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A GENERAL PRODUCT MEASURABILITY THEOREM WITH
APPLICATIONS TO VARIATIONAL INEQUALITIES

KENNETH L. KUTTLER, JI LI, MEIR SHILLOR

Abstract. This work establishes the existence of measurable weak solutions

to evolution problems with randomness by proving and applying a novel the-
orem on product measurability of limits of sequences of functions. The mea-

surability theorem is used to show that many important existence theorems

within the abstract theory of evolution inclusions or equations have straightfor-
ward generalizations to settings that include random processes or coefficients.

Moreover, the convex set where the solutions are sought is not fixed but may

depend on the random variables. The importance of adding randomness lies in
the fact that real world processes invariably involve randomness and variabil-

ity. Thus, this work expands substantially the range of applications of models
with variational inequalities and differential set-inclusions.

1. Introduction

This article concerns the existence of P-measurable solutions to evolution prob-
lems in which some of the input data, such as the operators, forcing functions or
some of the system coefficients, is random. Such problems, often in the form of
evolutionary variational inequalities, abound in many fields of mathematics, such
as optimization and optimal control, and in applications such as in contact me-
chanics, populations dynamics, and many more. The interest in random inputs in
variational inequalities arises from the uncertainty in the identification of the sys-
tem inputs or parameters, possibly due to the process of construction or assembling
of the system, and to the imprecise knowledge of the acting forces or environmental
processes that may have stochastic behavior.

We first establish a very general abstract theorem on the product measurability
of certain limits of sequences of functions. Then, we apply the result to variational
inequalities with monotone, hemicontinuous, bounded and coercive operators that
may or may not be strongly monotone, and establish the product measurability of
the solutions of the variational inequalities. We note that the abstract result has
many other, very diverse, applications.

The general setting is as follows. We let (Ω,F) be a measurable space with
sample space Ω, and a σ-algebra F . It is assumed that an evolution problem,
in the form of an inequality or set-inclusion, corresponds to each ω ∈ Ω, with a

2010 Mathematics Subject Classification. 35R60, 60H15, 35R45, 35R70, 35S11.
Key words and phrases. Partial differential inclusions; product measurability;

variational inequalities; measurable selection.
c©2016 Texas State University.

Submitted January 16, 2016. Published March 31, 2016.

1



2 K. L. KUTTLER, J. LI, M. SHILLOR EJDE-2016/90

solution denoted by u(·, ω). When this evolution problem has a unique solution,
it is usually possible to show the existence of an F-measurable solution, i.e., a
solution such that (t, ω) → u(t, ω) is P ≡ B([0, T ]) × F measurable, see [6]. By P
we mean the smallest σ algebra which contains the measurable rectangles A × B
where A ∈ B([0, T ]), B ∈ F . The case without uniqueness is much more involved
and is the focus of this work as we establish a way to deal with it. No conditions
need to be made on the measurable space and in general, no specific measure is
specified, although we have in mind a probability space.

Our result is very general and we illustrate it by obtaining weak solutions to
a whole class of variational inequalities (see, e.g., [4, 11, 12]). Our measurability
result, stated in Theorem 2.1, is a substantial improvement of the result we estab-
lished in [5] and [10]. This version allows many more applications. In particular, we
apply Theorem 2.1 to a very important class of evolution problems and establish
in Theorem 3.1 and Theorem 3.3 the existence and measurability of the solutions.
We refer to Theorem 2.1 as the measurable selection theorem because it establishes
the existence of a P-measurable representative in a set of limits of P-measurable
functions.

It is seen from the example that our measurable selection theorem is a powerful
tool and we foresee that it will be used in many problems where randomness is
important, uniqueness is unknown, and measurability of the solutions is essential.
Such cases abound in contact mechanics, especially when friction is present, see,
e.g., [7, 9, 10] and the many references in [12, 15]. We note that our results may
be applied to the results in [13, 14], where inequality nonconvex problems were
studied.

The rest of this article is as follows. The basic measurable selection theorem,
Theorem 2.1, is established in Section 2. The existence of P-measurable solutions
to a variational inequality with a monotone, hemicontinuous and bounded operator
is shown in Theorem 3.1 in Section 3. Then, in Theorem 3.3, we allow the convex
set to be a measurable set-valued map of the random variables. This is a completely
novel and somewhat surprising result never before considered as far as we know,
and our measurable selection result makes it fairly easy to obtain. More general
operators such as maximal monotone operators can be considered also, but we do
not present this here because the necessary existence for an approximate problem
is not readily available.

2. Measurable selection theorem

We establish in this section our main theorem. It asserts that under very weak
conditions, in particular, the boundedness condition (2.1), there exists a measurable
selection of the set of limit functions of a sequence of functions in a reflexive and
separable Banach space.

We use the usual notations for Sobolev function spaces. In particular, V ≡
Lp([0, T ], V ) denotes the space of p-integrable functions defined on [0, T ] with values
in the space V , C([0, T ]) is the space of continuous functions on [0, T ] with the
maximum norm, and we use the abbreviation ‖ · ‖ = ‖ · ‖C([0,T ]). The numbers
p > 1 and p′ > 1 are conjugate, i.e., 1

p + 1
p′ = 1. Also, 〈·, ·〉V = 〈·, ·〉V ′,V represents

the duality pairing between V and V ′.
In this section (Ω,F) is a measurable space. We have in mind a probability space

but this is not necessary, since no reference is made to any particular measure.
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Also, no topological conditions are necessary on Ω. This is in contrast to the result
of [2] in which a complete probability measure was assumed and Ω was assumed
to be a completely regular topological space. The theorem here is a significant
improvement over the one we established in [5, 10]. Moreover, the steps in the
proof differ. However, for the sake of brevity, we refer to these two papers for some
of the details.

We use the following notation: C represents a generic constant that may depend
on the data but is independent of n. The dependence of a constant on ω, t or k is
denoted explicitly, e.g., if it depends only on ω or k, we write C(ω) or C(k), while
C(ω, t, k) depends on all three. The following is the main result in this work.

Theorem 2.1 (The Measurable Selection Theorem). Let V be a reflexive sepa-
rable Banach space with dual V ′ and let p, p′ be conjugate numbers. Assume that
{un(t, ω)}∞n=1 is a sequence of P ≡ B([0, T ])× F-measurable functions with values
in V such that for each ω ∈ Ω, except for a null set N ⊂ Ω, and for each n, it
satisfies

‖un(·, ω)‖V ≤ C(ω). (2.1)
Then, there exists a P-measurable function u(t, ω) such that for each ω /∈ N ,

u(·, ω) ∈ V,

and there is a subsequence unω such that unω (·, ω)→ u(·, ω) weakly in V as nω →∞.

We note that the bound in (2.1) need not be uniform on Ω, and u is a weak limit
of a subsequence that depends on ω.

We prove the theorem in steps, presented as lemmas. First, we need the space
X =

∏∞
k=1 C([0, T ]) with the product topology. Then, X is a metric space with

the metric

d(f ,g) ≡
∞∑
k=1

2−k
‖fk − gk‖

1 + ‖fk − gk‖
,

where f = (f1, f2, . . . ),g = (g1, g2, . . . ) ∈ X and the norm is the maximum norm
on C([0, T ]). With this metric, X is complete and separable.

The first step follows.

Lemma 2.2. Let {fn}∞n=1 be a sequence in X and suppose that for each component
k, the sequence {fnk}∞n=0 is bounded in C0,(1/p′)([0, T ]) by C(k). Then, there exists
a subsequence {fnj} that converges as nj →∞ to an element f ∈ X. Thus, {fn} is
pre-compact in X.

Proof. The result follows from Tychonoff’s theorem and the compactness of the
embedding of C0,(1/p′) in C([0, 1]). �

In the next step we construct a special sequence {fn}∞n=1 in X based on the
sequence {un(t, ω)}∞n=1. For m ∈ N and φ ∈ V ′, let lm(t) ≡ max(0, t− (1/m)) and
define ψm,φ : V → C([0, T ]) by

(ψm,φu(·))(t) ≡
∫ T

0

〈mφX[lm(t),t](s), u(s)〉V ds = m

∫ t

lm(t)

〈φ, u(s)〉V ds.

Here, X[lm(t),t](·) is the characteristic function of the interval [lm(t), t].
Let D = {φr}∞r=1 denote a countable subset of V ′. Later, we will describe it

more carefully. For now, all that is important is that it be countable. Then, the
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pairs (m,φ), for φ ∈ D and m ∈ N form a countable set. Let {(mk, φrk)}∞k=1 denote
an enumeration of the pairs (m,φ) ∈ N×D. To simplify the notation, we let

(fk(u(·)))(t) ≡ (ψmk,φrku(·))(t) = mk

∫ t

lmk (t)

〈φrk , u(s)〉V ds.

We note that for each fixed φ ∈ D there exists a subsequence such that mk → ∞
and φrk = φ. Thus there are infinitely many indices k such that φrk = φ.

We now choose the functions un(·, ω) of Theorem 2.1 as u(·) and so we have
constructed a sequence {fn}∞n=1 in X, which depends on ω. We use this sequence
to define the following set-valued map Γ(ω).

It follows from estimate (2.1) that for fixed k and ω /∈ N the functions {t →
fk(un(·, ω))(t)}∞n=1 are uniformly bounded and equicontinuous since they are bounded
in C0,1/p′

([0, T ]). Then, by Lemma 2.2, for each n the set {XNC (ω)f(uj(·, ω))}∞j=n
is pre-compact in X =

∏
k C([0, T ]). We define for each n ∈ N a set-valued map

Γn : Ω→ X by
Γn(ω) ≡ ∪j≥n{XNC (ω)f(uj(·, ω))},

where the closure is taken in X. Then Γn(ω) is compact in X. From the definition,
a function g is in Γn(ω) if and only if d(g,XNC (ω)f(wl)) → 0 as l → ∞, where
each wl is one of the uj(·, ω) for j ≥ n.

The proof of the next two lemmas can be found [5] or [10].

Lemma 2.3. The mapping ω → Γn(ω) is an F-measurable set-valued map with
values in X.

Definition 2.4. Let Γ(ω) ≡ ∩∞n=1Γn(ω).

Lemma 2.5. Γ is a nonempty F-measurable set-valued mapping with values in
compact subsets of X and there exists an F-measurable selection γ(ω) ∈ Γ(ω) such
that γ(t, ω) ≡ (γ(ω))(t) is P-measurable and (

∏∞
k=1 R)-valued function.

It follows from the definition of Γ(ω) that, for each ω /∈ N , there exists a subse-
quence un(ω)(·, ω) of un(·, ω) such that for each component k,

γk(t, ω) = lim
n(ω)→∞

XNC (ω)(fk(un(ω)(·, ω)))(t) uniformly int,

or

γk(t, ω) = lim
n(ω)→∞

mk

∫ t

lmk (t)

〈φrk ,XNC (ω)un(ω)(s, ω)〉V ds. (2.2)

We now set γ(t, ω) ≡ 0 for ω ∈ N and then (2.2) holds for all ω. We note that it
is not clear whether XNC (ω)(fk(un(ω)(·, ω)))(t) is P-measurable, however, all that
is needed is that the limit γ(t, ω) is P-measurable. We have all the ingredients for
the proof.

Proof of Theorem 2.1. By assumption, there exists a further subsequence, still de-
noted by n(ω), such that, the weak limit

lim
n(ω)→∞

XNC (ω)un(ω)(·, ω) = v(·, ω)

exists in V. Then,

mk

∫ t

lmk (t)

〈φrk , v(s, ω)〉V ds
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= lim
n(ω)→∞

mk

∫ t

lmk (t)

〈φrk ,XNC (ω)un(ω)(s, ω)〉V ds

= γk(t, ω)

is product measurable. Letting φ ∈ D be given, there exists a subsequence, denoted
by k, such that mk → ∞ and φrk = φ. Recall (mk, φrk) denoted an enumeration
of the pairs (m,φ) ∈ N×D. For a given φ ∈ D denote this sequence by mφ. Thus,
we have measurability of

(t, ω)→ mφ

∫ t

lmφ (t)

〈φ, v(s, ω)〉V ds,

for each φ ∈ D.
Now we describe the countable set D. Iterate the following. Let φ1 6= 0. Let F

denote linearly independent subsets of V ′ which contain φ1 such that the elements
are further apart than 1/5. Let C denote a maximal chain. Thus ∪C is also in F .
If W := span∪C fails to be all of V ′, then there would exist ψ /∈ W such that the
distance of ψ to the closed subspace W is at least 1/5. Now C,∪{C ∪ {ψ}} would
violate maximality of C. Hence W = V ′. Now it follows that C must be countable
since otherwise, V ′ would fail to be separable. Then D is defined as ∪C. Let M be
the set of rational linear combinations of elements of D, hence M is dense in V ′.
Note that linear combinations of the φi are uniquely determined because none is
a linear combination of the others. Now, we define a linear mapping on M which
makes sense for (t, ω) on a certain set.

Definition 2.6. Let E be the set of points (t, ω) such that the following limit exists
for each φ ∈ D

Λ(t, ω)φ := lim
mφ→∞

mφ

∫ t

lmφ (t)

〈φ, v(s, ω)〉ds.

Extend this mapping linearly. That is, for ψ ∈M,ψ :=
∑
i aiφi,

Λ(t, ω)ψ :=
∑
i

aiΛ(t, ω)φi =
∑
i

ai

(
lim

mφi→∞
mφi

∫ t

lmφi
(t)

〈φi, v(s, ω)〉ds
)
.

Thus (t, ω) → Λ(t, ω)ψ is product measurable, being the sum of limits of product
measurable functions. Let G denote those (t, ω) in E such that there exists a
constant C(t, ω) such that for all ψ ∈M ,

|Λ(t, ω)ψ| ≤ C(t, ω)‖ψ‖.

We note that E is a product measurable set because it was shown above that
(t, ω) → mφ

∫ t
lmφ (t)

〈φ, v(s, ω)〉ds is product measurable and in general, the set of
points where a sequence of measurable functions converges is a measurable set.

Lemma 2.7. G is product measurable.

Proof. This follows from the formula

E ∩GC = ∩n ∪ψ∈M {(t, ω) : |Λ(t, ω)ψ| > n‖ψ‖}

which is clearly product measurable because (t, ω)→ Λ(t, ω)ψ is. Thus, since E is
measurable, it follows that E ∩G = G is too. �
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For (t, ω) ∈ G,Λ(t, ω) has a unique extension to all of V , the dual space of V ′,
still denoted as Λ(t, ω). By the Riesz representation theorem, for (t, ω) ∈ G,there
exists u(t, ω) ∈ V ,

Λ(t, ω)ψ = 〈ψ, u(t, ω)〉V .
Thus, (t, ω)→ XG(t, ω)u(t, ω) is product measurable by the Pettis theorem. It has
been shown that G is measurable and we let u = 0 off G. Next, we will show using
the fundamental theorem of calculus that for each ω the set {t : (t, ω) ∈ G} is all
but a set of Lebesgue measure zero.

We now fix ω. By the fundamental theorem of calculus,

lim
m→∞

m

∫ t

lm(t)

v(s, ω)ds = v(t, ω) in V,

for a.e. t, say for all t /∈ N(ω) ⊆ [0, T ]. Of course we do not know that ω → v(t, ω)
is measurable. However, the existence of this limit for t /∈ N(ω) implies that for
every φ ∈ V ′,

lim
m→∞

∣∣m ∫ t

lm(t)

〈φ, v(s, ω)〉ds
∣∣ ≤ C(t, ω)‖φ‖,

for some C(t, ω). Here m does not depend on φ. Thus, in particular, this holds for
a subsequence and so for each t /∈ N(ω), (t, ω) ∈ G because for each φ ∈ D,

lim
mφ→∞

mφ

∫ t

lmφ (t)

〈φ, v(s, ω)〉ds exists and satisfies the above inequality.

Hence, for all ψ ∈M ,
Λ(t, ω)ψ = 〈ψ, u(t, ω)〉V ,

where u is product measurable.
Also, for t /∈ N(ω) and φ ∈ D,

〈φ, u(t, ω)〉V = Λ(t, ω)φ ≡ lim
mφ→∞

mφ

∫ t

lmφ (t)

〈φ, v(s, ω)〉ds = 〈φ, v(t, ω)〉V ,

therefore, for all φ ∈M ,

〈φ, u(t, ω)〉V = 〈φ, v(t, ω)〉V ,

and hence u(t, ω) = v(t, ω). Thus, for each ω, the product measurable function u
satisfies u(t, ω) = v(t, ω) for a.e. t. Hence u(·, ω) = v(·, ω) in V. This completes
the proof of Theorem 1. �

We show next how condition (2.1) can be verified by taking expectation when
we deal with a probability space. Thus, we let (Ω,F , P ) be a probability space,
where P is the probability function.

Proposition 2.8. Let {un(·, ω)}∞n=1 be a sequence of functions in Lp(Ω,V) such
that

sup
n

∫
Ω

‖un‖pVdP = C <∞. (2.3)

Then, there is a set N of measure zero and a subsequence {un,n(·, ω)}∞n=1 such that
for all ω /∈ N ,

sup
n
‖un,n(·, ω)‖V ≤ C(ω) <∞.
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Proof. First, we know that there is a set N̂ of measure zero such that for ω /∈
N̂ , ‖un(·, ω)‖pV < ∞ for all n. Indeed, we just take the union of the exceptional
sets, one for each n. We have,

P
(
{ω : lim inf

n→∞
‖un(·, ω)‖pV ≥M1}

)
≤ 1
M1

∫
Ω

lim inf
n→∞

‖un(·, ω)‖pVdP

≤ 1
M1

lim inf
n→∞

∫
Ω

‖un(·, ω)‖pVdP ≤
C

M1
.

Therefore, by choosing a sufficiently large M1, we obtain that the set

B1 ≡ {ω : lim inf
n→∞

‖un(·, ω)‖pV ≥M1}

has measure less than 1/2. Letting G1 ≡ Ω \ B1, it follows that P (G1) > 1/2 and
for ω ∈ G1,

lim inf
n→∞

‖un(·, ω)‖pV < M1.

It follows that there is a subsequence {u1,n(·, ω)}∞n=1 of {un(·, ω)}∞n=1 such that for
all n and ω ∈ G1,

‖u1,n(·, ω)‖pV < M1.

Next, the same reasoning leads to

P
({
ω ∈ B1 : lim inf

n→∞
‖u1,n(·, ω)‖pV ≥M2

})
≤ C

M2
,

and so for a sufficiently large M2 > M1,

B2 ≡
{
ω ∈ B1 : lim inf

n→∞
‖u1,n(·, ω)‖pV ≥M2

}
has measure less than 1/4. Let G2 be such that B2 ∪G2 = B1. Then, for ω ∈ G2 it
follows that lim infn→∞ ‖u1,n(·, ω)‖pV < M2. Thus, there is a further subsequence
{u2,n(·, ω)}∞n=1 of {u1,n(·, ω)}∞n=1 such that for ω ∈ G2,

‖u2,n(·, ω)‖pV < M2.

Continuing this way, we find a sequence of a subsequence, the subsequence {ui,n}∞n=1

being a subsequence of the {u(i−1),n}∞n=1 such that for all n,

‖ui,n(·, ω)‖pV < Mi if ω ∈ ∪ij=1Gi,

where Ω \∪ij=1Gi ≡ Bi satisfying P (Bi) < 2−i, Bi+1 ⊆ Bi. Letting N ≡ ∩iBi ∪ N̂ ,
it follows that P (N) = 0. Now, we consider the diagonal sequence {un,n}∞n=1.
If ω /∈ N , then it is in some Gi and so for all n sufficiently large, say n ≥ k,
‖un,n(·, ω)‖pV ≤Mi. Therefore, for that ω, it follows that for all n,

‖un,n(·, ω)‖pV ≤Mi + max(‖um,m(·, ω)‖pV ,m < k) ≡ C(ω) <∞.
�

This result leads to the following important corollary.

Corollary 2.9. Let V be a reflexive separable Banach space with dual V ′ and p, p′

be conjugate numbers and let {un(t, ω)}∞n=1 be a sequence of P-measurable functions
with values in V that satisfies the estimate

sup
n

∫
Ω

‖un‖pVdP = C <∞.



8 K. L. KUTTLER, J. LI, M. SHILLOR EJDE-2016/90

Then, there exists a P-measurable function u(t, ω) such that for each ω not in a
null set N ,

u(·, ω) ∈ V,
and there is a subsequence unω such that unω (·, ω)→ u(·, ω) weakly in V, as nω →
∞.

Proof. It follows from the proposition that there is a set of measure zero N and a
subsequence, still denoted with subscript n, such that for ω /∈ N ,

sup
n
‖un(·, ω)‖V ≤ C(ω) <∞.

Then, we apply Theorem 2.1 to unX[0,T ]×N and obtain the desired conclusion. �

The following proposition is not surprising, being a consequence of the above
measurable selection theorem.

Proposition 2.10. Let f(·, ω) ∈ V ′. If ω → f(·, ω) is measurable into V ′, then
for each ω, there exists a representative f̂(·, ω) ∈ V ′, f̂(·, ω) = f(·, ω) in V ′ such
that (t, ω) → f̂(t, ω) is product measurable. If f(·, ω) ∈ V ′ and (t, ω) → f(t, ω) is
product measurable, then ω → f(·, ω) is measurable into V ′. The same conclusions
hold when V ′ is replaced with V.

Proof. Since f is measurable into V ′, there exist simple functions fn such that

lim
n→∞

‖fn(ω)− f(ω)‖V′ = 0, ‖fn(ω)‖ ≤ 2‖f(ω)‖V′ ≡ C(ω).

Now, one of these simple functions is of the form
M∑
i=1

ciXEi(ω),

where ci ∈ V ′. Therefore, there is no loss of generality in assuming that ci(t) =∑N
j=1 d

i
jXFj (t), where dij ∈ V ′. Hence, we can assume each fn is product measur-

able into B(V ′) × F . Then, by Theorem 2.1, there exists f̂(·, ω) ∈ V ′ such that f̂
is product measurable and a subsequence fn(ω) converging weakly in V ′ to f̂(·, ω)
for each ω. Thus fn(ω)(ω) → f(ω) strongly in V ′ and fn(ω)(ω) → f̂(ω) weakly in
V ′ . Therefore, f̂(ω) = f(ω) in V ′ and so it can be assumed that if f is measurable
into V ′, then for each ω, it has a representative f̂(ω) such that (t, ω) → f̂(t, ω) is
product measurable.

If f is product measurable into V ′ and each f(·, ω) ∈ V ′, does it follow that f is
measurable into V ′? By measurability,

f(t, ω) = lim
n→∞

mn∑
i=1

cni XEni (t, ω) = lim
n→∞

fn(t, ω),

where Eni is product measurable and we can assume ‖fn(t, ω)‖V ′ ≤ 2‖f(t, ω)‖.
Then by product measurability, ω → fn(·, ω) is measurable into V ′ because if
g ∈ V,

ω → 〈fn(·, ω), g〉
is of the form

ω →
mn∑
i=1

∫ T

0

〈cni XEni (t, ω), g(t)〉dt
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which is

ω →
mn∑
i=1

∫ T

0

〈cni , g(t)〉XEni (t, ω)dt,

and this is F-measurable since Eni is product measurable. Thus, it is measurable
into V ′ as desired and

〈f(·, ω), g〉 = lim
n→∞

〈fn(·, ω), g〉, ω → 〈fn(·, ω), g〉 is F-measurable.

Obviously, the conclusion is the same for these two conditions if V ′ is replaced with
V, since by the Pettis Theorem, ω → 〈f(·, ω), g〉 is measurable into V ′. �

3. Measurability of weak solutions of variational inequalities

In this section, we provide an important application of the measurable selection
theorem, Theorem 2.1, to weak solutions of a broad class of variational inequalities.

In what follows (Ω,F) is a measurable space; p > 1; V ⊆ H = H ′ ⊆ V ′ and
each space is a separable Hilbert space that is dense in the following one; and H ≡
L2([0, T ], H). Then, V ⊆ H = H′ ⊆ V ′. As above, we denote by 〈·, ·〉V = 〈·, ·〉V′,V
the duality pairing between V and V ′, and P denotes the product σ-algebra which
is the smallest σ algebra that contains the sets of the form B×F where B is Borel
in [0, T ] and F ∈ F .

Let K be a closed convex subset of V and let, for the sake of convenience, 0 ∈ K.
Note that if K is closed and convex in H, then K ∩ V is closed and convex in V.
Let A(·, ω) : V → V ′ be monotone, hemicontinuous, bounded and coercive operator,
i.e.,

lim
‖u‖→∞

〈A(u, ω), u〉V
‖u‖V

=∞. (3.1)

We assume that ω → A(u(ω), ω) is measurable into V ′ whenever ω → u(ω) is
measurable into V.

Let P be a penalization operator associated with K, as discussed in [11]. Thus,

Pu(ω) = F (u(ω)− projK u(ω)),

where F is the duality map for p satisfying ‖Fx‖ = ‖x‖p−1 and 〈Fx, x〉 = ‖x‖p,
[11]. As is well known, P is monotone and demicontinuous, since P (u) = 0 on K
and is nonzero for u /∈ K.

We assume that (t, ω) → f(t, ω) is product measurable. Under these assump-
tions, for each n ∈ N, there exists a solution un to the penalized problem,

u′n +A(un(ω), ω) + nP (un(·, ω)) = f(·, ω) in V ′,
un(0, ω) = 0,

(3.2)

such that (t, ω)→ un(t, ω) is product measurable. Such a solution can be obtained
by using arguments similar to those in stochastic partial differential equations.

We also assume, as in [11], the existence of a regularizing sequence such that if
u ∈ K, then there exists ui ∈ K such that u′i ∈ V ′, ui(0) = 0 and

lim sup
i→∞

〈u′i, ui − u〉V ≤ 0.

Then, using standard arguments, one can pass to an appropriate limit and obtain
the first part of the following theorem.
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Theorem 3.1. Suppose A(·, ω) is monotone, hemicontinuous, bounded and coercive
as a map from V to V ′. Suppose also that when ω → u(ω) is measurable into V,
then ω → A(u(ω), ω) is measurable into V ′. Let K be a closed and convex subset of
V containing 0. Let there be a regularizing sequence {ui} for each u ∈ K satisfying
ui(0) = 0, u′i ∈ V ′, ui ∈ K,

lim sup
i→∞

〈u′i, ui − u〉 ≤ 0.

Then, for each ω there exists a solution to the variational inequality

〈v′, u− v〉+ 〈A(u(·, ω), ω), u(·, ω)− v〉 ≤ 〈f(·, ω), u− v〉

that is valid for all v ∈ K, such that (Bv)′ ∈ V ′, Bv(0) = 0, and (t, ω)→ u(t, ω) is
B([0, T ])×F-measurable.

Proof. It only remains to verify the assertion about measurability. This follows from
Theorem 2.1, since one can obtain an estimate of the right form for the measurable
functions un(·, ω) and u∗n(·, ω). Then, the above argument shows that a subsequence
has a convergent subsequence which converges to a solution. �

We note that one can replace the coercivity condition (3.1) with a weaker one
involving λI +A for large enough λ, for p ≥ 2, see [8] for details.

Next, we describe a surprising generalization of Theorem 3.1 in which the convex
closed set is not fixed, but depends on the random variable, i.e., K = K(ω). The
proof is exactly the same as long as the penalization operator satisfies that ω →
P (u(ω), ω) = F (u(ω)− projK(ω) u(ω)) is measurable into V ′ whenever ω → u(ω) is
measurable into V.

First, we need the following result that describes the conditions on the set-valued
mapping ω → K(ω) that make it satisfy this property.

Proposition 3.2. Let ω → K(ω) be measurable into V. Then, ω → projK(ω) u(ω)
is also measurable into V whenever ω → u(ω) is measurable.

Proof. It follows from standard results on measurable multi-functions, see e.g., [3],
that there is a countable collection {wn(ω)}, ω → wn(ω) being measurable and
wn(ω) ∈ K(ω), for each ω, such that for each ω we have K(ω) = ∪nwn(ω). Let

dn(ω) ≡ min{‖u(ω)− wk(ω)‖, k ≤ n}.

Let u1(ω) ≡ w1(ω). Set u2(ω) = w1(ω) on the set

{ω : ‖u(ω)− w1(ω)‖ < {‖u(ω)− w2(ω)‖}}

and u2(ω) ≡ w2(ω) off this set. Thus, ‖u2(ω)− u(ω)‖ = d2. Let

u3(ω) = w1(ω) on S1 ≡
{
ω : ‖u(ω)− w1(ω)‖ < ‖u(ω)− wj(ω)‖, j = 2, 3

}
,

u3(ω) = w2(ω) on S1 ∩
{
ω : ‖u(ω)− w1(ω)‖ < ‖u(ω)− wj(ω)‖, j = 3

}
,

u3(ω) = w3(ω) on the remainder of Ω.

Thus, ‖u3(ω)− u(ω)‖ = d3.
We continue in this way, at each step n obtaining un(ω) such that

‖un(ω)− u(ω)‖ = dn(ω),
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and un(ω) ∈ K(ω) with un measurable. Thus, in effect, we pick the closest of all the
wk(ω) for k ≤ n as the value of un(ω) and un is measurable. Then, by the density
of {wn(ω)} in K(ω), for each ω we have that {un(ω)} is a minimizing sequence for

λ(ω) ≡ inf{‖u(ω)− z‖ : z ∈ K(ω)}.

Then, it follows that un(ω) → projK(ω) u(ω) weakly in V. Indeed, suppose the
sequence fails to converge to projK(ω) u(ω). Since the sequence is minimizing, it is
bounded. Thus, there is a subsequence, still denoted as un(ω) that converges to
q(ω) 6= projK(ω) u(ω). Then,

λ(ω) = lim
n→∞

‖u(ω)− un(ω)‖ ≥ ‖u(ω)− q(ω)‖,

because a convex and lower semicontinuous function is weakly lower semicontinu-
ous.This implies that q(ω) = projK(ω)(u(ω)) because the projection map is well de-
fined thanks to strict convexity of the norm used, which is a contradiction. Hence,
projK(ω) u(ω) = limn→∞ un(ω) and so is a measurable function. It follows that
ω → P (u(ω), ω) is measurable into V. �

The following resutl is now immediate, which we state as a theorem because of
its importance.

Theorem 3.3. Suppose that: A(·, ω) is monotone, hemicontinuous, bounded and
coercive as a map from V to V ′; when ω → u(ω) is measurable into V then ω →
A(u(ω), ω) is measurable into V ′; K(ω) is a closed and convex subset of V containing
0; and ω → K(ω) is a set-valued measurable multifunction. Moreover, suppose that
there is a regularizing sequence {ui}, for each u ∈ K, satisfying ui(0) = 0, u′i ∈
V ′, ui ∈ K,

lim sup
i→∞

〈u′i, ui − u〉 ≤ 0.

Then, for each ω, there exists a solution u(ω) to the variational inequality

〈v′, u(·, ω)− v〉+ 〈A(u(·, ω), ω), u(·, ω)− v〉 ≤ 〈f(·, ω), u(·, ω)− v〉

valid for all v ∈ K(ω) such that v′ ∈ V ′, Bv(0) = 0, and (t, ω) → u(t, ω), is
B([0, T ])×F-measurable.

Proof. The proof is identical to the proof of Theorem 3.1. We obtain a measurable
solution to (3.2) in which P is replaced with P (·, ω). Then, we follow exactly the
same steps and finally use Theorem 2.1 to obtain the measurability of a solution to
the variational inequality. �

The above result, in addition top its importance, is quite interesting. Indeed, it
is not obvious that if u(ω) ∈ K(ω), for each ω, that (t, ω)→ u(t, ω) has any kind of
product measurability. This would not be obvious even if K were independent of
ω. However, the theorem says that there is a measurable solution to the variational
inequality, as long as ω → K(ω) is a set-valued measurable multifunction.
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Dunod, Paris, 1969.
[12] Migorski, S.; Ochal, A.; Sofonea, M.; Nonlinear Inclusions and Hemivariational Inequalities,

Advances in Mechanics and Mathematics 26, Springer, 2013.
[13] Motreanu, D.; Radulescu, V.; Existence results for inequality problems with lack of convexity,

Numer. Funct. Anal. Optimiz. 21(7-8) (2000), 869–884.

[14] Motreanu, D.; Radulescu, V.; Variational and Nonvariational Methods in Nonlinear Analysis
and Boundary Value Problems, Nonconvex Optimization and Its Applications, 67, Kluwer

Academic Publishers, Dordrecht, 2003.

[15] Shillor, M.; Sofonea, M.; Telega, J. J.; Models and Analysis of Quasistatic Contact - Vari-
ational Approach, Lecture Notes in Physics 655, Springer, Berlin, 2004.

[16] Yosida, K.; Functional Analysis, Springer-Verlag, New York, 1978.

Kenneth L. Kuttler

Department of Mathematics, Brigham Young University, Provo, UT 84602, USA
E-mail address: klkuttle@math.byu.edu

Ji Li
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

E-mail address: liji@math.msu.edu

Meir Shillor

Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309,

USA
E-mail address: shillor@oakland.edu


	1. Introduction
	2. Measurable selection theorem
	3. Measurability of weak solutions of variational inequalities
	Acknowledgements

	References

