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NULL CONTROLLABILITY OF A CASCADE SYSTEM OF
SCHRÖDINGER EQUATIONS

MARCOS LÓPEZ-GARCÍA, ALBERTO MERCADO, LUZ DE TERESA

Abstract. This article presents a control problem for a cascade system of two
linear N -dimensional Schrödinger equations. We address the problem of null

controllability by means of a control supported in a region not satisfying the

classical geometrical control condition. The proof is based on the application
of a Carleman estimate with degenerate weights to each one of the equations

and a careful analysis of the system in order to prove null controllability with
only one control force.

1. Introduction

The controllability of coupled systems of PDE’s has been intensely studied in
recent years. In particular, very interesting problems arise when there are less
controls than equations.

Null controllability results for systems of parabolic equations are reviewed in the
survey [3]. About the systems of hyperbolic equations, we can mention [1, 2, 8],
where the controllability of two coupled wave equations is proved with only one
control, under the hypothesis of the geometric control condition. In [1, 2], the
authors show that as a consequence, the same result is valid for a system of two
Schrödinger equations. A boundary controllability result is proved in [13] for a
cascade system of Schrödinger equations with periodic boundary conditions, also
as a consequence of the controllability result for a cascade system of two wave
equations. In this article we are interested in the null controllability of a linear
system formed by two Schrödinger equations, controlling only one of them.

The controllability of (scalar) Schrödinger equations has been intensively studied
in recent years. In [11] a general result about this problem was obtained: the author
proved that if the wave equation is controllable at some time T0 > 0 from controls
supported in a subset of the domain, then the Schrödinger equation is controllable
with controls supported in the given region, for any T > 0.

For the wave equation, boundary controllability at time T > 0 is equivalent (see
[4]) to the fact that the zone of control meets every ray of the geometric optic in
the domain in a smaller time than T . This is called the geometric control condition.
In the case of the Schrödinger equation, this is no longer true: for some particular
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domains the equation is controllable by mean of controls acting in some open subset
of the boundary that do not satisfies the geometric control condition ([6, 14, 15, 16]).
In [18] a comprehensive review of related results is presented. It remains an open
problem to find general controllability results for the Schrödinger equation with
weaker geometric conditions.

A very important tool to prove controllability of evolution PDE’s is given by
Carleman estimates. To our knowledge the first paper to derive a global Carleman
estimate for Schrödinger operators is [17], where was proved the exact controlla-
bility of a plate equation. Carleman estimates are also used to study a related
problem: the stability of the inverse problem of retrieving a given coefficient in an
equation, from observations of a trace of the solution. In [5] a Carleman estimate
for Schrödinger operators is proved, with observations on a subset of the boundary
satisfying the geometric control condition. This implies the stability of the stated
inverse problem. Very interesting results are proved in [10] for non conservative
Schrödinger equations in both cases: with observations on a set satisfying the geo-
metrical condition and not satisfying it. In [12], some Carleman inequalities with
an observation set not satisfying the geometric condition are proved, and then the
stability of an inverse problem for a space-dependent coefficient is obtained. The
results of [12] also imply the controllability of a scalar Schrödinger equation by
means of an H−1 internal control acting in an open set not satisfying the geometric
control condition. See Remark 3.3.

The main objective of this article is to use the Carleman estimates from [12] in
order to prove the controllability of a coupled system of two Schrödinger equations
from an open subset of the domain which does not satisfy the geometric control
condition. We are able to prove the result with a control acting in only one of the
equations. As far as we know it is the first distributed null controllability result for
coupled Schrödinger equations that is not a consequence of a similar result for the
wave equation.

Let Ω ⊂ RN be a bounded, open set with C2 boundary, N ≥ 1. Let ω and
O be two nonempty open subsets of Ω. For T > 0 we set Q = Ω × (0, T ), and
Σ = ∂Ω×(0, T ). We consider the following cascade system of Schrödinger equations:

ipt + ∆p = hω in Q,

iut + ∆u = pρO in Q,

p = 0, u = 0 on Σ,

p(x, 0) = p0(x), u(x, 0) = u0(x) in Ω,

(1.1)

where p0, u0 are given, hω is a control with support in ω×(0, T ) and ρO is a regular
approximation of the characteristic function 1O of the set O.

In this work we analyze the null controllability of the cascade system (1.1) with
one interior control hω, i.e. we give conditions on T , ω, and O such that for every
(p0, u0) in L2(Ω)2 there exists a control hω with support in ω× (0, T ) such that the
corresponding solution of (1.1) satisfies

p(x, T ) = 0, u(x, T ) = 0 in Ω. (1.2)

Throughout this article, we denote X = D(−∆) = H2 ∩ H1
0 (Ω) endowed with

the usual norm

‖v‖X =
(∫

Ω

|∆v|2dx
)1/2

for all v ∈ X.
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Here and throughout the paper n(x) denotes the unitary exterior normal vector
at x ∈ ∂Ω, e1 means the unitary vector (1, 0, . . . , 0) ∈ RN , and x1 is the first
component of x ∈ RN .

To state the hypothesis on the domain and the observability region, let [a, d] be
the x1-projection of Ω. We shall assume that there exists an open set ω̂ ⊂ ω ∩ O
with dist(∂ω̂ ∩ Ω, ∂ω ∩ Ω) ≥ α > 0 and real numbers b, c with a ≤ b < c ≤ d such
that

([b, c]× RN−1) ∩ Ω ⊂ ω̂, (1.3)

n(x) · e1 = 0 for all x ∈ ∂ω̂ ∩ ∂Ω. (1.4)

Also we assume that there exists a function ψ ∈ C4([a, d]) satisfying

ψ′ 6= 0 in [a, b] ∪ [c, d], ψ′(x1)n(x) · e1 ≤ 0 for all x ∈ ∂Ω,

|ψ′|2 + ψ′′ ≥ 0 in [a, b] ∪ [c, d], ψ ≥ 2
3
‖ψ‖L∞(a,d) in (a, d).

(1.5)

Our main result reads as follows:

Theorem 1.1. Suppose that there exists an open set ω̂ ⊂ ω ∩ O satisfying (1.3)-
(1.4) and a function ψ ∈ C4([a, d]) satisfying the hypotheses (1.5). Then for each
(p0, u0) ∈ L2(Ω)2 there exists a control hω ∈ L2(0, T ;X ′) supported in ω × (0, T )
such that the solution (p, u) of system (1.1) satisfies (p(T ), u(T )) = (0, 0).

Remark 1.2. Hypotheses (1.3)-(1.5) are satisfied if Ω is an “stadium” (see Figure
1), and ω̂ is a “strip” in RN , that is ω̂ = ((b− ε, c+ ε)×RN−1)∩Ω for some ε > 0
(ω̂ is the shaded region in Figure 1), and ψ is given by

ψ(x) =


x− a1, x ∈ [a, b],
d1 − x, x ∈ [c, d],
ρ(x), x ∈ [b, c],

where a1 < a and d < d1, and ρ is a suitable function. Note that (1.5) are fulfilled
if a1 and d1 are chosen such that a− a1 and d1 − d are large enough.

Figure 1. Observation region in a stadium Ω ⊂ R2.
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Remark 1.3. For any h ∈ L2(0, T ;X ′) and any (p0, u0) ∈ L2(Ω)2 ⊂ (X ′)2, the
cascade system (1.1) has exactly one solution (p, u) (in the sense specified in Section
2), with (p, u) ∈ C([0, T ];X ′)2, provided that ρO ∈ C2(Ω).

The proof of Theorem 1.1 is based on the existence of a constant C > 0 such
that the observability inequality

‖z(0)‖2L2 + ‖q(0)‖2L2 ≤ C
∫ T

0

∫
Ω

|∆(ρωq)|2 dx dt (1.6)

holds for any solution of the adjoint system
izt + ∆z = 0 in Q,

iqt + ∆q = zρO in Q,

z = 0, q = 0 on Σ,

z(x, T ) = z0(x), q(x, T ) = q0(x) in Ω,

(1.7)

associated to (z0, q0) ∈ X2. To have the appropriate regularity and support of the
control, in (1.6) we consider a function ρω ∈ C2(Ω), such that ρω(x) = 0 for all
x ∈ Ω\ω and ρω(x) = 1 for all x in a large part of ω; in Section 3 we give the
precise details.

The rest of this article is organized as follows: in Section 2 we state the functional
framework where we will state the controllability problems. Section 3 is devoted
to prove the observability inequality (1.6). Finally, Theorem 1.1 will be proved in
Section 4.

2. Well posedness

In this section we recall some existence and regularity results for the Schrödinger
equation. These results can be found in [7]. From now on, C stands for a generic
positive constant depending only on Ω, T , ω and O, which can take different values
from line to line.

Let k ∈ L2(0, T ;X) and v0 ∈ X. Then the solution v of the linear problem
ivt + ∆v = k in Q,

v = 0 on Σ,

v(x, 0) = v0(x) in Ω,
(2.1)

satisfies v ∈ C([0, T ];X). Moreover, there exists C > 0 such that

‖v‖L∞(0,T ;X) ≤ C(‖v0‖X + ‖k‖L2(0,T ;X)).

When k ∈ C([0, T ], L2(Ω)) the corresponding solution satisfies v ∈ C([0, T ], X)∩
C1([0, T ], L2(Ω)).

We need to solve (2.1) with k ∈ L2(0, T ;X ′) and v0 ∈ L2(Ω). Under this
assumption on k and considering p0 ∈ L2(Ω), the solution by transposition of

ipt + ∆p = k in Q,

p = 0 on Σ,

p(x, 0) = p0(x) in Ω,
(2.2)

is, by definition, the unique function p ∈ L2(0, T ;X ′) satisfying∫ T

0

〈p(t), g(t)〉dt =
∫ T

0

〈k(t), ϕg(·, t)〉dt+ i(p0, ϕg(·, 0))L2(Ω) (2.3)
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for all g ∈ L2(0, T ;X), where 〈·, ·〉 represents the duality between X and X ′, and
for each g ∈ L2(0, T ;X) we have denoted by ϕg the solution to the corresponding
adjoint system

iϕt + ∆ϕ = g in Q,

ϕ = 0 on Σ,

ϕ(x, T ) = 0 in Ω.
(2.4)

Note that the solution ϕg of (2.4) satisfies

ϕg ∈ L2(0, T ;X) ∩ C([0, T ];L2(Ω)),

‖ϕg‖L2(0,T ;X) + ‖ϕg(0)‖L2(Ω) ≤ C‖g‖L2(0,T ;X).

Since X is a reflexive space, we have L2(0, T ;X)′ = L2(0, T ;X ′). Hence (2.3) makes
sense, and we conclude that there exists a unique p ∈ L2(0, T ;X ′) solution of (2.2),
which satisfies

‖p‖L2(0,T ;X′) ≤ C(‖k‖L2(0,T ;X′) + ‖p0‖L2(Ω)).

By energy estimates and density arguments we obtain that in fact p ∈ C([0, T ];X ′).

3. Observability inequality

In this section the observability inequality (1.6) for the adjoint system (1.7)
will be proved. We use a Carleman estimate proved in [12]. To state the result,
we introduce the following notation. For the function ψ given by (1.5), we set
Cψ = 2‖ψ‖L∞(Ω) and we define the auxiliary functions

θ(x, t) :=
eλψ(x1)

t(T − t)
, ϕ(x, t) :=

eλCψ − eλψ(x1)

t(T − t)
, for all (x, t) ∈ Ω× (0, T ),

for λ > 0.
The following Carleman inequality for the Schrödinger equation is a particular

case of [12, Corollary 3.3].

Proposition 3.1. Let us define ω̃ = ((b, c)×RN−1)∩Ω (see (1.3)), take ψ ∈ C4(R)
be a function satisfying (1.5). Then there exists a constant C > 0 such that for
f ∈ C2,1(Ω× [0, T ]), with f = 0 on Σ, it holds∫

Q

[θ| ∂f
∂x1
|2 + θ3|f |2]e−2sϕ dx dt

≤ C
(∫

Q

|ft + i∆f |2e−2sϕ dx dt+
∫ T

0

∫
eω[θ| ∂f

∂x1
|2 + θ3|f |2]e−2sϕ dx dt

)
.

(3.1)

Remark 3.2. The result in [12] is more general than Proposition 3.1, because it
does not ask the weight function to depend only in one variable. Here we use such
a function to estimate one of the observations of the two equations of the system,
and to obtain the controllability with only one control (see Proposition 3.4).

Remark 3.3. It is not difficult to see that Proposition 3.1 implies the observability
inequality

‖q(0)‖L2(Ω) ≤ C
∫ T

0

∫
eω(|q|2 + |∇q|2) dx dt (3.2)
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for all q0 ∈ H1
0 (Ω), where q solves the equation

iqt + ∆q = 0 in Ω,
q = 0 on Σ,

q(0) = q0 in Ω.
(3.3)

In fact, inequality (3.2) follows from (3.1) (with f = q solution to (3.3)) and the
fact that∫

Q

θ3|q|2e−2sϕ dx dt ≥ CT
∫ 3T/4

T/4

∫
Ω

|q|2 dx dt = TCT /2‖q(0)‖L2(Ω).

From (3.2) we have a controllability result: for every u0 ∈ L2(Ω) there exists a
control h ∈ L2(0, T ;H−1(Ω)) supported on ω̃ such that the solution of the equation

iut + ∆u = h in Ω,
u = 0 on Σ,

u(0) = u0 in Ω,

satisfies u(T ) = 0.

As we said, the proof of Theorem 1.1 depends on an observability inequality for
the adjoint system (1.7). The result is the following.

Proposition 3.4. Assume the hypothesis of Theorem 1.1. There exists a constant
C > 0 such that

‖z(0)‖2L2 + ‖q(0)‖2L2 ≤ C
∫ T

0

∫
Ω

|∆(ρωq)|2 dx dt (3.4)

for all z0, q0 ∈ H2∩H1
0 (Ω), where (z, q) is the solution of (1.7), and ρω is a cut-off

function supported in ω.

Remark 3.5. Every solution of (1.7) with z0, q0 ∈ H2 ∩H1
0 (Ω) satisfies

z, q ∈ C([0, T ];X) ∩ C1([0, T ];L2(Ω)).

Proof of Proposition 3.4. We will deal with regular solutions, getting the final result
by standard density arguments. Let ω̂ be the open satisfying hypothesis (1.3) and
(1.4). We claim that there exists a constant C such that, for every ε > 0, the
following estimates hold for solutions of the adjoint system (1.7).
Claim 1.∫ T

0

∫
eω θ

3|z|2e−2sϕ dx dt

≤ Cε−1

∫ T

0

∫
bω(|q|2 + |∇q|2) dx dt+ ε

∫
Q

[θ3|z|2 + θ| ∂z
∂x1
|2]e−2sϕ dx dt.

(3.5)

Claim 2.∫ T

0

∫
eω θ|

∂z

∂x1
|2e−2sϕ dx dt

≤ Cε−1

∫ T

0

∫
bω[|∇q|2 + |∇(

∂q

∂x1
)|2] dx dt+ ε

∫
Q

θ| ∂z
∂x1
|2e−2sϕ dx dt.

(3.6)
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Next we apply (3.1) to z̃(t) = iz(T − t) and q̃(t) = q(T − t) to obtain∫
Q

[θ3|z|2 + θ| ∂z
∂x1
|2]e−2sϕ dx dt ≤ C

∫ T

0

∫
eω[θ3|z|2 + θ| ∂z

∂x1
|2]e−2sϕ dx dt, (3.7)

and ∫
Q

θ3|q|2e−2sϕ dx dt

≤ C
(∫ T

0

∫
eω[θ3|q|2 + θ| ∂q

∂x1
|2]e−2sϕ dx dt+

∫ T

0

∫
Ω

ρ2
O|z|2e−2sϕ dx dt

)
.

(3.8)

Taking ε small enough in (3.5), (3.6) and combining with (3.7) we obtain∫
Q

[θ3|z|2 + θ| ∂z
∂x1
|2]e−2sϕ dx dt ≤ C

∫ T

0

∫
bω[|q|2 + |∇q|2 + |∇(

∂q

∂x1
)|2] dx dt, (3.9)

whereas a combination with (3.8) leads to∫
Q

θ3|q|2e−2sϕ dx dt ≤ C
∫ T

0

∫
bω[|q|2 + |∇q|2] dx dt+ C

∫
Q

|z|2 dx dt, (3.10)

for some constant C > 0.
We know that −i∆ generates a group of isometries (T (t))t∈R on L2(Ω) so z(t) =

T (t− T )z0, and (3.9) yields

‖z(0)‖2L2 =
2
T

∫ 3T/4

T/4

∫
Ω

|z|2 dx dt

≤ C
∫
Q

θ3|z|2e−2sϕ dx dt

≤ C
∫ T

0

∫
bω[|q|2 + |∇q|2 + |∇(

∂q

∂x1
)|2] dx dt.

(3.11)

Multiplying the second equation in (1.7) by iq and integrating with respect to space
we obtain

1
2
d

dt

∫
Ω

|q(x, T−t)|2dx−Re
(
i

∫
Ω

|∇q(x, T−t)|2dx
)

= Re
∫

Ω

iρO(x)(zq)(x, T−t)dx;

therefore

d

dt

∫
Ω

|q(x, T − t)|2dx ≤
∫

Ω

|q(x, T − t)|2dx+
∫

Ω

|z(x, T − t)|2dx

and the Gronwall inequality implies

‖q(0)‖2L2 ≤ eT−t
∫

Ω

|q(x, T − t)|2dx+
∫ T

t

eT−s
∫

Ω

|z(x, T − s)|2dxds

≤ eT
∫

Ω

|q(x, T − t)|2dx+ eT
∫
Q

|z|2 dx dt.
(3.12)
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Integrating (3.12) with respect to time on [T/4, 3T/4], and using (3.10) we obtain

‖q(0)‖2L2 ≤
2eT

T

∫ 3T/4

T/4

∫
Ω

|q|2 dx dt+ TeT ‖z(0)‖2L2

≤ C
∫
Q

θ3|q|2e−2sϕ dx dt+ TeT ‖z(0)‖2L2

≤ C
∫ T

0

∫
bω[|q|2 + |∇q|2] dx dt+ C‖z(0)‖2L2(Ω).

(3.13)

From (3.11) and (3.13) we obtain

‖(q(0), z(0))‖2(L2(Ω))2 ≤ C
∫ T

0

∫
bω[|∇q|2 + |q|2 + |∇(

∂q

∂x1
)|2] dx dt

≤ C
∫ T

0

∫
Ω

|∆(ρωq)|2 dx dt

where ρω is a cut-off function with support in ω and such that ρω = 1 in ω̂. This
completes the proof of Proposition 3.4, and it only remains to prove the two claims.

We consider a function σ = σ(x1) ∈ C∞c (R) such that σ ≡ 1 in [b, c] and

supp(σ) ⊂ P1(ω̂), (3.14)

where P1 is the canonical projection onto the x1-axis. Also we set

η(t) = t−1(T − t)−1.

Proof of Claim 1. Recall that z satisfies the homogeneous Schrödinger equation
and θme−2sϕ vanishes at t = 0, t = T for every m ≥ 0. Multiplying the second
equation in (1.7) by σθ3z̄e−2sϕ and integrating in Q we obtain∫ T

0

∫
O
σθ3|z|2e−2sϕ dx dt =

∫ T

0

∫
Ω

σθ3e−2sϕz(iqt + ∆q) dx dt. (3.15)

Integrating by parts the right hand side of (3.15), having in mind (3.14) and using
that σz̄ = σq = 0 on ∂ω̂, we obtain∫ T

0

∫
Ω

σθ3e−2sϕz(iqt + ∆q) dx dt

=
∫ T

0

∫
bω q∇(σθ3e−2sϕ) · ∇z − z∇(σθ3e−2sϕ) · ∇q dx dt

− i
∫ T

0

∫
bω σ(θ3e−2sϕ)tzq dx dt.

(3.16)

Straightforward computations show that

(θ3e−2sϕ)t = θ3e−2sϕ(3− 2sϕ)
2t− T
t(T − t)

,

∇(σθ3e−2sϕ) = θ3e−2sϕ(3λσψ′ + σ′ + 2sλσθψ′)e1.

Note that θ ≤ Cη on Ω. Therefore,

|(θ3e−2sϕ)t| ≤ Cθ3/2η7/2e−2sϕ,

|∇(σθ3e−2sϕ)| ≤ Cθ1/2η7/2e−2sϕ.
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Hence, taking into account that |e−2sϕηm| ≤ C for any m > 0, Claim 1 follows
from (3.15), (3.16) and the Cauchy-Schwarz inequality |ab| ≤ εa2 + 1

4εb
2, ε > 0.

Proof of Claim 2. The Green identity implies∫
bω ∆(σθe−2sϕ ∂q

∂x1
)
∂z

∂x1
dx

=
∫

bω σθe
−2sϕ ∂q

∂x1
∆(

∂z

∂x1
)dx+

∫
∂bω

∂z

∂x1

∂

∂ν
(σθe−2sϕ ∂q

∂x1
)dS

−
∫
∂bω σθe

−2sϕ ∂q

∂x1

∂

∂ν
(
∂z

∂x1
)dS,

and then, since ∂q
∂x1

= ∂z
∂x1

= 0 on ∂ω̂ ∩ ∂Ω we obtain that∫ T

0

∫
eω θ|

∂z

∂x1
|2e−2sϕ dx dt

≤
∫ T

0

∫
bω σθe

−2sϕ ∂z

∂x1

∂

∂x1
(iqt + ∆q) dx dt

= +i
∫ T

0

∫
bω[σ(θe−2sϕ)t + i∆(σθe−2sϕ)]

∂z

∂x1

∂q

∂x1
dx dt

− 2
∫ T

0

∫
bω[∇(σθe−2sϕ) · ∇(

∂q

∂x1
)]
∂z

∂x1
dx dt.

From these estimates and taking into account that

|(θe−2sϕ)t|+ |∆(σθe−2sϕ)| ≤ Cθ1/2η5/2e−2sϕ,

|∇(σθe−2sϕ)| ≤ Cθ1/2η3/2e−2sϕ,

we obtain the proof of Claim 2. �

4. Proof of the main result

In this section we will deduce Theorem 1.1 from Proposition 3.4.

Proof of Theorem 1.1. Note that the observability inequality for (z0, q0) ∈ X2 im-
plies that we can define a norm

‖(z0, q0)‖2V =
∫ T

0

∫
Ω

|∆(ρωq)|2 dx dt

where q is the solution to

izt + ∆z = 0 in Q,

iqt + ∆q = zρO in Q,

z = 0, q = 0 on Σ,

z(x, T ) = z0(x), q(x, T ) = q0(x) in Ω.

Indeed, ‖(z0, q0)‖V is clearly a semi-norm and the observability inequality implies
that ‖(z0, q0)‖V = 0 takes to (z(0), q(0)) = 0. Using the conservation of energy
for z we obtain easily that z0 = 0 and then q0 = 0. We set the space V as the
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completion of X2 with this norm. For (z0, q0) ∈ V and given fixed initial data
(p0, u0) ∈ L2(Ω)2 we define the functional

J(z0, q0) =
1
2

∫ T

0

∫
Ω

|∆(ρωq)|2 dx dt+
∫

Ω

q(0)p0 +
∫

Ω

z(0)u0.

Standard arguments show that J is continuous, convex and, thanks to the observ-
ability inequality, coercive. This implies that J reaches a minimum at a point
(ẑ0, q̂0) ∈ V . At this point the following optimality condition holds∫ T

0

∫
Ω

∆(ρω q̂)∆(ρωq) +
∫

Ω

q(0)p0 +
∫

Ω

z(0)u0 = 0 (4.1)

for any (z0, q0) ∈ V . Now we propose as control hω = ∆2(ρω q̂)ρω. Note that the
corresponding solution to (1.1) satisfies (p(T ), u(T )) = 0. In fact, (4.1) is valid
for any (z0, q0) ∈ X2 and (z, q) the corresponding solution to (1.7). So taking the
duality product of (1.1) by (z, q) we obtain

0 =
∫ T

0

∫
Ω

∆(ρω q̂)∆(ρωq) +
∫

Ω

q(0)p0 +
∫

Ω

z(0)u0

= 〈p(T ), q0〉X′,X + 〈u(T ), z0〉X′,X

and the null controllability result is proved. �

5. Concluding remarks

It would be interesting to find similar results in the case of three or more coupled
Schrödinger equations. In the case of parabolic equations there are various results.
In particular in [9] the case of cascade system of parabolic equations was treated
by a repeated argument of Carleman inequalities and local energy estimates. For
the case of Schrödinger equations this is not the case, at least when the control set
do not satisfy the geometric condition. Let us consider the case of three coupled
Schrödinger equations in cascade. The adjoint system will be of the form

izt + ∆z = 0 in Q,

iqt + ∆q = zρO in Q,

ivt + ∆v = qρO in Q,

z = 0, q = 0, v = 0 on Σ,

z(x, T ) = z0(x), q(x, T ) = q0(x), v(x, T ) = v0(x) in Ω.

Using the arguments in this article it is not difficult to see that the following ob-
servability inequality holds

‖(z(0), q(0), v(0))‖2(L2(Ω))3 ≤ C
∫ T

0

∫
Ω

|∆(ρωq)|2 + |∇(ρωv)|2 dx dt. (5.1)

This inequality implies that the system

ipt + ∆p = h1
ω in Q,

iut + ∆u = pρO + h2
ω in Q,

iwt + ∆w = uρO in Q,

p = 0, u = 0, w = 0 on Σ,

p(x, 0) = p0(x), u(x, 0) = u0(x), w(x, 0) = w0(x) in Ω,
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with controls h1
ω ∈ L2(0, T ;X ′) and h2

ω ∈ L2(0, T ;H−1(Ω)) is null controllable.
However to control only in the first equation it would be necessary to eliminate the
term in q in the observability inequality (5.1). It seems to be an open problem that
cannot be treated with the techniques used in this article. As far as we know this
problem is still open even in the case in which ω satisfies the geometric condition.
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the research was accomplished.

References

[1] F. Alabau-Boussouira; Insensitizing exact controls for the scalar wave equation and exact

controllability of 2-coupled cascade systems of PDE’s by a single control. Math. Control
Signals Systems, 26 (2014), 1-46.

[2] F. Alabau-Boussouira, M. Léautaud; Indirect controllability of locally coupled wave-type sys-

tems and applications. J. Math. Pures Appl., 99 (2013), 544–576.
[3] F. Ammar-Khodja, A. Benabdallah, M. González-Burgos, L. de Teresa; Recent results on the

controllability of linear coupled parabolic problems: a survey, Math Control Relat. Fields, 1

(2011), no. 3, pp. 267–306.
[4] C. Bardos, G. Lebeau, J. Rauch; Sharp sufficient conditions for the observation, control,

and stabilization of waves from the boundary. SIAM J. Control Optim., 30 (1992), no. 5,

1024–1065.
[5] L. Baudouin, J.-P. Puel; Uniqueness and stability in an inverse problem for the Schrödinger

equation, Inverse Problems, 18 (2002) 1537-1554.
[6] N. Burq, M. Zworski; Geometric control in the presence of a black box. J. Amer. Math. Soc.,

17 (2004), no. 2, 443–471.

[7] T. Cazenave; Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics,
10. New York University, Courant Institute of Mathematical Sciences, New York; American

Mathematical Society, Providence, RI, 2003. xiv+323 pp.
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