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MULTIPLE HOMOCLINIC SOLUTIONS FOR
SUPERQUADRATIC HAMILTONIAN SYSTEMS

WEI JIANG, QINGYE ZHANG

Abstract. In this article we study the existence of infinitely many homoclinic

solutions for a class of second-order Hamiltonian systems

ü− L(t)u + Wu(t, u) = 0, ∀t ∈ R,

where L is not required to be either uniformly positive definite or coercive,
and W is superquadratic at infinity in u but does not need to satisfy the

Ambrosetti-Rabinowitz superquadratic condition.

1. Introduction and statement of main results

We consider the second-order Hamiltonian system

ü− L(t)u+Wu(t, u) = 0, ∀t ∈ R, (1.1)

where u = (u1, . . . , uN ) ∈ RN , W ∈ C1(R×RN ,R), L ∈ C(R,RN2
) is a symmetric

matrix-valued function, and Wu(t, u) denotes the gradient of W (t, u) with respect
to u. Here, as usual, we say that a solution u of (1.1) is homoclinic (to 0) if
u ∈ C2(R,RN ), u(t) 6≡ 0, u(t)→ 0 and u̇(t)→ 0 as |t| → ∞.

As a special case of dynamical systems, Hamiltonian systems are very important
in the study of gas dynamics, fluid mechanics, relativistic mechanics and nuclear
physics. They also appear in the fields of biology and chemistry (see, e.g.,[13]). It is
well known that homoclinic solutions play an important role in analyzing the chaos
of Hamiltonian systems. If a system has the transversely intersected homoclinic
solutions, then it must be chaotic. If it has the smoothly connected homoclinic so-
lutions, then it cannot stand the perturbation, and its perturbed system probably
produces chaotic phenomena. Therefore, it is of practical importance and mathe-
matical significance to consider the existence of homoclinic solutions of Hamiltonian
systems emanating from 0.

During the previous decades, the existence and multiplicity of homoclinic so-
lutions for (1.1) have been extensively investigated via variational methods ; see
[1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 31,
30, 32, 33, 34, 36, 37] and the references therein. These methods have also been
used in many related and similar problems (see, e.g.,[5, 21, 24, 35]). From the be-
ginning, most of them treated the case where L and W are either independent of t
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or periodic in t (see [1, 2, 3, 8, 10, 11, 12, 20, 22, 23, 26]). In this kind of problem,
the function L plays an important role. If L is neither a constant nor periodic, the
problem is quite different from the ones just described, because of the lack of com-
pactness of the Sobolev embedding. After the work of Rabinowitz and Tanaka [23],
many results were obtained for the case where L is neither a constant nor periodic.
(see, [4, 6, 7, 9, 11, 15, 16, 17, 18, 19, 25, 26, 27, 29, 31, 30, 32, 33, 34, 36, 37]).
However, except for [26], in all these mentioned papers L was always required to
satisfy either the uniform positive-definiteness condition:

(A1) there exists c0 > 0 such that

L(t)u · u ≥ c0|u|2, ∀(t, u) ∈ R× RN

or the coercivity condition:
(A2) the smallest eigenvalue of L tends to ∞ as |t| → ∞, i.e.,

l(t) ≡ inf
u∈RN , |u|=1

L(t)u · u→∞ as |t| → ∞,

where · and | · | denote the standard inner product and the associated norm in RN
respectively. Most of these known results were obtained for the case where W is
superquadratic at infinity in u and satisfy the usual assumption:

(A3) lim|u|→0W (t, u)/|u|2 = 0 uniformly for t ∈ R.
In this case, the well-known Ambrosetti-Rabinowitz superquadratic condition was
usually assumed on W (see, e.g., [4, 6, 9, 15, 16, 18]).

In this article, we study the existence of infinitely many homoclinic solutions for
(1.1) in the case where L is unnecessarily required to be either uniformly positive
definite or coercive, and W satisfies some weak superquadratic condition at infinity
with respect to u. Before presenting our assumptions, we introduce some notation.
Notation. For two N ×N symmetric matrices M1 and M2, we say that M1 ≥M2

if
min

u∈RN ,|u|=1
(M1 −M2)u · u ≥ 0

and that M1 6≥M2 if M1 ≥M2 does not hold.
We use the following assumptions:
(A4) The smallest eigenvalue of L(t) is bounded from below.
(A5) There exists a constant r0 > 0 such that

lim
|s|→∞

meas({t ∈ (s− r0, s+ r0) : L(t) 6≥MIN}) = 0, ∀M > 0,

where meas denotes the Lebesgue measure in R and IN is the identity
matrix in RN .

(A6) W (t, 0) ≡ 0, and there exist constants c1 > 0 and ν > 2 such that

|Wu(t, u)| ≤ c1(|u|+ |u|ν−1), ∀(t, u) ∈ R× RN ;

(A7) lim|u|→∞W (t, u)/|u|2 =∞ uniformly for t ∈ R.
(A8) There exists a constant ϑ ≥ 1 such that

ϑW̃ (t, u) ≥ W̃ (t, su), ∀(t, u) ∈ R× RN and s ∈ [0, 1],

where W̃ (t, u) := Wu(t, u) · u− 2W (t, u).
(A9) W (t,−u) = W (t, u) for all (t, u) ∈ R× RN .
Our main result reads as follows.
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Theorem 1.1. Suppose that (A4), (A5) and (A6)–(A9) are satisfied. Then (1.1)
possesses a sequence of homoclinic solutions {uk} satisfying

1
2

∫
R

(|u̇k|2 + L(t)uk · uk)dt−
∫

R
W (t, uk)dt→∞ as k →∞.

Remark 1.2. It is easy to see that conditions (A4) and (A5) are weaker than
the coercivity condition (A2). In our Theorem 1.1, L is unnecessarily uniformly
positive definite. Besides, the usual condition (A3) and the well-known Ambrosetti-
Rabinowitz superquadratic condition are not required in our Theorem 1.1. There
are functions L and W which satisfy all the conditions in our Theorem 1.1 but do
not satisfy the corresponding conditions in the aforementioned references for the
superquadratic case. For example, let

L(t) = (|t| sin2 t− 1)IN ,

W (t, u) = a(t)
[
|u|2 ln(e+ |u|)− 1

2
|u|2 + e|u| − e2(ln(e+ |u|)− 1)

]
,

where a is a continuous bounded function with positive lower bound, then sim-
ple computation shows that they satisfy (A4), (A5) and (A6)–(A9). However, L
does not satisfy neither the uniform positive-definiteness condition (A1) nor the
coercivity condition (A2). Meanwhile neither the usual assumption (A3) nor the
Ambrosetti-Rabinowitz superquadratic assumption holds for W .

2. Variational setting and proof of the main result

To prove our main result via the critical point theory, we need to establish the
variational setting for (1.1). Before this, we have the following result.

Remark 2.1. From (A4) and (A6), we know that there exists a positive constant
l0 such that L(t) + 2l0IN ≥ IN for all t ∈ R and W (t, u) + l0|u|2 ≥ 0 for all
(t, u) ∈ R×RN . Let L(t) = L(t) + 2l0IN and W (t, u) = W (t, u) + l0|u|2. Consider
the following Hamiltonian system

ü− L(t)u+Wu(t, u) = 0, ∀t ∈ R, (2.1)

then (2.1) is equivalent to (1.1). Moreover, it is easy to check that the hypotheses
(A4), (A5) and (A6)–(A9) still hold for L and W provided that those hold for L
and W . Hence, in what follows, we always assume without loss of generality that
L(t) ≥ IN for all t ∈ R and W (t, u) ≥ 0 for all (t, u) ∈ R× RN .

In view of Remark 2.1, we consider the space E := {u ∈ H1(R,RN )|
∫

R L(t)u ·
udt <∞} equipped with the following inner product

(u, v) =
∫

R
(u̇ · v̇ + L(t)u · v)dt.

Then E is a Hilbert space and we denote by ‖·‖ the associated norm. Moreover, we
write E∗ for the topological dual of E, and 〈·, ·〉 : E∗×E → R for the dual pairing.
Evidently, E is continuously embedded into H1(R,RN ) and hence continuously
embedded into Lp ≡ Lp(R,RN ) for 2 ≤ p ≤ ∞, i.e., there exists τp > 0 such that

‖u‖p ≤ τp‖u‖, ∀u ∈ E, (2.2)

where ‖ · ‖p denotes the usual norm in Lp for all 2 ≤ p ≤ ∞. In fact, we further
have the following lemma.
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Lemma 2.2. If L satisfies (A4) and (A5), then E is compactly embedded into Lp

for 2 ≤ p <∞.

Proof. Let {un} ⊂ E be a bounded sequence such that un ⇀ u in E. We will show
that un → u in Lp for 2 ≤ p < ∞. By the interpolation inequality we only need
to consider the case p = 2. Suppose, without loss of generality, that un ⇀ 0 in E.
The Sobolev embedding theorem implies un → 0 in L2

loc(R,RN ). Thus it suffices
to show that, for any ε > 0, there is r > 0 such that

∫
R\(−r,r) |un|

2dt < ε. For
any s ∈ R, we denote by Br0(s) the interval in R centered at s with radius r0, i.e.,
Br0(s) := (s− r0, s+ r0), where r0 is the constant given in (A5). Let {si} ⊂ R be
a sequence of points such that R = ∪∞i=1Br0(si) and each t ∈ R is contained in at
most two such intervals. For any r > 0 and M > 0, let

C(r,M) = {t ∈ R \ (−r, r) : L(t) ≥MIN},
D(r,M) = {t ∈ R \ (−r, r) : L(t) 6≥MIN}.

Then ∫
C(r,M)

|un|2dt ≤
1
M

∫
C(r,M)

L(t)un · undt ≤
1
M

∫
R
L(t)un · undt,

and this can be made arbitrarily small by choosing M large. Also for a fixed M > 0,∫
D(r,M)

|un|2dt ≤
∞∑
i=1

∫
D(r,M)∩Br0 (si)

|un|2dt

≤
∞∑
i=1

(∫
D(r,M)∩Br0 (si)

|un|4dt
)1/2

(meas(D(r,M) ∩ Br0(si)))1/2

≤ εr
∞∑
i=1

(∫
Br0 (si)

|un|4dt
)1/2

≤ cεr
∞∑
i=1

∫
Br0 (si)

(|∇un|2 + |un|2)dt

≤ 2cεr
∫

R
(|∇un|2 + |un|2)dt

for some constant c > 0, where εr = supi∈N(meas(D(r,M)∩Br0(si)))1/2. By (A5),
εr → 0 as r →∞. Noting that {un} is bounded in E, we can make this term small
by choosing r large. This completes the proof. �

For later use, we give the following two technical lemmas.

Lemma 2.3. Let (A4), (A5) and (A6) be satisfied. If un ⇀ u in E, then∫
R
|Wu(t, un)−Wu(t, u)|2dt→ 0 as n→∞.

Proof. Arguing indirectly, we assume by Lemma 2.2 that there exists a subsequence
{unk

}k∈N such that

unk
→ u in L2 and L2ν−2, and unk

→ u a.e. in R as k →∞ ; (2.3)

and ∫
R
|Wu(t, unk

)−Wu(t, u)|2dt ≥ ε0, ∀k ∈ N (2.4)
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for some ε0 > 0. Passing to a subsequence if necessary, we may assume by (2.3) that∑∞
k=1 ‖unk

− u‖2 <∞ and
∑∞
k=1 ‖unk

− u‖2ν−2 <∞. Let w(t) =
∑∞
k=1 |unk

(t)−
u(t)| for all t ∈ R, then w ∈ L2 ∩L2ν−2. By (A6), for all k ∈ N and t ∈ R, we have

|Wu(t, unk
)−Wu(t, u)|2 ≤ c21(|unk

|+ |u|+ |unk
|ν−1 + |u|ν−1)2

≤ 4c21(|unk
|2 + |u|2 + |unk

|2ν−2 + |u|2ν−2)

≤ 12c21(|unk
− u|2 + |u|2) + 4νc21(|unk

− u|2ν−2 + |u|2ν−2)

≤ 12c21(|w|2 + |u|2) + 4νc21(|w|2ν−2 + |u|2ν−2).

Combining this and (2.3), by Lebesgue’s Dominated Convergence Theorem, we
have

lim
k→∞

∫
R
|Wu(t, unk

)−Wu(t, u)|2dt = 0,

which contradicts (2.4). The proof is complete. �

Lemma 2.4. For any finite dimensional subspace F ⊂ E there exists a constant
ε > 0 such that

meas({t ∈ R : |u(t)| ≥ ε‖u‖}) ≥ ε, ∀u ∈ F \ {0}.

Proof. We argue indirectly. Assume for any n ∈ N, there exists un ∈ F \ {0} such
that

meas({t ∈ R : |un(t)| ≥ ‖un‖/n}) < 1/n.
Let vn = un/‖un‖ ∈ F for each n ∈ N, then we have ‖vn‖ = 1 and

meas({t ∈ R : |vn(t)| ≥ 1/n}) < 1/n. (2.5)

Passing to a subsequence if necessary, we may assume vn → v0 in E for some v0 ∈ F
since F is of finite dimension. Combining this and (2.2), we have∫

R
|vn − v0|2dt→ 0 as n→∞. (2.6)

Noting that ‖v0‖ = 1, there must exists a constant δ0 > 0 such that

meas({t ∈ R : |v0(t)| ≥ δ0}) ≥ δ0. (2.7)

Otherwise, for each fixed n ∈ N, we have

meas
(
{t ∈ R : |v0(t)| ≥ 1

n
}
)
≤ meas

(
{t ∈ R : |v0(t)| ≥ 1

m
}
)
≤ 1
m
, ∀m ≥ n.

Lettin m→∞, we obtain meas({t ∈ R : |v0(t)| ≥ 1
n}) = 0. Consequently,

0 ≤ meas({t ∈ R : |v0(t)| 6= 0})

= meas
(
∪∞n=1 {t ∈ R : |v0(t)| ≥ 1

n
}
)

≤
∞∑
n=1

meas
(
{t ∈ R : |v0(t)| ≥ 1

n
}
)

= 0,

which yields v0 = 0, a contradiction to ‖v0‖ = 1. Thus (2.7) holds. Set I0 = {t ∈
R : |v0(t)| ≥ δ0}, where δ0 is the constant given in (2.7). Also, for any n ∈ N, let

In = {t ∈ R : |vn(t)| < 1/n} and Icn = RN \ In = {t ∈ R : |vn(t)| ≥ 1/n}.
Then for n large enough, by (2.5) and (2.7), we have

meas(In ∩ I0) ≥ meas(I0)−meas(Icn) ≥ δ0 − 1/n ≥ δ0/2.
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Consequently, for n large enough, there holds∫
R
|vn − v0|2dt ≥

∫
In∩I0

|vn − v0|2dt

≥
∫
In∩I0

(|v0| − |vn|)2dt

≥ (δ0 − 1/n)2 meas(In ∩ I0)

≥ δ3
0/8 > 0.

This is in contradiction to (2.6). The proof is complete. �

Now we can define the variational functional Φ associated with (1.1) by

Φ(u) =
1
2

∫
R

(|u̇|2 + L(t)u · u)dt−
∫

R
W (t, u)dt

=
1
2
‖u‖2 −

∫
R
W (t, u)dt.

(2.8)

By (A6), we have

|W (t, u)| ≤ c1(|u|2 + |u|ν), ∀(t, u) ∈ R× RN . (2.9)

This and (2.2) imply that Φ is well defined on E. Furthermore, a standard argument
(see, e.g., [23]) shows that Φ ∈ C1(E,R) with the Frechét derivative given by

〈Φ′(u), v〉 = (u, v)−
∫

R
Wu(t, u) · vdt, ∀u, v ∈ E, (2.10)

and nontrivial critical points of Φ are homoclinic solutions of (1.1).
To study the critical points of the variational functional Φ associated with (1.1),

we need the following variant fountain theorem established in [38].
Let E be a Banach space with the norm ‖ ·‖ and E = ⊕j∈NXj with dimXj <∞

for any j ∈ N. Set Yk = ⊕kj=1Xj and Zk = ⊕∞j=kXj . Consider the following
C1-functional Φλ : E → R defined by

Φλ(u) := A(u)− λB(u), λ ∈ [1, 2].

Theorem 2.5 ([38, Theorem 2.1]). Assume that the above functional Φλ satisfies

(A10) Φλ maps bounded sets to bounded sets for λ ∈ [1, 2], and Φλ(−u) = Φλ(u)
for all (λ, u) ∈ [1, 2]× E,

(A11) B(u) ≥ 0 for all u ∈ E, and A(u)→∞ or B(u)→∞ as ‖u‖ → ∞,
(A12) There exist ρk > σk > 0 such that

αk(λ) := inf
u∈Zk, ‖u‖=σk

Φλ(u) > βk(λ) := max
u∈Yk, ‖u‖=ρk

Φλ(u), ∀λ ∈ [1, 2].

Then
αk(λ) ≤ ζk(λ) := inf

γ∈Γk

max
u∈Bk

Φλ(γ(u)), ∀λ ∈ [1, 2],

where Bk = {u ∈ Yk : ‖u‖ ≤ ρk} and Γk := {γ ∈ C(Bk, E) : γ is odd, γ|∂Bk
= id}.

Moreover, for almost every λ ∈ [1, 2], there exists a sequence {ukm(λ)}∞m=1 such that

sup
m
‖ukm(λ)‖ <∞, Φ′λ(ukm(λ))→ 0, Φλ(ukm(λ))→ ζk(λ) as m→∞.
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Choose an orthonormal basis {ej : j ∈ N} of E and let Xj = span{ej} for all
j ∈ N. Define the functionals A, B and Φλ on our working space E by

A(u) =
1
2
‖u‖2, B(u) = Ψ(u) =

∫
R
W (t, u)dt, (2.11)

Φλ(u) = A(u)− λB(u) =
1
2
‖u‖2 − λ

∫
R
W (t, u)dt (2.12)

for all u ∈ E and λ ∈ [1, 2]. Note that Φ1 = Φ, where Φ is the functional defined
in (2.8). Then we know that Φλ ∈ C1(E,R) for all λ ∈ [1, 2] and

〈Φ′λ(u), v〉 = (u, v)− λ
∫

R
Wu(t, u) · vdt, ∀u, v ∈ E. (2.13)

Before applying Theorem 2.5 to prove our main result, we need to establish the
following two lemmas.

Lemma 2.6. Assume (A4), (A5) and (A6) hold. Then there exists a positive
integer k1 and a sequence σk →∞ as k →∞ such that

αk(λ) := inf
u∈Zk, ‖u‖=σk

Φλ(u) > 0, ∀k ≥ k1,

where Zk = ⊕∞j=kXj = span{ek, . . .} for all k ∈ N.

Proof. Note first that (2.9) and (2.12) imply

Φλ(u) ≥ 1
2
‖u‖2 − 2

∫
R
W (t, u)dt

≥ 1
2
‖u‖2 − 2c1(‖u‖22 + ‖u‖νν), ∀(λ, u) ∈ [1, 2]× E.

(2.14)

For each k ∈ N, let

`2(k) = sup
u∈Zk, ‖u‖=1

‖u‖2 and `ν(k) = sup
u∈Zk, ‖u‖=1

‖u‖ν . (2.15)

Since E is compactly embedded into both L2 and Lν by Lemma 2.2, then there
hold (cf. [28])

`2(k)→ 0, `ν(k)→ 0 as k →∞. (2.16)
Combining (2.14) and (2.15), we have

Φλ(u) ≥ 1
2
‖u‖2 − 2c1`22(k)‖u‖2 − 2c1`νν(k)‖u‖ν , ∀(λ, u) ∈ [1, 2]× Zk. (2.17)

In view of (2.16), there exists a positive integer k1 such that

2c1`22(k) ≤ 1/4, ∀k ≥ k1. (2.18)

For each k ≥ k1, choose
σk := (16c1`νν(k))1/(2−ν). (2.19)

Then it follows from (2.16) that

σk → +∞ as k →∞ (2.20)

since ν > 2. Besides, by (2.17)–(2.19), direct computation shows

αk(λ) := inf
u∈Zk, ‖u‖=σk

Φλ(u) ≥ σ2
k/8 > 0, ∀k ≥ k1.

The proof is complete. �
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Lemma 2.7. Suppose that (A4), (A5), (A6) and (A7) are satisfied. Then for
the positive integer k1 and the sequence {σk} obtained in Lemma 2.6, there exists
ρk > σk for each k ≥ k1 such that

βk(λ) := max
u∈Yk, ‖u‖=ρk

Φλ(u) < 0,

where Yk = ⊕kj=1Xj = span{e1, . . . , ek} for all k ∈ N.

Proof. Note that Yk is finite dimensional for each k ∈ N. Then by Lemma 2.4, for
each k ∈ N, there exists a constant εk > 0 such that

meas(Iku) ≥ εk, ∀u ∈ Yk \ {0}, (2.21)

where Iku := {t ∈ R : |u(t)| ≥ εk‖u‖} for all k ∈ N and u ∈ Yk \ {0}. By (A7), for
each k ∈ N, there exists a constant bk > 0 such that

W (t, u) ≥ u2/ε3k, ∀t ∈ R and |u| ≥ bk. (2.22)

Combining (2.12), (2.21) and (2.22), for any k ∈ N and λ ∈ [1, 2], we have

Φλ(u) ≤ 1
2
‖u‖2 −

∫
R
W (t, u)dt (2.23)

≤ 1
2
‖u‖2 −

∫
Ik

u

(|u|2/ε3k)dt (2.24)

≤ 1
2
‖u‖2 − ε2k‖u‖2 meas(Λku)/ε3k (2.25)

≤ 1
2
‖u‖2 − ‖u‖2 = −1

2
‖u‖2 (2.26)

for all u ∈ Yk with ‖u‖ ≥ bk/εk. Here we use the fact that W (t, u) ≥ 0 for all
(t, u) ∈ R × RN . For each k ≥ k1, if we choose ρk > max{σk, bk/εk}, then (2.26)
implies

βk(λ) := max
u∈Yk, ‖u‖=ρk

Φλ(u) ≤ −ρ2
k/2 < 0.

The proof is complete. �

Now we are in a position to give the proof of our main result.

Proof of Theorem 1.1. Firstly, from (2.2), (2.9) and (2.12) it follows that Φλ maps
bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Evidently, (A9) implies that
Φλ(−u) = Φλ(u) for all (λ, u) ∈ [1, 2] × E. Thus (A10) holds. Next, using again
the fact that W (t, u) ≥ 0 for all (t, u) ∈ R × RN , we know that (A11) holds by
the definition of functional A in (2.11). Finally, Lemma 2.6 and Lemma 2.7 show
that (A12) holds for all k ≥ k1, where k1 is given in Lemma 2.6. Therefore, for
each k ≥ k1, by Theorem 2.5, for almost every λ ∈ [1, 2], there exists a sequence
{ukm(λ)}∞m=1 ⊂ E such that

sup
m
‖ukm(λ)‖ <∞, Φ′λ(ukm(λ))→ 0 and Φλ(ukm(λ))→ ζk(λ) as m→∞,

(2.27)
where

ζk(λ) := inf
γ∈Γk

max
u∈Bk

Φλ(γ(u)), ∀λ ∈ [1, 2]

with Bk = {u ∈ Yk : ‖u‖ ≤ ρk} and Γk := {γ ∈ C(Bk, E) : γ is odd, γ|∂Bk
= id}.

From the proof of Lemma 2.6, we infer that

ζk(λ) ∈
[
ᾱk, ζ̄k

]
, ∀k ≥ k1 and λ ∈ [1, 2], (2.28)
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where ζ̄k := maxu∈Bk
Φ1(u) and ᾱk := σ2

k/4→∞ as k →∞ by (2.20). In view of
(2.27), for each k ≥ k1, we can choose a sequence λn → 1 (depending on k) and get
the corresponding sequences satisfying

sup
m
‖ukm(λn)‖ <∞ and Φ′λn

(ukm(λn))→ 0 as m→∞. (2.29)

Claim 1. For each λn given above, the sequence {ukm(λn)}∞m=1 has a strong con-
vergent subsequence.

For notational simplicity, we will set um = ukm(λn) for m ∈ N throughout the
proof of Claim 1. By (2.29), without loss of generality, we may assume that

um ⇀ u as m→∞ (2.30)

for some u ∈ E. Invoking (2.13), we have

‖um − u‖2 = 〈Φ′λn
(um), um − u〉 − 〈Φ′λn

(u), um − u〉

+ λn

∫
R

(Wu(t, un(t))−Wu(t, u)) · (um − u)dt.
(2.31)

By (2.29), we have

〈Φ′λn
(um), um − u〉 → 0 as m→∞. (2.32)

Moreover, (2.30) yields

〈Φ′λn
(u), um − u〉 → 0 as m→∞. (2.33)

By (2.2), Lemma 2.3 and the Hölder inequality, we have∣∣ ∫
R

(Wu(t, un(t))−Wu(t, u)) · (um − u)dt
∣∣

≤
(∫

R
|Wu(t, un)−Wu(t, u)|2dt

)1/2

‖um − u‖2

≤ c2
(∫

R
|Wu(t, un)−Wu(t, u)|2dt

)1/2

‖um − u‖ → 0 as m→∞,

(2.34)

where c2 is the constant given in (2.2). Here we use the fact that {um} is bounded
in E. Combining (2.31) and (2.32)–(2.34), we obtain um → u in E. Thus Claim 1
holds.

By Claim 1, without loss of generality, we may assume that

lim
m→∞

ukm(λn) = ukn ∈ E, ∀n ∈ N and k ≥ k1. (2.35)

This, (2.27) and (2.28) imply

Φ′λn
(ukn) = 0, Φλn

(ukn) ∈ [ᾱk, ζ̄k], ∀n ∈ N and k ≥ k1. (2.36)

Claim 2. For each k ≥ k1, the sequence {ukn}∞n=1 in (2.35) is bounded.
As in the proof of Claim 1, for notational simplicity, we set un = ukn for all n ∈ N.

We use a indirect argument. If Claim 2 is not true, without loss of generality, we
may assume that

‖un‖ → ∞ and wn :=
un
‖un‖

⇀ w ∈ E as n→∞. (2.37)

By (2.37) and Lemma 2.2, passing to a subsequence if necessary, we have

wn → w in Lp for 2 ≤ p <∞, (2.38)

wn(t)→ w(t) a.e. t ∈ R. (2.39)
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When w 6= 0 occurs, Θ := {t ∈ R : w(t) 6= 0} has a positive Lebesgue measure. By
(2.37), it holds that

un(t)→∞, ∀t ∈ Θ. (2.40)
Combining (2.12), (2.39), (2.40) and (A7), by Fatou’s Lemma, we have

1
2
− Φλn(un)
‖un‖2

= λn

∫
R

W (t, un)
‖un‖2

dt

≥
∫

Θ

|wn|2
W (t, un)
|un|2

dt→ +∞ as n→∞,

a contradiction to (2.36) and (2.37).
When w = 0 occurs, as in [14], we choose a sequence {sn} ⊂ [0, 1] such that

Φλn(snun) = max
s∈[0,1]

Φλn(sun). (2.41)

For M > 0, let w̃n :=
√

4Mwn =
√

4M
‖un‖ un, then (2.38) yields

w̃n →
√

4Mw = 0 in Lp for 2 ≤ p <∞. (2.42)

This (2.9) and (2.38) imply∣∣∣ ∫
R
W (t, w̃n)dt

∣∣∣ ≤ c1 ∫
R

(|w̃n|2 + |w̃n|ν)dt→ 0 as n→∞. (2.43)

Note that 0 <
√

4M
‖un‖ < 1 holds by (2.37) for n large enough. Combining this with

(2.12) and (2.41), we obtain

Φλn(snun) ≥ Φλn(w̃n)

=
1
2
‖w̃n‖2 − λn

∫
R
W (t, w̃n)dt

= 2M − λn
∫

R
W (t, w̃n)dt ≥M.

for n large enough. It follows that limn→∞Φλn
(snun) = +∞. Observing that

Φλn
(0) = 0 and Φλn

(un) ∈ [ᾱk, ζ̄k in (2.36), we know that sn ∈ (0, 1) in (2.41) for
n large enough. Hence,

0 = sn
d
ds

∣∣∣
s=sn

Φλn(sun) = 〈Φ′λn
(snun), snun〉. (2.44)

Combining (2.12), (2.13), (2.36), (2.44) and (A8), we have

Φλn
(un) = Φλn

(un)− 1
2
〈Φ′λn

(un), un〉

=
λn
2

∫
R
W̃ (t, un)dt

≥ λn
2ϑ

∫
R
W̃ (t, snun)dt

=
1
ϑ

Φλn
(snun)− 1

2ϑ
〈Φ′λn

(snun), snun〉

=
1
ϑ

Φλn
(snun)→ +∞ as n→∞.

where ϑ is the constant in (A8). This also provides a contradiction to (2.36). Thus
Claim 2 is true.
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In view of Claim 2 and (2.36), for each k ≥ k1, using the similar arguments in
the proof of Claim 1, we can also show that the sequence {ukn}∞n=1 has a strong
convergent subsequence with the limit uk being just a critical point of Φ = Φ1.
Evidently, Φ(uk) ∈

[
ᾱk, ζ̄k

]
for all k ≥ k1. Since ᾱk → +∞ as k → ∞ in (2.28),

we obtain infinitely many nontrivial critical points of Φ. Therefore, (1.1) possesses
infinitely many nontrivial solutions. The proof of Theorem 1.1 is complete. �
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[29] S. Wu, J. Liu; Homoclinic orbits for second order Hamiltonian system with quadratic growth,
Appl. Math. J. Chinese Univ. Ser. B 10 (1995) 399–410.

[30] J. Yang, F. Zhang; Infinitely many homoclinic orbits for the second order Hamiltonian sys-

tems with super-quadratic potentials, Nonlinear Anal. Real World Appl. 10 (2009), 1417–1423.
[31] M. Yang, Z. Han; Infinitely many homoclinic solutions for second-order Hamiltonian systems

with odd nonlinearities, Nonlinear Anal. 74 (2011), 2635–2646.

[32] Q. Zhang, C. Liu; Infinitely many homoclinic solutions for second order Hamiltonian systems,
Nonlinear Anal. 72 (2010), 894-903.

[33] Q. Zhang, X. Tang; Existence of homoclinic solutions for a class of asymptotically quadratic

non-autonomous Hamiltonian systems, Math. Nachr. 285 (2012), 778–789.
[34] Z. Zhang, R. Yuan; Homoclinic solutions for a class of non-autonomous subquadratic second-

order Hamiltonian systems, Nonlinear Anal. 71 (2009), 4125–4130.

[35] Z. Zhang, R. Yuan; Infinitely-many solutions for subquadratic fractional Hamiltonian systems
with potential changing sign, Adv. Nonlinear Anal. 4 (2015), 59–72.

[36] Z. Zhang, T. Xiang, R. Yuan; Homoclinic solutions for subquadratic second-order Hamilton-
ian systems without coercive conditions, Taiwanese J. Math. 18 (2014), 1089–1105.

[37] W. Zou, S. Li; Infinitely many homoclinic orbits for the second-order Hamiltonian systems,

Appl. Math. Lett. 16 (2003), 1283–1287.
[38] W. Zou; Variant fountain theorems and their applications, Manuscripta Math. 104 (2001)

343–358.

Wei Jiang

Department of Mathematics, Jiangxi Normal University, Nanchang 330022, China
E-mail address: jiangweijw1991@163.com

Qingye Zhang (corresponding author)
Department of Mathematics, Jiangxi Normal University, Nanchang 330022, China

E-mail address: qingyezhang@gmail.com


	1. Introduction and statement of main results
	2. Variational setting and proof of the main result
	Acknowledgments

	References

