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Abstract. The objective of this article is to prove sufficient conditions for
the approximate controllability for a class of nonautonomous nonlocal finite

delay differential equations with deviating arguments in a Hilbert space. We

also establish sufficient conditions for the existence of mild solutions. The
results are established using the fixed point theorem of Krasnoselskii and the-

ory of semigroup of bounded linear operators. We discuss an example for the
application of the analytical results.

1. Introduction

Let (X, ‖ · ‖) be a complex Hilbert space. We study the approximate controlla-
bility for the system consisting of nonautonomuos nonlocal finite delay differential
equation with deviating arguments in X,

[
d

dt
+A(t)]x(t) = f(t, x(t), x([h(x(t), t)])) +Bu(t), t ∈ J = [0, b],

x(t) = φ(t) + g(x)(t), t ∈ [−a, 0].
(1.1)

Here, we assume that −A(t), for each t ≥ 0 generates a compact analytic semigroup
of bounded linear operators on X, u(·) is the control function in L2(J, U) for a
Hilbert space U , B is a bounded linear operator on U into X. The functions
f : J ×X ×X → X, h : X × J → J and g : C([−a, b], X) → C([−a, 0], X) satisfy
suitable conditions in their arguments stated in Section 2.

Differential equations with deviating arguments are the generalization of differen-
tial equations in which the unknown quantity and its derivative appear in different
values of their arguments[5, 6, 8, 16, 18, 21, 25]. They arise as models for the im-
portant class of physical phenomenon such as self-oscillating systems, the theory of
automatic control, the problems of long-term planning in economics, the systems
in bio-physics, the study of problems related with combustion in rocket engines,
and many other areas of science and technology, and the number is increasing. In
some of the models, the information is transferred from the input to the output
after finite time. Such systems are called the system with finite delay. The output
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is connected with the state space. Considering the plentiful applications of the dif-
ferential equation with deviating arguments, many author have studied differential
equation with deviating arguments extensively e.g. [5, 6, 8, 13, 16, 17, 18, 21, 25].

The existence of a deviation-delay in time is necessary to avoid the unstable
combustion in liquid rocket engines. The delay (in time) in automatic regulator
system cause the appearance of a self-exciting oscillation, overregulation, and even
of the instability of the system. In this system, the delay is needed to react to
the input impulse for the system. Some of the systems in mathematical modeling
of many real world phenomena, namely in control theory, population dynamics,
biology and epidemiology, electro-mechanical and medical domains can be modelled
by nonlocal differential equations with delay. For more details of such systems, we
refer to [5, 12, 19, 20, 29].

On the other hand, the concept of controllability is of great importance in
mathematical theory of control of finite or infinite dynamical systems [4]. For
a nice introduction on control theory of linear systems, we refer to [1, 4]. The
main objective of the controllability is to show the existence of a control function,
which steers the solution of the system from its initial state to the final state.
Exact controllability enables to steer the system to arbitrary final state. How-
ever, there are systems where it possible to steer the system to arbitrary small
neighbourhood of the final state. This is known as approximate controllability.
As far as the applications are concerned, the approximate controllability is more
relevant to dynamical systems and the area got much attentions in recent years
[5, 6, 7, 11, 12, 14, 15, 19, 20, 22, 23, 24, 29, 31].

It is worth mentioning that the controllability of the systems with nonlocal
conditions are better than classical Cauchy condition[2, 9]. So, the approximate
controllability of nonlocal systems with delay-deviating arguments have practical
importance and studied much in the recent years by many authors in [5, 7, 11, 12,
15, 19, 20, 22, 23, 24, 26, 29, 31].

Das et al. [5] used the Schauder fixed point theorem in their study of approximate
controllability for the following system with deviating arguments in a Hilbert space
X,

[
d

dt
−A]x(t) = f(t, xt, x([h(x(t), t)])) +Bu(t), t ∈ J = [0, b],

x(t) = φ(t), t ∈ [−a, 0].
(1.2)

Here, we assume that −A(t), for each t ≥ 0 generates a strongly continuous semi-
group of bounded linear operators on X, u(·) is the control function in L2(J, U)
for a Hilbert space U , B is a bounded linear operator on U into X. The functions
f : J × X × X → X and h : X × J → J satisfy Lipschitz conditions in their
arguments[5].

Very recently, Kamaljeet et al. [20] studied the approximate controllability for the
following integro-differential equations with nonlocal condition in a Hilbert space
X,

cDqx(t) +Ax(t) = f(t, xt) +
∫ t

0

k(t− s)h(s, xs)ds+Bu(t),

t ∈ J = [0, b],

x0 = φ+ g(x), on [−a, 0],

(1.3)
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where cDq is the Caputo fractional derivative of order 0 < q < 1, A generates an
analytic semigroup of bounded linear operators on X, u(·) is the control function
in L2(J, U) for a Hilbert space U , B is a bounded linear operator on U into X. The
approximate controllability results are established by the fixed point argument for
the system (1.3) with appropriate functions f, g, h and the kernel k.

However, the approximate controllability for the nonlocal nonautonomous sys-
tems with deviating arguments have not studied so far. In this article, we devote
our study of the approximate controllability for the nonautonomous systems with
deviating arguments for the system (1.1) in an arbitrary infinite dimensional Hilbert
space. The results are new and generalize the results in [5, 15].

We organize the article as follows. In Section 2, we provide preliminaries, as-
sumptions and Lemmas that will be needed for proving the main results. We prove
the local existence of a solution in Section 3. The approximate controllability re-
sults are established in Section 3. Finally, we provide an example to illustrate the
application of the abstract results.

2. Preliminaries

In this section, we introduce notation, variuos assumptions and Lemmas for the
use of the remaining part of the article. We briefly outline the facts concerning
evolution family of bounded linear operators, controllability, control function and
mild solutions. We refer the book by Bensoussan [1] and Curtain and Zwart [4],
Friedman [10], Pazy [27], Tanabe [28] and Yosida[30] for more details.

Let X and U be two complex Hilbert spaces. Let T ∈ [0,∞) and {A(t) : 0 ≤ t ≤
T} be a family of closed linear operators on the Hilbert space X. Let L(X) denote
the Banach space of all bounded linear operator on X. We assume the following
hypothesis.

(H1) For each 0 ≤ t ≤ T , −A(t) is closed linear operators that generates the
compact analytic semigroup of bounded linear operator U : ∆ → L(X),
where (t, s) ∈ ∆ = {(t, s) ∈ J × J : 0 ≤ s ≤ t ≤ T}. The domain D(A) of
A(t) is dense in X and is independent of t.

Remark 2.1. The evolution semigroup U(t, s) is strongly continuous on the com-
pact set ∆, there exists a constant M > 0 such that

‖U(t, s)‖ ≤M for all (t, s) ∈ ∆. (2.1)

Definition 2.2. An operator U : ∆ → L(X) is said to be a compact evolution
family if the following holds,

(a) U(s, s) = I is the identity operator in X for s ∈ J ,
(b) U(t, r)U(r, s) = U(t, s), 0 ≤ s ≤ r ≤≤ t ≤ T ,
(c) U is strongly continuous on ∆,
(d) U(t, s) satisfies

∂U(t, s)
∂t

+A(t)U(t, s) = 0,
∂U(t, s)
∂s

− U(t, s)A(s) = 0, (t, s) ∈ ∆,

(e) U(t, s) are completely continuous for (t, s) ∈ ∆.

Let x(b, φ, u) be the state value of the system (1.1) at terminal time b corre-
sponding to the initial value φ and the control function u. We define the following
set

R(b, φ) = {x(b, φ, u) : u ∈ L2(J, U)}.
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The set R(b, φ) is called the reachable set of the system (1.1) at time b.

Definition 2.3. (1) A controllability map for the system (1.1) on J is the bounded
linear map Bb : L2(J, U)→ X which is defined as

Bbu :=
∫ b

0

U(b, s)Bu(s)ds, for u ∈ L2(J, U). (2.2)

(2) The system (1.1) is exactly controllable on J if R(b, φ) = X, that is for all
y0, y1 ∈ X, there exists u ∈ L2(J, U) such that the mild solution to the system (1.1)
satisfies x(0, φ, u) = y0 and x(b, φ, u) = y1.

(3) The system (1.1) is approximately controllable on J if R(b, φ) = X, that is
for given ε > 0, and y0, y1 ∈ X, there exists a control u ∈ L2(J, U) steers from the
point x(0, φ, u) = y0 to all points at time b within a distance of ε from y1. More
precisely,

x(0, φ, u) = y0, ‖x(b, φ, u)− y1‖ < ε.

(4) The controllability Gramian of the system (1.1) on J is defined by

Γb0 := Bb(Bb)∗.

Lemma 2.4 ([15]). The following properties hold for the controllability map:
(a) (Bb)∗z(s) = B∗U∗(b, s)z, for s ∈ [0, T ], z ∈ X.
(b) Γb0 = Bb(Bb)∗ ∈ L(X) has the representation

Γb0z =
∫ b

0

U(b, s)BB∗U∗(b, s)zds, for z ∈ X (2.3)

and Γb0 ≥ 0, where B∗ and U∗ denote the adjoint of B and U respectively.

We consider the following control system in X,

[
d

dt
+A(t)]x(t) = Bu(t), t ∈ J,

x(0) = φ(0).
(2.4)

We define the resolvent operator associated with (2.4) as

R(ε,Γb0) = (εI + Γb0)−1, ε > 0.

We use the assumption
(H2) εR(ε,Γb0)→ 0 as ε→ 0+ in the strong operator topology.

Theorem 2.5 ([22]). Let H be a separable Banach space with dual H∗. The fol-
lowing tow statements are equivalent for a symmetric operator P : H∗ → H:

(i) P is positive,
(ii) xε(h) = ε(εI + PQ)−1(h) → 0 as ε → 0+in the strong operator topology,

where Q : H → H∗ denotes the duality map.

Theorem 2.6 ([24]). System (2.4) is approximately controllable on J if and only
if the condition (H2) holds.

It follows from (H2) that system (2.4) is approximately controllable on J if and
only if

〈v,Γb0v〉 =
∫ b

0

‖B∗U∗(b, s)v‖2ds > 0, ∀v(6= 0) ∈ X.

We need the following hypotheses for proving the main results.
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(H3) For every t ∈ J ; x, y, x′, y′ ∈ X, there exist constants Lf > 0 and Mf > 0
the nonlinear map f : J ×X ×X → X satisfies

‖f(t, x, x′)− f(s, y, y′)‖ ≤ Lf (‖x− y‖+ ‖x′ − y′‖),
‖f(0, x(0), x(h(x(0), 0)))‖ ≤Mf , ∀t, s ∈ J

f(t, ·, ·) is continuous.
(2.5)

(H4) There exist constants Lh > 0 such that h : X×J → J satisfies the condition

|h(x, t)− h(y, s)| ≤ Lh(‖x− y‖), h(·, 0) = 0 (2.6)

for all x, y ∈ X and for all t, s ∈ J .
(H5) The function g : C → C([−a, 0], X) satisfies

‖g(x)− g(y)‖C([−a,0],X) ≤ Lg(‖x− y‖C), ∀x, y ∈ C,
‖g(x)‖C([−a,0],X) ≤ Lg(1 + ‖x‖C), ∀x ∈ C,

(2.7)

where C = C([−a, b], X).
For z ∈ X and ε > 0, we define the control function uε(t, x) for the system (1.1) by

uε(t, x) = B∗U∗(b, s)R(ε,Γb0)
{
z − U(b, 0)[φ(0) + g(x)(0)]

−
∫ b

0

U(b, s)f(s, x(s), x([h(x(s), s)]))ds
}
.

(2.8)

We also recall the Krasnoselskii’s fixed point theorem.

Theorem 2.7. Let P be a map from a closed bounded convex subset S of X into
S. Suppose that Px = P1x + P2x for x ∈ S and P1u + P2v ∈ S for every pair
u, v ∈ S. If P1 is contraction and P2 is compact, then the equation P1u+ P2u = u
has a solution in S.

3. Existence of Solution

In this section, we establish the existence and uniqueness of a local solution to
the system (1.1) corresponding to a given control function uε. The proof of the
theorem is based on the technique of [15, 20].

We define the

CL(J,X) = {x ∈ C(J,X) : ‖x(t)− x(s)‖ ≤ L|t− s| for a constant L > 0, t, s ∈ J}
and the space

CL0([−a, b], X) = {x ∈ C([−a, b], X) : x ∈ CL(J,X)}.
Definition 3.1. A function x ∈ CL0([−a, b], X) is said to be a mild solution to
problem (1.1) if x(t) satisfies

x(t) = U(t, 0)[φ(0) + g(x)(0)] +
∫ t

0

U(t, s)f(s, x(s), x([h(x(s), s)]))ds

+
∫ t

0

U(t, s)Bu(s)ds, t ∈ J = [0, b],

x(t) = φ(t) + g(x)(t), t ∈ [−a, 0].

(3.1)

Theorem 3.2. System (1.1) has a unique mild solution in CL(J,X) for each con-
trol uε ∈ L2(J, U) if the assumptions (H1)–(H5) hold and

MLg +MLf (2 + LLh)b < 1.
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Proof. We consider the ball

Br = {x ∈ CL0([−a, b], X) : ‖x‖CL0 ([−a,b],X) ≤ r}.
For each x ∈ Br, we define the map Fε by

Fεx(t) =


U(t, 0)[φ(0) + g(x)(0)] +

∫ t
0
U(t, s)f(s, x(s), x([h(x(s), s)]))ds

+
∫ t
0
U(t, s)Buε(s, x)ds, if t ∈ J = [0, b],

φ(t) + g(x)(t), if t ∈ [−a, 0]

For simplicity, we denote

l =
1
ε
‖BB∗U∗(b, s)‖

{
‖z‖+M [‖φ(0)‖+ Lg(1 + r)]

+ [2M(Lf (1 + LLh)r +MfM ]b
}
,

K =
1
ε
‖B‖ sup

t∈J
‖B∗U∗(b, t)‖.

For t ∈ J , we have the estimate
‖Buε(t, x)‖

≤ 1
ε
‖BB∗U∗(b, s)‖

{
‖z‖+M [‖φ(0)‖+ ‖g(x)(0)]‖

+M

∫ b

0

[
‖f(s, x(s), x([h(x(s), s)]))− f(s, 0, x([h(x(0), 0)])))‖

+ ‖f(s, 0, x([h(x(0), 0)])))‖
]
ds
}

≤ K
{
‖z‖+M [‖φ(0)‖+ Lg(1 + r)]

+M

∫ b

0

[(Lf (‖x(s)− x(0)‖+ LLh‖x(s)− x(0)‖) +Mf ]ds
}

≤ K
{
‖z‖+M [‖φ(0)‖+ Lg(1 + r)] + [2M(Lf (1 + LLh)r +MfM ]b

}
= l.

(3.2)

Let t1, t2 ∈ J with t1 < t2 and x ∈ X. Using [10, Lemmas II.14.1 and 14.4], we
obtain

‖Fεx(t1)− Fεx(t2)‖ ≤ ‖U(t1, 0)− U(t2, 0)‖(‖φ(0)‖+ ‖g(x)(0)‖)

+
∥∥∥∫ t1

0

U(t1, s)f(s, x(s), x([h(x(s), s)]))ds

−
∫ t2

0

U(t2, s)f(s, x(s), x([h(x(s), s)]))ds
∥∥∥

+
∥∥∫ t1

0

U(t1, s)Buε(s, x)ds−
∫ t2

0

U(t2, s)Buε(s, x)ds
∥∥

≤ C1(t2 − t1) + C2(Mf + l)(1 + | log(t2 − t1)|)(t2 − t1),

where C1 = C(‖φ(0)‖ + ‖g(x)(0)‖), C2 and C3 are positive constants. Thus Fε ∈
CL(J,X).

Using estimate (3.2), we obtain

‖Fεx(t)‖
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≤M [‖φ(0)‖+ Lg(1 + r)] +
∫ t

0

[2M(Lf (1 + LLh)r +Mf ]ds+
∫ t

0

Ml}ds

≤M [‖φ(0)‖+ Lg(1 + r)] +M [2(Lf (1 + LLh)r +Mf ]b+Mlb

≤ r,

provided that

M [‖φ(0)‖+ Lg(1 + r)] +M [2(Lf (1 + LLh)r +Mf ]b+Mlb ≤ r, or

M‖φ‖+MLg +M{Lg + 2Lf (1 + LLh)b}r +M(Mf + l)b ≤ r, or

M‖φ‖+MLg +M(Mf + l)b ≤ r[1−M{Lg + 2Lf (1 + LLh)b}].

This is possible only if 2MLf (1 + LLh)b ≤ M{Lg + 2Lf (1 + LLh)b < 1. Thus we
choose b such that

b <
1

2MLf (1 + LLh)
.

So, Fε maps Br into itself. We decompose Fε as Fε = Fε,1 + Fε,2, where

Fε,1x(t) =


U(t, 0)[φ(0) + g(x)(0)] +

∫ t
0
U(t, s)f(s, x(s), x([h(x(s), s)]))ds

if t ∈ J = [0, b],

φ(t) + g(x)(t), if t ∈ [−a, 0],

Fε,2x(t) =

{∫ t
0
U(t, s)Buε(s)ds, if t ∈ J = [0, b],

0, if t ∈ [−a, 0].

We begin by showing that Fε,1 is a contraction on Br. For v1, v2 ∈ Br and t ∈ J ,
we have

‖Fε,1v1(t)− Fε,1v2(t)‖
≤ ‖U(t, 0)[g(v1)(0)− g(v2)(0)]‖

+
∫ t

0

U(t, s)
[
f(s, v1(s), v1([h(v1(s), s)]))− f(s, v2(s), v2([h(v2(s), s)]))

]
ds

≤MLg‖v1 − v2‖C + bMLf (2 + LLh)‖v1 − v2‖C
≤ [MLg + bMLf (2 + LLh)]‖v1 − v2‖C .

Also for t ∈ [−a, 0], we have

‖Fε,1v1(t)− Fε,1v2(t)‖ ≤ Lg‖v1 − v2‖C .
Thus we conclude that

‖Fε,1v1 − Fε,1v2‖C ≤ ‖v1 − v2‖C .
Hence Fε,1 is contraction on Br. We next show that the map Fε,2 is completely
continuous.
Step I: Let {vn} be a sequence in Br such that vn → v ∈ Br as n→∞. It follows
from (H3)− (H5) that

(a) ‖Buε(s, vn)−Buε(s, v)‖ → 0 as n→∞,
(b) ‖Buε(s, vn)−Buε(s, v)‖ ≤ 2l.

Using the dominated convergence theorem, we obtain that

‖Fε,2vn(t)− Fε,2v(t)‖ ≤
∫ t

0

‖U(t, s)[Buε(s, vn)−Buε(s, v)]‖ds
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≤M
∫ t

0

‖Buε(s, vn)−Buε(s, v)‖ds→ 0 as n→∞.

Step II: Let t1, t2 ∈ J such that t1 < t2 and v ∈ Br. It follows from [10, Lemma,II.
14.1, 14.4] that

‖Fε,2v(t2)− Fε,2v(t1)‖ ≤ C4(t2 − t1)β ,

for some constants 0 ≤ β ≤ 1 and C4 > 0. Thus {Fε,2(Br)} is equicontinous on J .
Step III: We show that {Fε,2v(t) : v ∈ Br} is relatively compact in X. For
t ∈ [−a, 0],

{Fε,2v(t) : v ∈ Br} = {0}.
If 0 < η < t, then we have

F ηε,2v(t) =
∫ t−η

0

U(t, s)Buε(s, v)ds

= U(t, t− η)
∫ t−η

0

U(t− η, s)Buε(s, v)ds

= U(t, t− η)I(t, η),

where I(t, η) =
∫ t−η
0
U(t− η, s)Buε(s, v)ds. We note that I(t, η) is bounded on Br.

As U(t, s) is compact in X, so for each t ∈ (0, b], the set {F ηε,2v(t) : v ∈ Br} is
relatively compact in X. Indeed, we have

‖Fε,2v(t)− F ηε,2v(t)‖ ≤
∫ t

t−η
‖U(t, s)Buε(s, v)‖ds

≤Mlη → 0 as η → 0+.

Thus the set {Fε,2v(t) : v ∈ Br} is arbitrarily close to the relatively compact set
{F ηε,2v(t) : v ∈ Br} for each t ∈ J . Hence, for all t ∈ [−a, b] the set {Fε,2v(t) : v ∈
Br} is relatively compact in X.

By Ascoli-Arzela theorem, the set {Fε,2v : v ∈ Br} is relatively compact in
C([−a, b], X). Thus the map Fε,2 is completely continuous from Br to Br.

Thus the map Fε has fixed point on Br by Krasnoselskii’s fixed point theorem.
Hence for each ε > 0, the system (1.1) has a mild solution in Br corresponding to
each control uε(s, x). �

4. Approximate Controllability

We prove the following theorem of approximate controllability for the system
(1.1).

Theorem 4.1. Let the assumptions (H1)–(H5) hold. Let the functions f : J×X×
X → X, h : X × J → J and g : C → C([−a, 0], X) be uniformly bounded. Then the
system (1.1) is approximately controllable on J .

Proof. From Theorem 3.2, Fε has fixed point xε in Br ⊂ CL0([−a, b], X). That is,
xε is a mild solution for the control

uε(t, xε) = B∗U∗(b, t)R(ε,Γb0)p(xε),

where,

p(xε) = z − U(b, 0)[φ(0) + g(xε)(0)]
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−
∫ b

0

U(b, s)f(s, xε(s), xε([h(xε(s), s)]))ds.

Further, we have

xε(b) = U(b, 0)[φ(0) + g(x)(0)] +
∫ b

0

U(b, s)f(s, xε(s), xε([h(xε(s), s)]))ds

+
∫ b

0

U(b, s)Buε(s, xε)ds, t ∈ J = [0, b],

= z − p(xε) + Γb0R(ε,Γb0)p(xε)

= z − εR(ε,Γb0)p(xε).

(4.1)

Since f : J × X × X → X and h : X × J → J are uniformly bounded, it follows
that f(s, xε(s), xε([h(xε(s), s)]))) is bounded in L2(J,X). Thus there exists a subse-
quence denoted by f(s, xε(s), xε([h(xε(s), s)]))) that converges to f(s) say. It follows
from the compactness of U(b, 0) and the boundedness of g that U(b, 0)g(xε)(0) is
relatively compact. So, there exists a subsequence denoted by itself and converges
to g̃ say. We define

α = z − U(b, 0)φ(0)− g̃ −
∫ b

0

U(b, s)f(s)ds.

By the compactness of U(t, s) and Arzela-Ascoli theorem, we have

‖p(xε)− α‖

≤M‖g(xε)(0)− g̃‖+M

∫ b

0

‖f(s, xε(s), xε([h(xε(s), s)]))− f(s)‖ds

→ 0 as ε→ 0 + .

(4.2)

Again from (4.1), we have

‖xε(b)− z‖ ≤ ‖ε(ε,Γb0)(α)‖+ ‖ε(ε,Γb0)(α)‖‖α− p(xε)‖

≤ ‖ε(ε,Γb0)(α)‖+ ‖p(xε)− α‖.

By assumption (H2) and (4.2), we have

‖xε(b)− z‖ → 0 as ε→ 0+.

This completes the proof. �

5. Application

Let X = L2([0, π] × [0, b]; R). We consider the following system with deviating
arguments in X,

∂w(x, t)
∂t

+ [κ(x, t) +
∂2

∂x2
]w(x, t)

= Bu(x, t) + f(x, t, w(x, t), w(x, h(w(x, t), t))), b > t > 0, x ∈ [0, π],

w(0, t) = 0 = w(π, t), 0 ≤ t ≤ b,

w(x, τ) = ψ(x, τ) +
∫ b

0

H(s, τ) cos(w(s, x))ds, x ∈ [0, π], τ ∈ [−a, 0],

(5.1)
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where

f(x, t, w(x, t), w(x, h(w(x, t), t))) =
∫ π

0

β(y, x)w(y, χ(t)|w(y, t)|)dy

for all (x, t) ∈ [0, π] × [0, b], χ : R+ → R+ is locally Hölder continuous in t with
χ(0) = 0 and β ∈ C1([0, π]× [0, π]; R), H(s, τ) is C1([0, b]× [−a, 0],R), κ(x, t) are
C1([0, π]× [0, b],R).

We write w(t)(x) = w(x, τ)

f(t, w(t), w(h(w(t), t)))(x) = f(x, t, w(x, t), w(x, h(w(x, t), t))),

ψ(t)(x) = ψ(x, t). With this notation, system (5.1) can be put in the form of (1.1).
We define

A(t)v(x) = [κ(x, t) +
∂2

∂x2
]v(x, t),

where ∂2

∂x2 is the distributional derivative of u. Then D(A(t)) = H2(0, π)∩H1
0 (0, π).

It is known that that −A(t) generates a compact analytic evolution semigroup of
bounded operators U(t, s) on L2[0, π] [10] and is given by

U(t, s)v = T (t− s)e
R t

s
κ(τ)dτv, v ∈ D(A(t)).

Here

T (t)v(τ) =
∞∑
n=1

e−n
2π2t〈v, en〉L2en(τ)

with en(τ) =
√

2 sinnτ , n = 1, 2, 3, . . . , and ‖T (t)‖ ≤ e−π
2t, t ≥ 0. We can show

that assumptions (H3) and (H4) are satisfied for the functions f and h respectively.
We also note that g satisfies assumption (H5).

We define an infinite dimensional control space

U = {u : u =
∞∑
0

unen(x),
∞∑
0

|un|2 <∞},

endowed with the norm ‖u‖ = (
∑∞

0 |un|2)1/2. We define B : U → X by

Bu = 3u2e1(x) +
∞∑
n=2

unen(x).

Then B is a bounded linear map and the adjoint is

B∗v = (3v2 + 2v2)e2(x) +
∞∑
n=3

unen(x).

If we assume that B∗U ∗(t, s)v = 0, then v = 0. Thus system (5.1) is approximately
controllable on [0, b].
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