GLOBAL REGULARITY CRITERIA FOR THE n-DIMENSIONAL BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION

ZUJIN ZHANG

ABSTRACT. We consider the n-dimensional Boussinesq equations with fractional dissipation, and establish a regularity criterion in terms of the velocity gradient in Besov spaces with negative order.

1. Introduction

In this article, we study the n-dimensional Boussinesq equations with fractional dissipation,

\[\begin{aligned}
\partial_t u + (u \cdot \nabla) u + \Lambda^{2\alpha} u + \nabla \Pi &= \vartheta \mathbf{e}_n, \\
\partial_t \vartheta + (u \cdot \nabla) \vartheta &= 0, \\
\nabla \cdot u &= 0,
\end{aligned} \tag{1.1} \]

where \(u : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) is the velocity field; \(\vartheta : \mathbb{R}^+ \times \mathbb{R}^n \rightarrow \mathbb{R} \) is a scalar function representing the temperature in the context of thermal convection (see [8]) and the density in the modeling of geophysical fluids (see [9]); \(\Pi \) is the fluid pressure; \(\mathbf{e}_n \) is the unit vector in the \(x_n \) direction; and \(\Lambda := (-\Delta)^{1/2}, \alpha \geq 0 \) is a real number.

When \(\alpha = 1 \), Equation (1.1) reduces to the classical Boussinesq equations, which are frequently used in the atmospheric sciences and oceanographic turbulence where rotation and stratification are important (see [8, 9]). If \(\vartheta = 0 \), then (1.1) becomes the generalized Navier-Stokes equation, which was first considered by Lions [7], where he showed the global regularity once \(\alpha \geq \frac{1}{2} + \frac{n}{4} \). One may refer the reader to [5, 10] for recent advances. Xiang-Yan [12], Yamazaki [13] and Ye [14] were able to extend Lions’s result to system (1.1), where there is no diffusion in the \(\vartheta \) equation. And it remains an open problem for the global-in-time smooth for (1.1) with \(0 < \alpha < \frac{1}{2} + \frac{n}{4} \). The purpose of the present paper is to establish a blow-up criterion as follows.

Theorem 1.1. Let \(0 < \alpha < \frac{1}{2} + \frac{n}{4} \), \((u_0, \vartheta_0) \in H^s(\mathbb{R}^n) \) with \(s > 1 + \frac{n}{2} \) and \(\nabla \cdot u_0 = 0 \). Assume that \((u, \vartheta)\) be the smooth local unique solution pair to (1.1) with initial data
If additionally,\[
\nabla u \in L_{2\alpha-\gamma}^{2\alpha-\gamma}(0,T; \dot{B}^{-\gamma}_{\infty,\infty}(\mathbb{R}^n))
\]
for some $0 < \gamma < 2\alpha$, then the solution (u, ϑ) can be extended smoothly beyond T.

Here, $\dot{B}^{-\gamma}_{\infty,\infty}(\mathbb{R}^n)$ is the homogeneous Besov space with negative order, which contains classical Lebesgue space $L^{2\alpha}_\gamma(\mathbb{R}^n)$, see [1, Chapter 2]. In the proof of Theorem 1.1 in Section 2, we shall frequently use the following refined Gagliardo-Nirenberg inequality.

Lemma 1.2 ([1, Theorem 2.42]). Let $2 < q < \infty$ and γ be a positive real number. Then a constant C exists such that\[
\|f\|_{L^q} \leq C \|f\|_{1-2q}^{1/2} \|f\|_{\dot{H}^\gamma(\frac{2}{q}-1)}^{2/q}.
\]

Remark 1.3. Our result extends that of Kozono-Shimada [6]. Indeed, the Navier-Stokes equations corresponds to (1.1) with $\vartheta = 0$ and $\alpha = 1$.

Remark 1.4. In [3] (see also the end-point smallness condition in [2]), Geng-Fan proved a regularity criterion\[
u \in L^{2r}(-\infty,\infty; \dot{B}^{-r}_{\infty,\infty}(\mathbb{R}^3)) \quad (-1 < r < 1, \ r \neq 0)
\]
for system (1.1) with $\alpha = 1$ and $n = 3$. Thus our result generalizes (1.4) also, in view of the fact that\[
\|f\|_{\dot{B}^{-1-\gamma}_{\infty,\infty}} \leq \|f\|_{\dot{B}^{-1-\gamma}_{\infty,\infty}} \leq \|f\|_{\dot{B}^{-1-\gamma}_{\infty,\infty}}.
\]
Moreover, our result (1.2) is valid for (1.1) with arbitrarily large n and arbitrarily small α.

Interested readers are referred to [11] for blow-up criterion for (1.1) without diffusion in the u equation.

2. Proof of Theorem 1.1

It is not difficult to prove that there exists a $T_0 > 0$ and a unique smooth solution (u, ϑ) to (1.1) on $[0, T_0]$. We only need to establish the a priori estimates. Therefore, in the following calculations, we assume that the solution (u, ϑ) is sufficiently smooth on $[0, T]$.

First, taking the inner product of (1.1)$_1$ and (1.1)$_2$ with u, ϑ in $L^2(\mathbb{R}^n)$ respectively, we obtain\[
\frac{1}{2} \frac{d}{dt} \|u, \vartheta\|^2_{L^2} + \|A^\alpha u\|^2_{L^2} = \int_{\mathbb{R}^n} \vartheta e_n \cdot u \ dx \leq \frac{1}{2} \|u, \vartheta\|^2_{L^2}.
\]
Applying Gronwall inequality, we deduce\[
\|u, \vartheta\|_{L^\infty(0,T;L^2(\mathbb{R}^n))} + \|A^\alpha u\|_{L^2(0,T;L^2(\mathbb{R}^n))} \leq C.
\]
For $k > 0$, applying A^k to \([1.1]_1\), and testing the resulting equations by $A^k \mathbf{u}$ respectively, we obtain
\[
\frac{1}{2} \frac{d}{dt} \|A^k \mathbf{u}\|^2_{L^2} + \|A^{k+\alpha} \mathbf{u}\|^2_{L^2} = - \int_{\mathbb{R}^n} A^k \left((\mathbf{u} \cdot \nabla) \mathbf{u}\right) \cdot A^k \mathbf{u} \, dx + \int_{\mathbb{R}^n} A^k (\partial \mathbf{e}_n) \cdot A^k \mathbf{u} \, dx
\]
\[= - \int_{\mathbb{R}^3} \{A^k((\mathbf{u} \cdot \nabla) \mathbf{u}) - (\mathbf{u} \cdot \nabla)(A^k \mathbf{u})\} \cdot A^k \mathbf{u} \, dx + \int_{\mathbb{R}^n} A^k (\partial \mathbf{e}_n) \cdot A^k \mathbf{u} \, dx
\]
\[\equiv I_1^k + I_2^k.\]

We may use the following commutator estimates of Kato-Ponce \([4]\):
\[
\|A^k(fg) - f A^k g\|_{L^p} \leq C \left(\|f\|_{L^{p_1}} \|A^{k-1} g\|_{L^{p_2}} + \|A^k f\|_{L^{p_3}} \|g\|_{L^{p_4}}\right)
\]
with
\[1 < p, p_2, p_3 < \infty, \quad 1 \leq p_1, p_4 \leq \infty, \quad \frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{p_3} + \frac{1}{p_4}\]
to bound I_1^k as
\[
I_1^k \leq C \|A^k((\mathbf{u} \cdot \nabla) \mathbf{u}) - (\mathbf{u} \cdot \nabla)(A^k \mathbf{u})\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \|A^k \mathbf{u}\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \\
\leq C \|\nabla \mathbf{u}\|_{L^{\frac{2(k+\gamma+\alpha-1)}{\gamma}}} \|A^k \mathbf{u}\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \|A^k \mathbf{u}\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \\
\leq C \|\nabla \mathbf{u}\|_{L^{\frac{2(k+\gamma+\alpha-1)}{\gamma}}} \|A^{k+\alpha} \mathbf{u}\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \|\nabla \mathbf{u}\|_{L^{\frac{2(k+\gamma+\alpha-1)}{\gamma}}} \|A^k \mathbf{u}\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \\
\leq C \|\nabla \mathbf{u}\|_{L^{\frac{2(k+\gamma+\alpha-1)}{\gamma}}} \|A^{k+\alpha} \mathbf{u}\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \|\nabla \mathbf{u}\|_{L^{\frac{2(k+\gamma+\alpha-1)}{\gamma}}} \|A^k \mathbf{u}\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \\
\leq C \|\nabla \mathbf{u}\|_{L^{\frac{2(k+\gamma+\alpha-1)}{\gamma}}} \|A^{k+\alpha} \mathbf{u}\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \|\nabla \mathbf{u}\|_{L^{\frac{2(k+\gamma+\alpha-1)}{\gamma}}} \|A^k \mathbf{u}\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \\
\leq C \|\nabla \mathbf{u}\|_{L^{\frac{2(k+\gamma+\alpha-1)}{\gamma}}} \|A^{k+\alpha} \mathbf{u}\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \|\nabla \mathbf{u}\|_{L^{\frac{2(k+\gamma+\alpha-1)}{\gamma}}} \|A^k \mathbf{u}\|_{L^{\frac{4(k+\gamma+\alpha-1)}{2(k+\gamma+\alpha-1)}}} \\
\leq C \|\nabla \mathbf{u}\|_{B^{\infty}_{\infty}} \|A^{k+\alpha} \mathbf{u}\|_{L^{2}} \|\nabla \mathbf{u}\|_{B^{\infty}_{\infty}} \|A^k \mathbf{u}\|_{L^{2}} \\
\leq C \|\nabla \mathbf{u}\|_{B^{\infty}_{\infty}} \|A^{k+\alpha} \mathbf{u}\|_{L^{2}} + \|\nabla \mathbf{u}\|_{B^{\infty}_{\infty}} \|A^k \mathbf{u}\|_{L^{2}}^2.\]

Substituting (2.4) in (2.2), we find
\[
\frac{d}{dt} \|A^k \mathbf{u}\|^2_{L^2} + \|A^{k+\alpha} \mathbf{u}\|^2_{L^2} \leq C \|\nabla \mathbf{u}\|_{B^{\infty}_{\infty}} \|A^k \mathbf{u}\|_{L^2}^2 + 2I_2^k.\]

Now, we treat $2I_2^k$ step by step. If $0 < k \leq \alpha$, then
\[
2I_2^k = 2 \int_{\mathbb{R}^n} \partial \mathbf{e}_n \cdot A^{2k} \mathbf{u} \, dx
\]
\[\leq 2 \|\partial \mathbf{e}_n\|_{L^2} \|A^{2k} \mathbf{u}\|_{L^2} \leq C \|\partial \mathbf{e}_n\|_{L^2} \left(\|A^{k+\alpha} \mathbf{u}\|_{L^2} \right) \left(H^{k+\alpha}(\mathbb{R}^n) \subset \dot{H}^{2k}(\mathbb{R}^n)\right) \leq C + \frac{1}{2} \|A^{k+\alpha} \mathbf{u}\|_{L^2}^2 \] (by (2.1)).

Substituting (2.6) into (2.5), we apply Gronwall inequality to deduce
\[
\|A^k(\mathbf{u}, \partial)\|_{L^\infty(0,T;L^2(\mathbb{R}^n))} + \|A^{k+\alpha} \mathbf{u}\|_{L^2(0,T;L^2(\mathbb{R}^n))} \leq C \quad (0 < k \leq \alpha).\]
Suppose we have already the statement for some \(0 \leq l \in \mathbb{N}, \)
\[\|A^l(u, \vartheta)\|_{L^\infty(0,t;L^2(\mathbb{R}^n))} + \|A^{l+\alpha}u\|_{L^2(0,t;L^2(\mathbb{R}^n))} \leq C \quad (\forall \ l \alpha < k \leq (l+1)\alpha), \quad (2.8) \]
we wish to deduce higher-order estimate
\[\|A^{k+\alpha}(u, \vartheta)\|_{L^\infty(0,t;L^2(\mathbb{R}^n))} + \|A^{k+2\alpha}u\|_{L^2(0,t;L^2(\mathbb{R}^n))} \leq C. \quad (2.9) \]
Indeed, as long as (2.8) holds, we may dominate \(2I_2^{k+\alpha} \) as
\[2I_2^{k+\alpha} = 2 \int_{\mathbb{R}^n} A^{k+\alpha}(\vartheta e_n) \cdot A^{k+\alpha}u \, dx \]
\[= 2 \int_{\mathbb{R}^n} A^k(\vartheta e_n) \cdot A^{k+2\alpha}u \, dx \quad (2.10) \]
\[\leq 2\|A^k\|_{L^2} \|A^{k+2\alpha}u\|_{L^2} \]
\[\leq 2\|A^k\|_{L^2}^{2} + \frac{1}{2}\|A^{k+2\alpha}u\|_{L^2}^{2}. \]
Putting (2.10) into (2.5) with \(k \) replaced by \(k + \alpha \), and using (2.8), we deduce (2.9) as desired.

Now prove that (2.7) and (2.8) imply (2.9), we see readily that
\[\|A^\alpha u\|_{L^\infty(0,t;L^2(\mathbb{R}^n))} + \|A^{1+\alpha}u\|_{L^2(0,t;L^2(\mathbb{R}^n))} \leq C. \quad (2.11) \]
With this good estimate of the velocity field, we are now in a position to treat that of \(\vartheta \). Applying \(A^\alpha \) to \((1.1)_2\), and testing the resultant equation by \(A^\alpha \vartheta \), we obtain
\[\frac{1}{2} \frac{d}{dt} \|A^\alpha \vartheta\|_{L^2}^{2} \]
\[= - \int_{\mathbb{R}^n} A^\alpha[(u \cdot \nabla)\vartheta] \cdot A^\alpha \vartheta \, dx \]
\[= - \int_{\mathbb{R}^n} \{A^\alpha[(u \cdot \nabla)\vartheta] - (u \cdot \nabla)A^\alpha \vartheta\} \cdot A^\alpha \vartheta \, dx \quad (2.12) \]
\[\leq C \left(\|\nabla u\|_{L^\infty} + \|A^\alpha \vartheta\|_{L^2} + \|\nabla \vartheta\|_{L^\infty} + \|A^\alpha u\|_{L^2} \right) \|A^\alpha \vartheta\|_{L^2} \quad \text{(by (2.3))} \]
\[\leq C \left(\|u\|_{L^2} + \|A^\alpha u\|_{L^2} \right) \|A^\alpha \vartheta\|_{L^2}^{2} + \left(\|\vartheta\|_{L^2} + \|A^\alpha \vartheta\|_{L^2} \right) \|A^\alpha u\|_{L^2} \|A^\alpha \vartheta\|_{L^2} \]
\[\text{(by } H^\alpha(\mathbb{R}^n) \subset W^{1,\infty}(\mathbb{R}^n)\text{)} \]
\[\leq C + C\|A^\alpha \vartheta\|_{L^2}^{2} \quad \text{(by (2.1) and (2.11)).} \]
Applying Gronwall inequality, we obtain
\[\|A^\alpha \vartheta\|_{L^\infty(0,t;L^2(\mathbb{R}^n))} \leq C. \]
With this estimate and (2.11), we complete the proof.

Acknowledgements. This work is supported by the Natural Science Foundation of Jiangxi (grant no. 20151AB201010), the National Natural Science Foundation of China (grant nos. 11501125, 11361004) and the Supporting the Development for Local Colleges and Universities Foundation of China – Applied Mathematics Innovative Team Building.
REFERENCES

ZUJIN ZHANG

School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou 341000, Jiangxi, China

E-mail address: zhangzujin3610163.com, phone (86) 07978393663