫
Rn
|u(t)|pdx− 2C , (3.7)

E(u(t1)) ≤ 3
4

∫
Rn
|∇u(t1)|2dx+

3
2p

∫
Rn
|u(t)|pdx+ 2C . (3.8)

Combining the estimates (3.5), (3.6), (3.7) and (3.8), it is obvious that there exists
ρ1 > 0 such that

1
4

∫
Rn
|∇u(t)|2dx+

1
2p

∫
Rn
|u(t)|pdx ≤ ρ1

2p
.

The conclusion is consequently obtained. �

Next, we show the semigroup also has an absorbing set in the space L2p−2(Rn).

Theorem 3.2. There exist constants ρ2 and t2(|u0|2) such that, for the solution
u(t) of the equation(1.1),∫

Rn
|u(t)|2p−2dx < ρ2 , for all t ≥ t2 .

Proof. Similar techniques can be used for (3.4), when multiplying (1.1) by |u|p−2u
and |u|2p−4u respectively. We have the following two estimates:

1
p

d

dt
|u|pp +

1
2

∫
Rn
|u|2p−2dx ≤ C , (3.9)

d

dt
|u|2p−2

2p−2 ≤ C
(

1 + |u|2p−2
2p−2

)
. (3.10)

We can integrate (3.9) between t and t+ 1 to obtain

1
2

∫ t+1

t

∫
Rn
|u(s)|2p−2 dx ds ≤ C +

1
p
|u(t)|pp .

Recalling the fact that |u|pp is bounded for all t ≥ t1, therefore there exists a constant
C such that ∫ t+1

t

∫
Rn
|u(s)|2p−2 dx ds ≤ C for all t ≥ t1 . (3.11)

Now, integrating (3.10) between s and t+ 1 (t ≤ s < t+ 1)gives

|u(t+ 1)|2p−2
2p−2 ≤ C

(
1 +

∫ t+1

s

|u(ξ)|2p−2
2p−2dξ

)
+ |u(s)|2p−2

2p−2 ,



6 J. ZHANG, C. ZHANG, C. ZHONG EJDE-2016/63

then we integrate this equation with respect to s between t and t+ 1, we obtain

|u(t+ 1)|2p−2
2p−2 ≤ C + C

∫ t+1

t

∫
Rn
|u(s)|2p−2 dx ds . (3.12)

It follow from (3.11) that there exists a constant ρ2 > 0 such that

|u(t+ 1)|2p−2
2p−2 ≤ ρ2 ∀t > t1 ,

the proof is complete because t2 = t1 + 1. �

Remark 3.3. We observe that, in the proofs of Theorem 3.1 and Theorem 3.2, we
only need g ∈ L

p
p−1 (Rn) and g ∈ L

3p−4
p−1 (Rn) respectively. Actually, we can prove

that the semigroup has a bounded absorbing set in Lq(Rn) for any q ∈ [p,∞) when
the function g ∈ L1(Rn) ∩ L∞(Rn).

4. ω-limit compactness and global attractor

We define a smooth function θ : R+ → [0, 1], such that

θ(s) =

{
0 s ≤ 1,
1 s ≥ 2,

with |θ′(s)| ≤ 2. Let θR(x) = θR(|x|) = θ
( |x|2
R2

)
. In this way, any solutio u(t) of

equation (1.1) can be decomposed as u(t) = θRu(t)+(1−θR)u(t). Before the proof
of ω-limit compactness and global attractor for the corresponding semigroup, we
first give the estimate the Lp−norm of solutions are arbitrarily small uniformly on
exterior.

Lemma 4.1. For arbitrary ε > 0, there exist constants t3 and R0 > 0, such that
for the solution u(t), ∫

Rn
θ2
R0
|u(t)|pdx < ε, for all t ≥ t3 .

Proof. Multiplying (1.1) by θpR|u|p−2u and integrating over Rn,

1
p

d

dt

∫
Rn
θpR|u|

pdx−
∫

Rn
∆u · θpR|u|

(p−2)u dx−
∫

Rn
θpRV |u|

pdx

+
∫

Rn
θpR|u|

2p−2dx

=
∫

Rn
θpR|u|

p−2ug dx .

(4.1)

We first consider the estimate of the second term in the left-hand side, since

−
∫

Rn
∆u · θpR|u|

(p−2)dx

=
4(p− 1)
p2

∫
Rn
θpR|∇u

p
2 |2dx+ p

∫
Rn
θp−1
R up−1∇θR∇udx

≥ 4(p− 1)
p2

∫
Rn
θpR|∇u

p
2 |2dx− 1

4

∫
Rn
θpR|u|

2p−2dx− p2

∫
Rn
|∇θR|2|∇u|2dx .
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Referring to Theorem 3.1 and assumption of the function θR, we have |∇u|22 is
bounded and |∇θR(x)| ≤ 4

R . Thus, there exists a constant C > 0 such that for all
t ≥ t1,

−
∫

Rn
∆u · θpR|u|

p−2u dx

≥ 4(p− 1)
p2

∫
Rn
θpR|∇u

p
2 |2dx− 1

4

∫
Rn
θpR|u|

2p−2 dx− C

R2
.

(4.2)

Then, the application of Hölder and Young inequalities gives the following two
estimates

∣∣ ∫
Rn
θpRV |u|

pdx
∣∣ ≤ (∫

Rn\ΩR
|V |n/2dx

)2/n(∫
Rn
|θRu

p
2 |2·

n
n−2 dx

)n−2
n

≤ S

(∫
Rn\ΩR

|V |n/2dx

)2/n ∫
Rn
θ2
R|∇u

p
2 |2dx ,

(4.3)

∣∣ ∫
Rn
θpR|u|

p−2ugdx
∣∣ ≤ 1

4

∫
Rn
θpR|u|

2p−2dx+
∫

Rn
θpR|g|

2dx . (4.4)

It is obvious that the terms C
R2 ,

( ∫
Rn\ΩR |V |

n/2dx
)2/n and

∫
Rn θ

p
R|g|2dx can be

sufficiently small when R → ∞. Therefore, from (4.1)-(4.4) it follows that, for
arbitrary ε > 0, there exists R0, such that for all t ≥ t1 and R ≥ R0,

d

dt

∫
Rn
θpR|u|

pdx+
∫

Rn
θpR|u|

2p−2dx <
1
2
ε

2p−2
p(1−λ) , (4.5)

where λ ∈ (0, 1) satisfies 1
p = (n−2)λ

2n + 1−λ
2p−2 . Similarly to the proof of Theorem 3.1,

there exists a time t3 ≥ t1, such that∫
Rn
θpR|u(t3)|2p−2dx < ε

2p−2
p(1−λ) . (4.6)

Now, combining (4.5) with (4.6), we can prove that if t ≥ t3, there exists a constant
C ∼ (ρ1, p), such that ∫

Rn
θpR|u(t)|pdx ≤ Cε . (4.7)

Actually, applying the interpolation inequality and notice that |u|22n
n−2
≤ 1

S |∇u|
2
2 ≤

ρ1
S , we have(∫

Rn
θpR|u|

pdx
)1/p

≤ ε1/p|u| 2n
n−2

+
(
ε1/p

)− λ
1−λ
(∫

Rn
θpR|u|

2p−2dx
) 1

2p−2

≤ ε1/p

√
ρ1

S
+
(
ε1/p

)− λ
1−λ
(∫

Rn
θpR|u|

2p−2dx
) 1

2p−2
.

Therefore (4.7) is valid provided that
∫

Rn θ
p
R|u(t)|2p−2dx < ε

2p−2
p(1−λ) . On the other

hand, if
∫

Rn θ
p
R|u(t)|2p−2dx ≥ ε

2p−2
p(1−λ) , then referring to the estimate (4.5), it follows

that
d

dt

∫
θpR|u(t)|pdx < −1

2
ε

2p−2
p(1−λ) < 0 ,
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which concludes that
∫
θpR|u(t)|pdx is decreasing with respect to variable t. Hence,

in any case as t ≥ t3, we have∫
Rn
θpR|u(t3)|pdx ≤ Cε .

�

Now, we prove that the semigroup generated by the solutions of equation(1.1)
has a global attractor A, which attracts any bounded subset B ⊂ L2(Rn)∩Lp(Rn)
in the topology of Lp(Rn).

Proof of Theorem 1.1. We only need to verify that the corresponding semigroup is
ω-limit compact. For any fixed R, it follows from Theorem 3.1 and Theorem 3.2
that there exists a time t2 such that

∪t≥t2 ∪u0∈B (1− θR)S(t)u0 is bounded in H1(Ω2R) and L2p−2(Rn) ,

then by the compactness of Sobolev embedding H1(Ω2R) ↪→ L2(Ω2R) and interpo-
lation inequality (2 < p < 2p − 2), we obtain that ∪t≥t2 ∪u0∈B (1 − θR)S(t)u0 is
compact in Lp(Ω2R), thus

κ
(
∪t≥t2 ∪u0∈B(1− θR)S(t)u0

)
Lp

= 0, for any R > 0 .

On the other hand, from Lemma 4.1, we know for any ε > 0, there exist constants
t3 and R0 > 0 such that ∣∣ ∪t≥t3 ∪u0∈BθR0S(t)u0

∣∣p
p
< ε ,

by Lemma2.3, its measure of noncompactness is less than 2ε, i.e.,

κ
(
∪t≥t3 ∪u0∈BθR0S(t)u0

)
Lp
< 2ε .

Thus taking t∗ = max{t2, t3}, we have

κ
(
∪t≥t∗ ∪u0∈BS(t)u0

)
Lp

≤ κ
(
∪t≥t∗ ∪u0∈BθR0S(t)u0

)
Lp

+ κ
(
∪t≥t∗ ∪u0∈B(1− θR0)S(t)u0

)
Lp
< 2ε ,

which concludes that the semigroup {S(t)}t≥0 is ω-limit compact. Therefore, we
obtain the existence of global attractor, which attracts any bounded subset B ⊂
L2(Rn) ∩ Lp(Rn) in the topology of Lp(Rn). �
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